Tight bounds on quantum searching

Michel Boyer Gilles Brassard!

Université de Montréal™ Université de Montréal
Peter Hoyer? Alain Tapp¥
Odense University$ Université de Montréal
Abstract

We provide a tight analysis of Grover’s recent algorithm for quantum database
searching. We give a simple closed-form formula for the probability of success
after any given number of iterations of the algorithm. This allows us to
determine the number of iterations necessary to achieve almost certainty of
finding the answer. Furthermore, we analyse the behaviour of the algorithm
when the element to be found appears more than once in the table and we
provide a new algorithm to find such an element even when the number of
solutions is not known ahead of time. Using techniques from Shor’s quantum
factoring algorithm in addition to Grover’s approach, we introduce a new
technique for approximate quantum counting, which allows to estimate the
number of solutions. Finally we provide a lower bound on the efficiency of any
possible quantum database searching algorithin and we show that Grover’s
algorithm nearly comes within a factor 2 of being optimal in terms of the
number of probes required in the table. |

*Département IRO, C.P. 6128, succursale centre-ville, Montréal, Canada H3C 3J7.
{boyer,brassard,tappa}@iro.umontreal.ca

tSupported in part by NSErc and FCAR

tSupported in part by the EsprIT Long Term Research Programme of the EU under
project number 20244 (ALCOM-IT).
$Department of Mathematics and Computer Science, Odense University, Campusvej 53,
DK-5230 Odense M, Denmark. u2pi@imada.ou.dk

YSupported in part by NSErC '

1 Introduction

Assume you have a large table T[0.. N — 1] in which you would like to
find some element 2. More precisely, you wish to find an integer i such
that 0 <7 < N and T[i] = z, provided such an i exists. This problem
can obviously be solved in a time in O(log N) if the table is sorted, but
no classical algorithm (deterministic or probabilistic) can succeed in the
general case—when the elements of T are in an arbitrary order—with
probability better than 1/2, say, without probing more than half the en-
tries of T'. Grover [4] has recently discovered an algorithm for the guan-
tum computer that can solve this problem in expected time in O(v/N).
He also remarked that a result in [1] implies that his algorithm is optimal,
up to a multiplicative constant, among all possible quantum algorithms.

In this paper we provide a tight analysis of Grover’s algorithm. In
particular we give a simple closed-form formula for the probability of
success after any given number of iterations. This allows us to determine
the number of iterations necessary to achieve almost certainty of find-
ing the answer, as well as an upper bound on the probability of failure.
More significantly, we analyse the behaviour of the algorithm when the
element to be found appears more than once in the table. An algorithm
follows immediately to solve the problem in a time in O(,/N/t) when it
is known that there are exactly ¢ solutions. We also provide an algorithm
capable of solving the problem in a time in O(,/N/t) even if the num-
ber t of solutions is not known in advance. Bringing ideas from Shor’s
quantum factorization algorithm [6] into Grover’s algorithm, we sketch a
new quantum algorithm capable of approximately counting the number
of solutions. We also generalize Grover’s algorithm in the case N is not
a power of 2. Finally, we refine the argument of [1] to show that Grover’s
algorithm could not be improved to require much less than half the num-
ber of table lookups that it currently makes when a 50% probability of
success is desired.

2 Finding a unique solution

Assume for now that there is a unique iy such that T[ig] = x. For any
real numbers k and ¢ such that k2 + (N — 1)¢*> = 1, define the state of a
quantum register
¥k, 0)) = klio) + 3 (1)
i#iy
where the sum is over all i # iy such that 0 <i < N. (We shall never
need complex amplitudes in this paper, except in §7.)

The heart of Grover’s algorithm is a process, that efficiently trans-
forms |U(k,£)) into |¥(X2k + Mﬁ_—llf,ﬁ%‘,—?(— 2k)). This process is
henceforth called an iteration. Although we review the iteration process
in §6—where we call it G—we refer the reader to Grover’s original arti-
cle [4] for a more complete description and the proof that it performs as
required. Grover’s algorithm begins by creating an equal superposition

i 7 7 _— = 1 N
[0 = [2(VR VE)) = 2 o)
of all possible values for i, 0 < i < N. Then some number m of iterations
are performed. It is clear from the above discussion that the effect of the
j—th iteration is to produce state |¥;)=|¥(k;, £;)) where ko =l = 1/VN
and

- 2(N-1
ki = 2k + 2 W
G = Y24 -1k

Finally, state |¥,,) is observed, yielding some value i. The algorithmn
succeeds if and only if T'[i] = x.

In his paper, Grover proves that there exists a number m less than
V2N such that the probability of success after m iterations is at least 1/2.
This is correct, but one must be careful in using his algorithm because
the probability of success does not increase monotonically with the num-
ber of iterations. By the time you have performed V2N iterations, the

3

probability of success has dropped down to less than 9.5% and it be-
comes vanishingly small after about 11% more iterations before it picks
up again. This shows that it is not sufficient to know the existence of m
in order to apply the algorithm in practice: its explicit value is needed.

The key to a tighter analysis of Grover’s algorithm is an explicit
closed-form formula for £; and ¢;. This can be obtained by standard
techniques—and a little sweat-—from recurrence (1). Let angle 6 be de-
fined so that sin?§ = 1/N. Itis straightforward to verify by mathematical

induction that
kj = sin((2j +1)8) }

;i = —A—!"Tcos((?j +1)0)

(2)

It follows from equation (2) that k,, =1 when (2m + 1) = 7/2, which
happens when m = (7 — 20)/46. Of course, we must perform an integer
number of iterations but it will be shown in the next section that the
probability of failure is no more than 1/N if we iterate |m/48] times.
This is very close to %\/W when N is large because ~sinf = 1/V/N
when 6 is small. It is sufficient to perform half this number of iterations,
approximately -g-\/N, if we are content with a 50% probability of success,
as Grover considered in his original paper [4]. However, if we work twice
as hard as we would need to succeed with almost certainty, that is we
apply approximately %\/1\—’ iterations of Grover’s algorithm, we achieve
a negligible probability of success!

3 The case of multiple solutions

Let us now consider the case when there are ¢ solutions to the problem,
that is there are t different values of ¢ such that T[i] = 2. We are in-
terested in finding an arbitrary solution. Grover briefly considers this
setting [4], but he provides no details concerning the efficiency of his
method. We assume in this section that the value of ¢ is known.

4

Let A= {i|T[{] = 2} and B = {i|T[:] # x}. For any real numbers
k and £ such that th? + (N — t)(% = 1, redefine
Wk, 0) = 2 ki) + > €]i).
ieA ieB

A straightforward analysis of Grover’s algorithm shows that one iteration
transforms |¥(k, €)) into

| (M52 4 250 N2ty 2y

This gives rise to a recurrence similar to (1), whose solution is that the
state |W(k;j,¢;)) after j iterations is given by

kj = %sin((?j +1)8) }

: I : (3)
li = 7= cos((25 + 1))

where the angle 6 is chosen so that sin 6 = ¢t/

The probability of obtaining a solution is maximized when ¢, is as
close to 0 as possible. We would have £; =0 when m = (7 — 260)/46
if that were an integer. Let m = |7/46|. Note that |m —m| < 1/2.
It follows that |(2m + 1)8 — (2 + 1)8] < 6. But (2m +1)f = /2 by
definition of m. Therefore | cos((2m + 1)8)| < |sin§|. We conclude that
the probability of failure after exactly m iterations is

(N — 1), = cos’((2m +1)8) < sin®@ =t/N .

This is negligible when t < V.
Note that this algorithm runs in a time in O(y/N/t) since 6 > sin6
and sinf = ,/t/N, and therefore

< < \JT\
m 49_4

A slight improvement is possible in terms of the expected time if we
stop short of m iterations, observe the register, and start all over again

5

in case of failure. The expected number of iterations before success
with this strategy is E(j) = j/th? if we stop after j iterations since our
probability of success at that point is tkf-. Setting the derivative of E(j)
to 0 tells us that the optimal number of iterations is given by the j so
that 465 = tan((2) + 1)6).

We have not solved this equation exactly but it is very close to
z = tan(z/2) with = = 46 when the optimal j is large, which happens
when t < N. The solution for z is approximately 2.33112. It follows that
the optimal number of iterations is close to 0.58278\/1\’—/t when t < N and
the probability of success is close to sin?(z/2) ~ 0.84458. Therefore, the
expected number of iterations before success if we restart the process in
case of failure is roughly (z/(4 si112(z/‘2)))\/N7 ~ 0.69003,/N/t, which
is about 88% of g\/’\—/t, the number of iterations after which success is
almost certain. For a numerical example, consider the case N = 220 and
t =1. In this case, we achieve almost certainty of success after 804 it-
erations. If, instead, we stop at 596 iterations, the probability of success
is only 0.8442 but the expected numnber of iterations before success if we
restart the process in case of failure is 596/0.8442 ~ 706, which is indeed
better than 804.

3.1 The case t = N /4

An interesting special case occurs when t = N/4. Of course, even a
classical computer can find a solution efficiently in this case, with high
probability, but not quite as efficiently as a quantum computer. Here
sin?f = t/N = 1/4 and therefore § = 7/6. This implies that

1
VN —t

In other words, a solution is found with certainty after a single iteration.
Because one iteration of Grover’s algorithm requires two table look-ups

(= cos(30) =0.

6

(including one for uncomputation purposes-—see §7), this is twice as ef-
ficient (in terms of table look-ups) than the expected performance of
the obvious classical probabilistic algorithm—and that’s best possible
classically. Furthermore, the quantum algorithm becomes ezponentially
better than any possible classical algorithm if we compare worst-case
performances, taking the worst possible coin flips in the case of a prob-
abilistic algorithm. This is somewhat reminiscent of the Deutsch-Jozsa
algorithm [3].

4 Unknown number of solutions

A much more interesting case occurs when the number of solutions is
not known ahead of time. If we decide to iterate g\/T times, which
would give almost certainty of finding a solution if there were only one,
the probability of success would be vanishingly small should the number
of solutions be in fact 4 times a small perfect square. For example we
saw above that we are almost certain to find a unique solution among
220 possibilities if we iterate 804 times. The same number of iterations
would yield a solution with probability less than one in a million should
there be 4 solutions! In order to find a solution efficiently when their
number is unknown, we need the following lemmas, the first of which is
proved by straightforward algebra.

Lemma 1 For any real numbers o and 3, and any positive integer m,

m-} . sin(mf3) cos(a + (m —1)3)
 + 2 = — .
;) cos(a + 2037) S

In particular, when o = 3,

_sin(2ma)

m—1
s((27 =
fX:%) cos((2+1)a) 2sina

-1

Lemma 2 Let t be the (unknown) number of solutions and let 8 be such
that sin®@ = t/N. Let m be an arbitrary positive integer. Let j be an
integer chosen at random according to the uniform distribution between
0 and m — 1. If we observe the register after applying j iterations of
Grover’s algorithm starting from the initial state |¥p) = Ziﬁ[i), the
probability of obtaining a solution is exactly

sin(4m@)

1
Pm = T T
2 4msin(26)

In particular P, > 1/4 when m > 1/sin(26).

Proof. The probability of success if we perform j iterations of Grover’s
algorithm is tkj?- = sin?((2j +1)0). It follows that the average success
probability when 0 < j < m is chosen randomly is

m—1
P, = 3 —sin®((2j +1)6)
7=0 m
1 m-1)
= 5= J;) 1 —cos((2j +1)26)

1 sin(4mb)

2 4msin(20)

If m > 1/sin(26) then

sin(4m8) 1 < 1
4dmsin(260) ~ 4msin(20) ~ 4~
The conclusion follows. [|

We are now ready to describe the algorithm for finding a solution
when the number ¢ of solutions is unknown. For simplicity we assume at
first that 1 <t < 3N/4.

1. Initialize m = 1 and set A = 6/5.
(Any value of A strictly between 1 and 4/3 would do.)

2. choose j uniformly at random among the nonnegative integers smal-
ler than m.

3. Apply j iterations of Grover’s algorithm starting from initial state
] .
|Wo) = i 7z i)-
4. Observe the register: let ¢ be the outcome.

5. If T[] = z, the problem is solved: exit.

6. Otherwise, set m to min(Am, VN)
and go back to step 2.

Theorem 3 This algorithm finds a solution in expected time O(\/N/t).

Proof. Let 6 be the angle so that sin?6 = t/N. Let

mg = 1/sin(26) = \17
\/__,
(recall that we assumed t < 3N/4).

We shall estimate the expected number of times that a Grover iter-
ation is performed: the total time needed is clearly in the order of that
number. On the s—th time round the main loop, the value of m is A*~!
and the expected number of Grover iterations is less than half that value
since j is chosen randomly so that 0 < j < m. We say that the algo-
rithm reaches the critical stage if it goes through the main loop more

than [logy mg] times. The value of m will exceed my if and when the
algorithm reaches that stage.

The expected total number of Grover iterations needed to reach the
critical stage, if it is reached, is at most

[logy mo] 1
rt<

= 5:*_—1"10 = 3m0 .

1

5
Thus, if the algorithm succeeds before reaching the critical stage, it does
so in a time in O(my), which is in O(,/N/t) as required.

If the critical stage is reached then every time round the main loop
from this point on will succeed with probability at least 1/4 by virtue
of Lemma 2 since m > 1/sin(26). It follows that the expected number
of Grover iterations needed to succeed once the critical stage has been
reached is upper-bounded by

1 3" u+[log, mo] A
CRIST R

8 — 6/\7710 = 57710.

The total expected number of Grover iterations, in case the critical stage
is reached, is therefore upper-bounded by %mo and thus the total expected
time is in O(m) provided 0 < ¢t < 3N/4. Note that mg ~ %\/]—V_/z
when t < N, which is less than four times the expected numnber of iter-
ations that we would have needed had we known the value of ¢ ahead of
time. The case t > 3N/4 can be disposed of in constant expected time
by classical sampling. The case ¢t = 0 is handled by an appropriate time-
out in the above algorithm, which allows to claim in a time in O(VN)
that there are no solutions when this is the case, with an arbitrarily small
probability of failure when in fact there is a solution. |

10

5 Quantum counting

We are currently investigating the power of quantum computers in ap-
proximately counting the number t of solutions, rather than merely find-
ing one. For this, we use techniques inspired by Shor’s celebrated quan-
tum factorization algorithm [6] and combine them with Grover's algo-
rithm. Here we sketch the basic ideas, leaving the details—many of
which still have to be worked out—to a further paper [2].

Let k; and ¢; be as in equation (3) and recall that A = {¢|T'[i] = v}
and B = {i|T[i] # 2}. The key observation is that the value of 6, and
therefore that of t, can be inferred directly from the period of the function
that sends j onto kj. This period can be estimated from sampling in a
discrete Fourier transform of the function. In order to profit from the
ability of quantum computers to compute Fourier transforms, though,
we must first create a state in which the amplitude of |j) is proportional
to k; for values of j ranging over several periods.

Let P be a power of 2, arbitrary for the moment, and let f = P8/x
be the number of periods of k; when j spans the range from 0 to P — 1.
(In general f need not be an integer.) Create state

-1N-1

) = 3 %l

Then apply to |¥g) a transformation that sends |)|¥) to |j) G/|¥), where
G is the Grover iteration. This takes a time proportional to I, resulting

in the state
P-1

s [st (S mi+ 5 0)|

Now, observe the second part of the register. Assume without loss of
generality that some element from A is obtained. (There are no essential
differences if instead an element from B is obtained since kj and ¢; have

11

exactly the same period.) At this point, the first part of the register has
collapsed to state

P-1

2. kjlj)

Jj=0
up to renormalization. If we apply a quantum discrete Fourier transform
to this state [6] (not what Grover calls the quantum Fourier transform
in [4]!), and if f is large enough, the amplitude of all values of j becomes
vanishingly small, except for values very close to f or P — f. Finally,
we observe the register. With high probability, this yields an excellent
approximation f on f, from which we estimate

= f?ﬂ and i= Nsin’6.

To evaluate the accuracy of ¢, we assume that | f — f| < 1, which hap-
pens with reasonable probability provided f is sufficiently large—see [2]
for details. It follows that |§ — 8] < 7/P and therefore |sinf — sin 6| is
less than 7/ P as well. From { = Nsin?6, t = N sin?6 and sin 6 = \/Em,
we derive

It — £ <2—"\/W+”—2N (4)
P P2
Recall that the running time of the algorithm is proportional to P. This
parameter allows us to balance the desired accuracy of the approximation
with the running time required to achieve it. Let ¢ be a constant.

o If we take P = ¢V N, the error in our estimate of ¢ is bounded by
%’1\/Z+ % provided |f — f| < 1. This is reminiscent of finding the
answer up to a few standard deviations.

o If we are satisfied with keeping small the relative error, we run the
algorithm on successive powers of 2 for P until f becomes reason-
ably large. This will happen when P = ¢\/N/t. After a total time

12

proportional to \/N/t, this yields an estimate for ¢ that is likely to
be within a factor (1 + m/c)? of the correct answer.

o If we want the absolute error to be probably bounded by a constant,
we apply the algorithm once with P = ¢V N in order to estimate t.
Then, we run it again, but with P = cViIN. According to equa-
tion (4), and pretending P = eVEN for simplicity, the resulting er-
ror in our second estimate of ¢ is likely to be bounded by Z—C” + ﬁ
In particular, we get the eract answer, provided |f — f] <1, if we
take ¢ > 14 since 27" + 017 < 1/2 in that case. (Note that successive
applications of Grover’s algorithin in which we strike out the solu-
tions as they are found will also provide an exact count with high
probability in a time in O(v/N), but at an enormous cost in terms
of additional memory—see [2].) "

o Finally, we have a variation on this technique that gives the ezact
answer in a time in O(v/ N) with a vanishingly small probability of
error provided the number of solutions is a small perfect square.

We defer the details to [2].

6 Implementation considerations

Grover’s algorithm consists of a number of iterations followed by a mea-
surement. In his original article [4] Grover shows that the unitary trans-
form G, defined below, efficiently implements what we called an iteration
in §2.

For every A C Zy, let Sy be the conditional phase shift transform
given by
i) ifieAd
i) otherwise.

Sali) = { “}

13

For every i € Zy, denote Sy;; by S;. Let T be the Walsh-Hadamard

transform
1 N-1

T =75 &= 1)),

where i - j denotes the bitwise dot product of the two strings ¢ and j.
Then the transform G is given by

G = -TS,TS,,.

Grover considers only the case when N is a power of 2 since the
transform T is well-defined only in this case. However, the assumption
on N can be removed by observing that G is just one of many transforms
that efficiently implements an iteration. Let 7" be any unitary transform

satisfying
N-1

T'0) = \/— > |2)- (3)

‘Then one may easily verify that the transform T’SOT’_lsio works just as
well, and, more interestingly, that

T'SoT' 'S4

implements the general iteration analysed in §3. Any transform 7’ sat-
isfying (5) can thus be used in the algorithm.

When N is a power of 2, the Walsh-Hadamard transform is indeed
the simplest possible choice for T7'. When N is not a power of two, the
approximate Fourier transform given by Kitaev [5] can be used.

7 An improved lower bound

Drawing on general results from [1], Grover points out that any algorithm
for quantum database searching must take a time at least proportional to

14

V'N when there is a unique solution. Here we refine and generalize this
result by giving an explicit lower bound on the number of table lookups
required by any quantum algorithm as a function of the number of solu-
tions. This lower bound is only a few percent smaller than the number of
iterations required by Grover’s algorithm when the number of solutions
is known in advance. Unfortunately, each iteration of Grover’s algorithim
requires two table lookups because T[i] must first be fetched (to decide on
potential phase shift) and then it must be erased (to allow interference to
take place) by a process often referred to as uncomputation. Therefore,
we merely prove that Grover’s algorithm is roughly within a factor 2 of
being optimal in terms of the number of table lookups.

We rephrase the problem in terms of an oracle O defined so that
O(i) = 1 whenever i is a solution. All matrices and vectors in this
section are finite and complex-valued. Let the inner product {a,b) of
two vectors a and b be defined as ¥; a7b;, where ¢* denotes the complex
conjugate of ¢. The norm of a is denoted ||a]|. The absolute value of a
complex number c is denoted |c|.

We restate a basic fact on complex-valued vectors:

Proposition 4 For all normalized vectors a and b, and all complex
scalars a and 3,

llaa — Bb][* > |af* + |B* ~ 2|a]|A|.

The following proposition is a consequence of Chebyshev’s summation
inequalities.

Proposition 5 For all set of complexr numbers, {x;}/=],

r—1 2 el
(z |x,-|) < Il
i=0 1=0

15

Lemma 6 Let S be any set of N strings, and C be any configuration-
space. Let |do) be any superposition, and

| |6,) = U, ... UsUs|bo)

any sequence of v unitary transforms. Let {f;}i_, be any set of partial
functions from C into S. For anyy € S, let

|6,) = Uy.... UsUi| o)

be any sequence of r unitary transforms where for alli=1,...,r,
Uile) = Uile) if fiea(le)) # -

Set |gp) = |do), and for alli =1,...,r, set|d;) = Ui|di_1) and |¢}) =
Ullgi_\). For alli = 0,1,...,7, set |¢;) = aiyldiy) + ig|diy), where
|#iy) (16ig)) 1s the normalized superposition of configurations where f;
(does not) equals y. Denote |¢;) similarly.

Then the following holds:

1181 = o)l S 25050 |y forally e S
2.2{1 — lay| = |1} < M&)) = @)l forally€ S
3. N = VN = Tyes |zl < 27

Proof. We divide the proof into three parts.
Proof of (1): For ally € S, and all i =1,...,7 we have

Uilgio1) = Ui (dim1y|di-1y) + @ic139i-13))

= Ui (aio1y]di-14) + Ui (@ic13]di-13))

= Ul (qi—1y|@i-1y)) = Ui (@ic1,y|diz1y)) + Uildi1)
= |¢i) + (U = Ui) (aiz1yldiz14)) -

16

Hence, by induction on ¢,

67) = Ui ... Uil¢o)
= |¢a) + Zj=1 (Ui - Up) (U = Uj) (ajm119j-10)) 5
so,
€% — el
=1 Zj= (Ui Upo) (U = Uj) (@ yd1) |
<2850 lajyl;
and (1) follows.
Proof of (2): The identity follows from:

1167) = lnl
= |l(af. ,1¢}.,) + . 5l@).5))
= (ary|0ry) + arglorg))|

= |l(a)y|}y) = aryldry))
+ (alr,y|¢lr,y> — argldrp)ll
= {llatyleny) — arglérn)lI?
L e o [
> {(lay I + laryl® = 2]ag. llayl) _
+ (Jad g2 + ongl® = 2] gllang]) }7*
= {2 = 2(|a}, llary| + o} gllarg]) }'72
= V2{1 = |o} Jlary| = o} gllargl}'"
> V2{1 = |ary| = |aj 437,

where the two inequalities follow from proposition 4 and the fact that the
absolute value of any scalar is at most one.

Proof of (3): By (2), (1), and proposition 5,

1) .
= oyl = lofsl < 5l = oI

IN

r—1 2 r=1 \
2 (5: |a,-,y|) <2r'S faul
1=

i=0

17

Thus,

r—1
S (1= fany| — loll) < 5(21-, Iai,yl“’)
€

yeS y

I
[
<
|
N
2
<
T
SN—
Il
S
[N

i=0 \yeS
Since,
> U>_laﬁy|—|a;yn =N-— E:'any|‘ E:'agy
yes yeS yeS
1/2
> NV (Slonk) - 5ot
yES yeSsS
:]V'—‘\/N— Z‘er!—l,
yeS '
we have

N = VN =¥ |ahgl < T(1 = any| = loggl) < 2%,
yeS yeS

and (3) follows. |

Theorem 7 Let S be any set of N strings, and M be any oracle quantum
machine with bounded error probability. Let y €r S be a randomly and
uniformly chosen element from S. Put O to be the oracle where O(x) =
1 if and only if x = y. Then the expected number of times M must
query O in order to determine y with probability at least 1/2 1is at least

L(sin(r/8)) VN |.

Proof. Let S be any set of N strings and C be any configurationspace.
Let |¢g) be any superposition of configurations, and M any bounded-
error oracle quantum machine. Given any oracle O, assume that we

18

run M9 for s steps, and assume that M queries its oracle O* r times
during the computation. Since we will only run M using oracle O* with
O*(z) = 0ifz ¢ S, without loss of generality, assume that M never
queries O* on strings not in S.

First, consider the case that we run M using the trivial oracle: let O
be the oracle where O(z) = 0 for all 2 € S, and let

[s) = As. .. Ap|¥e) (6)

be the unitary transformation corresponding to the computation of Af
using oracle O.

For all ¢ = 1,...,r, set ¢; to be the timestamp for Af’s i’th query,
and set ¢, = s+ 1. Then (6) can also be written as

|¢r) = Ur...U|do) (7)

where |do) = Ay _1... Ai|¥o), and foralli=1,...,r, Ui=4,, 1... 4,
and |¢;) = Ui|¢i—1). At the 2’th query some configurations will query O,
some will not. For all i =0,...,r — 1, set fi(|c)) = v if |c) querics x at
the i + 1'th query.

Now, consider what happens if we flip one bit of the oracle bits: Given
any y € S, let O' be the oracle where O'(z) = 1 if and only if 2 = y.
Then the computation of MY corresponds to the unitary transformation

|6,) = Us-.. Uilgo)
where Uj|c) = Uilc) if fi—1(|c)) #y.

At the end of the computation of M9, we measure the superposition
|¢}) in order to determine the unknown y. For each configuration |¢) € C,
set fr(|c)) = z if, by measuring |c), M answers that x is the unknown y.

Set |¢)) = . |95,) + algld5) where |¢].) (1¢}.5)) is the normalized
superposition of configurations where f, (does not) equals y. Then |a!|?

ny

19

is the probability that M9 correctly determines y. Since, by assumption,
this probability is at least 1/2,

, o5l < forall yeS.

Sl

Furthermore, by Lemma 6,

N-VN- 3 o <22
yeS

Hence,
2 > N-VN-% o} 5
yeS '
1
> N-VN—-—=N
- V2

1 7
(1= ZIN - VN,

SO

[8%]

= (sin(x/8))VN -1,

which proves the theorem. | |

Theorem 7 gives a lower bound for finding a unique feasible y € S
using a bounded-error quantum machine. However, in most applications
we would expect that there will be more than one feasible y, say t such
y’s. Furthermore, we might even not know if there is a feasible y or not.
For the case t > 1, we have:

Theorem 8 Let S be any set of N strings, and M be any bounded-error
oracle quantum machine. Let A Cgr S be a randomly and uniformly
chosen subset of S of sizet, t > 1. Put O to be the oracle where O(x) =1
if and only if x € A. Then the expected number of times M must query
O in order to determine some member y € A with probability at least

1/2 is at least | (sin(7/8))\/|N/t]].

The proof of this theorem is almost identical to the proof of Lemma 6
and Theorem 7. In Lemma 6, equations (1) and (2) now hold for all
subsets of ¢ strings. Hence, by choosing a largest number of such disjoint
subsets from S, say T = {X},..., Xy, } where N; = | N/t], in the proof
of (3), we obtain

Nt - VN[- Z |QI"T| S 21'?.
xer

The remaining part of the proof is the same as the proof of Theorem 7,
only with obvious and minor changes.

Acknowledgements

We are grateful to Umesh and Vijay Vazirani for discussions concerning
classical approximate counting. The third author would like to thank
Edmund Christiansen for helpful discussions concerning recursion equa-
tions, and Joan Boyar for helpful discussions in general.

21

References

[1] BENNETT, Charles H., Ethan BERNSTEIN, Gilles BRASSARD and Umesh Vazi-
RANI, “Strengths and weaknesses of quantum computing”, manuscript (1995).

[2] BrassaRD, Gilles and Alain TAPP, “Approximate quantum counting”, in prepa-
ration (1996).

[3] DEUTSCH, David and Richard Jozsa, “Rapid solution of problems by quantum
computation”, Proceedings of the Royal Society, London A439 (1992), 553 -558.

[4] GROVER, Lov K., “A fast quantum mechanical algorithm for database search”,
Proceedings of the 28th Annual ACM Symposium on Theory of Computing (1996).

[5] KITAEV, A. Yu., “Quantum measurements and the Abelian stabilizer problem”,
manuscript quant-ph/9511026 (1995).

[6] SHOR, Peter W., “Algorithms for quantum computation: Discrete logarithms and
factoring”, Procecdings of the 35th Annual IEEE Symposium on Foundations of
Computer Science (1994), 124 -134.

N
(S

