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Overview of Lecture 16

 The GHZ “paradox”

* The Bell inequality and its violation:
— Physicist’s perspective
— Computer Scientist’s perspective

* The magic square game



preliminaries



Quantum information can apparently be
used to substantially reduce computation
costs for a number of interesting problems

How does quantum information affect the
communication costs of information
processing tasks?

We explore this issue ...



Entanglement and signaling

Entangled states, such as —|00) +-4|11)

qubit qubit
can be used to perform some intriguing feats, such as

teleportation and superdense coding

But they cannot be used to “signal instantaneously”

Any operation performed on one system has no affect on
the state of the other system (its reduced density matrix)



Basic communication scenario

Goal: convey n bits from Alice to Bob

Resources t

X1 Xo ..

X1 Xo ..

Alice




Basic communication scenario

Bit communication:

(=0

Cost: IN

Bit communication
& prior entanglement:
P90 9990

(=0

Cost: N (can be deduced)

Qubit communication:

(==0

Cost: N [Holevo’s Theorem, 1973]

Qubit communication
& prior entanglement:
990 P99

(==0

Cost: /2 superdense coding
[Bennett & Wiesner, 1992]
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nonlocality
ala GHZ



GHZ scenario

[Greenberger, Horne, Zeilinger, 1980]
Input: I S

o e
Output: a«— [ b — =S

Alice Bob

Rules of the game:

1. It is promised that rlJSCt =0

2. No communication after inputs received

3. They win if aO0bOC=rOS[t P

Carol
rst | adboc | abe
000 0&® |011
011 1@ | 001

101

111

110

101




No perfect strategy for GHZ

Input: g I
Output: % a
rst |adbOc

000 0

011

101

110

—t | |

Has no solution,

thus no perfect
strategy exists

Y

General deterministic strategy:
aO’ a'l’ bO’ bl’ CO’ Cl

Winning conditions:
(a,0b,0Cc,=0
a,puc =1
ap0c =1
a D Uc =1

<
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GHZ: preventing communication

Input:

Output:

Input and output events can be space-like separated:
so signals at the speed of light are not fast enough for cheating

What if Alice, Bob, and Carol still keep on winning?
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“GHZ Paradox” explained
Prior entanglement: ) = [000) — [011) — |101) —|110)

i 4 4

Alice’s strateqgy: {1 1}

1. if r = 1 then apply H to qubit H==
2. measure qubit and set a to result

Bob’s & Carol’s strategies: similar

Case 1 (rst = 000): state is measured directly ... @
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“GHZ Paradox” explained
Prior entanglement: ) = [000) — [011) — |101) —|110)

i 4 4

Alice’s strateqgy: 1 1
1. if r = 1 then apply H to qubit H —({ }

2. measure qubit and set a to result

Bob’s & Carol’s strategies: similar

Case 2 (I'st = 011): new state [001) + [010) — [100) + [111) &
Cases 3 & 4 (rst =101 & 110): similar by symmetry @ .,



GHZ: conclusions

For the GHZ game, any classical team succeeds with
probability at most %

Allowing the players to communicate would enable them
to succeed with probability 1

Entanglement cannot be used to communicate

Nevertheless, allowing the players to have entanglement
enables them to succeed with probability 1

Thus, entanglement is a useful resource for the task of
winning the GHZ game
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Bell's Inequality
and its violation

part |




Bell’s Inequality and its violation
Part |: physicist’s view:

Can a quantum state have pre-determined outcomes for
each possible measurement that can be applied to it?

if {|0),]1)} measurement

where the "manuscript” |,en output 0

IS something like this:

if {|+),]-)} measurement

qubit: Q
then output 1
if ... (etc)

C p

[Bell, 1964] (called hidden variables)
[Clauser, Horne, Shimony, Holt, 1969]
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Bell Inequality

Imagine a two-qubit system, where one of two measurements,
called M, and M,, will be applied to each qubit:

)

) /space-like separated, so
) Nno cross-coordination
a

3 e
M, : M, : b,
M, : M, : b,

1 1
Q@ ) a

Define: A, Claim: A;B,+A,B,+AB,—-A B, <2

= (-1)% A, = .
(-1)21B, = Proof: A,(B,+B,)+A;(B,—B,) <2
(Y I\ I\

b
( 1) 1 one is 2 and the other is O 17



Bell Inequality
A,By+ AyB, + AB,— A, B, <2 is called a Bell Inequality*

Question: could one, in principle, design an experiment to
check if this Bell Inequality holds for a particular system?

Answer 1: no, not directly, because Ay, A;, By, B; cannot
all be measured (only one A;B; term can be measured)

Answer 2: yes, indirectly, by making many runs of this
experiment: pick a random st [1{ 00,01, 10,11} and then
measure with Mg and M; to get the value of A_B;

The average of AyB,, A;B;, ABy, —A;B; should be <

* also called CHSH Inequality 18



Violating the Bell Inequality

Two-qubit system in state
@ =100) - ]11)

Applying rotations 8, and &; yields:

cos(6 + 6) (100) — [11)) + Sin(6, + & ) (101 +[10))

AB = +1 AB = -1
Define o st= 1
M,: rotate by —T716 then measure [ St = 01 o 10
M,: rotate by +3T716 then measure I
Then A,B,, A;B,, AB,, —A,B; all have St = 00
expected value %4V2, which contradicts R
COS(TU8) = Y4 + Va2

the upper bound of %

19



Bell Inequality violation: summary

Assuming that quantum systems are
governed by local hidden variables E E E
leads to the Bell inequality

AyBy+ A B +AB,—A B, <2

But this is violated in the case of Bell states (by a factor of V2)
Therefore, no such hidden variables exist

This is, in principle, experimentally verifiable, and experiments
along these lines have actually been conducted

B @:-rrnsssssnnnnnnnnns >
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Bell's Inequality
and its violation

part Il




Bell’s Inequality and its violation

Part ll: computer scientist’s view:

input: S !
' '
output: a b
Rules: 1. No communication after inputs received < |adb
2. They win if alJb = st 0 | 0
01 0
With classical resources, Pr[adb = s £] <0.75 10 | O
11 1

But, with prior entanglement state [00) — [11),
Pr[adb = s[it] = cosA(TU8) =% + %\2 =0.853...
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The quantum strategy
« Alice and Bob start with entanglement
@ =100y —]11)

 Alice: if S=0 then rotate by §, = —TV16
else rotate by 6, = + 31716 and measure

+ Bob: if t =0 then rotate by 4, = ~T016 =
else rotate by &; =+ 37716 and measure P

cos(6, — & ) (100) — [11)) + an(6, — &) (|01) + [10))

Success probability:
Pr[adb = s[it] = cosA(TU8) =% + ¥%\2 = 0.853...
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Nonlocality in operational terms

Information
processing
task

classically, quantum
communication entanglement

IS heeded
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Magic square game

Problem: fill in the matrix with bits such that each row has
even parity and each column has odd parity

odd odd odd

Game: ask Alice to fill in one row and Bob to fill in one column

They win iff parities are correct and bits agree at intersection

Success probabilities: 8/ classical and 1 quantum
[Aravind, 2002] (details omitted here) 25



preview of

communication
complexity




Classical Communication Complexity

[Yao, 1979]
X Xo «en X0 VAL
>
>
<
>
f(xy)

E.g. equality function: f(X,y) =1if X=y, and0ifXZYy
Any deterministic protocol requires N bits communication

Probabilistic protocols can solve with only O(log(n/€)) bits

communication (error probability €)
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Quantum Communication Complexity

Qubit communication

Prior entanglement

X1 Xo o v Xy Yi¥o --- Y
>
>
h >
qubits
f(xy)

3 O entangled qubits ] BN
X1 Xo oo Xy Yi¥o--- Y

>
>
<
_ >
bits

f(xy)
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