Introduction to Quantum Information Processing

Lecture 17

Richard Cleve

Overview of Lecture 17

- Introduction to communication complexity
- Intersection problem (a.k.a. appointment scheduling)
- Restricted equality problem
- Exponential separation in bounded-error setting
- Inner product problem
- Simultaneous message passing model and fingerprinting

communication complexity

Classical communication complexity

[Yao, 1979]

E.g. equality function: f(x,y) = 1 if x = y, and 0 if $x \neq y$

Any *deterministic* protocol requires *n* bits communication

Probabilistic protocols can solve with only $O(\log(n/\epsilon))$ bits communication (error probability ϵ), via random hashing

Quantum communication complexity

Qubit communication

Prior entanglement

Appointment scheduling

Classically, $\Omega(n)$ bits necessary to succeed with prob. $\geq 3/4$

For all $\varepsilon > 0$, $O(n^{1/2} \log n)$ qubits sufficient for error prob. $< \varepsilon$

[KS '87] [BCW '98]

Search problem

Given:
$$x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & ... & n \\ \hline 0 & 0 & 0 & 1 & 0 & ... & 1 \end{bmatrix}$$
 accessible via *queries*

$$\log n \left\{ \begin{array}{c|c} |i\rangle & & \\ \hline 1 & \left| b \right\rangle & & \\ \hline \end{array} \begin{array}{c|c} |i\rangle & \\ \hline \end{array} \begin{array}{c|c} |b \oplus x_i\rangle \end{array}$$

Goal: find $i \in \{1, 2, ..., n\}$ such that $x_i = 1$

Classically: $\Omega(n)$ queries are necessary

Quantum mechanically: $O(n^{1/2})$ queries are sufficient

Alice
$$x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & \dots & n \\ 0 & 1 & 1 & 0 & 1 & 0 & \dots & 0 \end{bmatrix}$$

Bob $y = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & \dots & 1 \\ 0 & 0 & 0 & 1 & 0 & \dots & 0 \end{bmatrix}$

$$\begin{vmatrix} i \\ b \\ b \\ b \\ \end{vmatrix}$$

$$\begin{vmatrix} i \\ b \\ b \\ \end{vmatrix}$$

$$\begin{vmatrix} i \\ b \\ b \\ \end{vmatrix}$$
Bob Alice Bob

Communication per $x \wedge y$ -query: $2(\log n + 3) = O(\log n)$

Appointment scheduling: epilogue

Bit communication:

Cost: $\theta(n)$

Qubit communication:

Cost: $\theta(n^{1/2})$ (with refinements)

Bit communication & prior entanglement:

Cost: $\theta(n^{1/2})$

Qubit communication & prior entanglement:

Cost: $\theta(n^{1/2})$

Restricted version of equality

Precondition (i.e. promise): either x = y or $\Delta(x,y) = n/2$

Hamming distance

(Distributed variant of "constant" vs. "balanced")

Classically, $\Omega(n)$ bits communication are necessary for an exact solution

Quantum mechanically, $O(\log n)$ qubits communication are sufficient **for an exact solution**

[BCW '98]

Classical lower bound

Theorem: If $S \subseteq \{0,1\}^n$ has the property that, for all $x, x' \in S$, their *intersection* size is *not* n/4 then $|S| < 1.99^n$

Let **some** protocol solve restricted equality with k bits comm.

- 2^k conversations of length k
- approximately $2^n/\sqrt{n}$ input pairs (x, x), where $\Delta(x) = n/2$

Therefore, $2^n/2^k\sqrt{n}$ input pairs (x, x) that yield **same** conv. C

Define $S = \{x : \Delta(x) = n/2 \text{ and } (x, x) \text{ yields conv. } C \}$

For any $x, x' \in S$, input pair (x, x') **also** yields conversation C

Therefore, $\Delta(x, x') \neq n/2$, implying intersection size is **not** n/4Theorem implies $2^n/2^k\sqrt{n} < 1.99^n$, so k > 0.007n

Quantum protocol

For each
$$x \in \{0,1\}^n$$
, define $|\psi_x\rangle = \sum_{j=1}^n (-1)^{x_j} |j\rangle$

Protocol:

- 1. Alice sends $|\psi_v\rangle$ to Bob $(\log(n))$ qubits
- 2. Bob measures state in a basis that includes $|\psi_{\nu}\rangle$

Correctness of protocol:

If x = y then Bob's result is definitely $|\psi_y\rangle$ If $\Delta(x,y) = n/2$ then $\langle \psi_x | \psi_y \rangle = 0$, so result is definitely **not** $|\psi_y\rangle$

Question: How much communication if error 1/4 is permitted?

Answer: just 2 bits are sufficient!

Exponential quantum vs. classical separation in bounded-error models

 $O(\log n)$ quantum vs. $\Omega(n^{1/4}/\log n)$ classical

 $|\psi\rangle$: a $\log(n)$ -qubit state (described *classically*)

M: two-outcome measurement

Output: result of applying M to $U|\psi\rangle$

U: unitary operation on log(n) qubits

[Raz, 1999]

Inner product

$$IP(x, y) = x_1 y_1 + x_2 y_2 + ... + x_n y_n \mod 2$$

Classically, $\Omega(n)$ bits of communication are required, even for bounded-error protocols

Quantum protocols **also** require $\Omega(n)$ communication

Recall the BV problem

Let
$$f(x_1, x_2, ..., x_n) = a_1 x_1 + a_2 x_2 + ... + a_n x_n \mod 2$$

Given:

Goal: determine $a_1, a_2, ..., a_n$

Classically, *n* queries are necessary

Quantum mechanically, 1 query is sufficient

Lower bound for inner product

$$IP(x, y) = x_1 y_1 + x_2 y_2 + \dots + x_n y_n \mod 2$$

Lower bound for inner product

$$IP(x, y) = x_1 y_1 + x_2 y_2 + ... + x_n y_n \mod 2$$

Since n bits are conveyed from Alice to Bob, n qubits communication necessary (by Holevo's Theorem)

