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quantum
fingerprints



Equality revisited
in simultaneous message model
XXy ... X, ViVa--- ),

\\¢

J(xy) f(xp) 2{1 if x =1y
0 ifx=y

Exact protocols: require 2n bits communication
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Equality revisited
in simultaneous message model
XXy ... X, ViVa--- ),

JI0 JI0
classical \ / classical

i!F 1

f(x,y) Pr[00] = Pr{11] = %

Bounded-error protocols with a shared random key:
require only O(1) bits communication

Error-correcting code: e(x)=1011 1 [D 10110011001

e()/)=011010010011001010
random k&
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Equality revisited
in simultaneous message model
XXy ... X, ViVa--- ),

O, 20

Bounded-error | 0

protocols without
a shared key: f (x,y )

Classical: 6(n!72)

Quantum: G(log n)

[A ‘96] [NS ‘96] [BCWW ‘01] 21



Quantum fingerprints

Question 1: how many orthogonal states in m qubits?
Answer: 2"

Let € be an arbitrarily small positive constant
Question 2: how many almost orthogonal™ states in m qubits?

(* where | )| <€ )

am
Answer: 22" for some constant a > 0

To be continued during next lecture ...
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Quantum fingerprints

Question 1: how many orthogonal states in M qubits?
Answer: 2M

Let € be an arbitrarily small positive constant
Question 2: how many almost orthogonal* states in m qubits?

(* where [(W,Juy)| <€)

Answer: 22am, for some constanta> 0

The states can be constructed via a suitable (classical) error-
correcting code, which is a function €:{0,1}" > {0,1}°" where,
for all X #Y, den < A(eX),&y)) < (1-d)cn (c, d are constants)
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Construction of almost
orthogonal states

Set Itux>-—z v

an1

k) foreach XU{0,1}" (log(CN) qubits)

Then (luy) = L $° (1)) = | - 2AEX).ey))

CN k=1 chn

Since dcn < A(E(X),&(y)) < (1-d)cn, we have [(,Ju)| < 1-2d

By duplicating each state, W0l HLI ... [y ), the pairwise
inner products can be made arbitrarily small: (1-2d) <&

Result: M= rlog(CN) qubits storing 2" = 2(1/2™ different states
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Quantum fingerprints

Let |Wyoo)s [Wooo), ---, |Wy,) be 21 states on O(log N) qubits such
that [(, ()| < € for all X#Y

Given |wx>|%>, one can check if X=Y or X # Y as follows:

0) —H

W

)

H

-

?
S
w
A
P

Intuition: [0)[Wolty) + [1) W) [y

if X=Y, Pr[output=0]=1
if X # Y, Pr[output = 0] = (1+ €2)/2

Note: error probability can
be reduced to ((1+ £2)/2)"




Equality revisited
In simultaneous message model
XXy oon X YiYs - Yn

%%

protocols without
a shared key: f (X’y)

Classical: 6(n'/?)
Quantum: B(log n)

[A ‘96] [NS ‘96] [BCWW ‘01]



Quantum protocol for equality

In simultaneous message model
XX oon X YiYs - Yn

& )

% ©) —

By I

\AAZNER A 4 / Recall that, with a

Orthogonality shared key, the
test problem is easy

v classically ...
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Hidden matching problem

For this problem, a quantum protocol is exponentially more
efficient than any classical protocol—even with a shared key

matchin on
Inputs: X[ {0,1}" M = '\.\I' 1,2, . g

Output: (1, ], X[X), such that
(i,j) O M

Only one-way communication (Alice to Bob) is permitted

[Bar-Yossef, Jayram, Kerenidis, 2004] 10



The hidden matching problem
Inputs; XD{O,I}” M = .\:\I. T{T}athhlng on

Output: (I, ], xx), (,)) OM

Classically, one-way communication is Q(¥N), even with a
shared classical key (the proof is omitted here)

Rough intuition: Alice doesn’t know which edges are in M,
so she would have to send Q(vn) bits of the form XLIX; ...
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The hidden matching problem
Inputs; XD{O,I}” M = .\:\I. T{T}athhlng on

Output: (I, ], xx), (,)) OM

Quantum protocol: Alice sends Li(—l)xk k) (log N qubits)
N k=1

Bob measures in |I)  ||) basis, (1, ]) O M,
and uses the outcome’s relative phase to
determine X;LIX
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nonlocality

revisited




Restricted-equality nonlocality

iInputs: X (N bits) ) (N bits)
FIT FIT
outputs: a  (lognbits) b (log N bits)

Precondition: either X =Y or A(X)Y) =N/2
Required postcondition: a=Diff X=Yy

With classical resources, Q(N) bits of communication needed
for an exact solution™

With (|00 + [11))-192" prior entanglement, no communication
Is needed at all*

[ITechnical details similar to restricted equality of Lecture 17
[BCT ‘99] 14



Restricted-equality nonlocality

Bit communication: Qubit communication:
‘g 3 > ‘g 3 >
Cost: 6(1N) Cost: log N
Bit communication Qubit communication
& prior entanglement: & prior entanglement:
P99 P99 990 P99

=0 Q=0

Cost: Z€I0 Cost: Z€I0
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Nonlocality and communication
complexity conclusions

 Quantum information affects communication
complexity in interesting ways

* There is a rich interplay between quantum
communication complexity and:

—quantum algorithms
—quantum information theory

—other notions of complexity theory ...
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universality of

two-gqubit gates



A universal set of gates

Theorem: any unitary operation U acting on K qubits can be
decomposed into O(4K) CNOT and one-qubit gates

(This was stated in Lecture 5 without a proof)

Proof sketch (for a slightly worse bound of O(k24K)) :

We first show how to simulate a controlled-U, for any one-
qubit unitary U

Fact: for any one-qubit unitary U, there exist A, B, C,
and A, such that:

- ABC=I 0 1
e eAAXBXC=U, where X :(1 Oj
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A universal set of gates

The aforementioned fact implies

N
U

PlL—e ®
AHEBHPC

0

1
where P = ( .
0 e

Using such controlled-U gates, one can simulate controlled-
controlled-V gates, for any unitary V, as follows:

Tl
D T D where V = U2

!
U

UT

U
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A universal set of gates

When U = X this construction yields the 3-qubit Toffoli gate

From this gate, generalized Toffoli gates can be constructed:

: :

e
o4

o4
e
o4

AN
T
SPA ¢
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A universal set of gates

From generalized Toffoli gates, generalized controlled-U

gates (controlled-controlled- ... -U) can be constructed:

10)

10)

L/

L/

S O O O O O O

S O O O o o = O

S O O o o = O O

o O O o = O O O

S o o = O O O O

S O = O O O O O

cC C

S O O O O O

00

10

cC C

S O O O O O

01

11
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A universal set of gates

The approach essentially enables any k-qubit operation of
the simple form

1 0 00 0 00O
0 U, 00U, 00 0
0 0 10 0 00 0
0 0 01 0 00 0
0O U, 00U, 000
0 0 00 0 10 0
0 0 00 0 0 1 0
0 0 00 0 0 0 1

to be computed with O(k?) CNOT and one-qubit gates

Any 2kx2K unitary matrix can be decomposed into a product

of O(4¥) such simple matrices N



A universal set of gates

This completes the proof sketch

Thus, the set of all one-qubit gates and the CNOT gate are
universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal?

Answer 1: strictly speaking, no, because this results in only
countably many quantum circuits, whereas there are

uncountably many unitary operations on K qubits (for any K)
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