
1

Introduction to Quantum Introduction to Quantum
Information ProcessingInformation Processing

Lecture 19

Richard Cleve

2

Overview of Lecture 19Overview of Lecture 19
� Approximately universal sets of gates
� More on complexity classes

� NP: definitions and examples of problems therein
� FACTORING versus NP and co-NP
� quantum speed-up for NP-complete problems

� Optimality of Grover�s search algorithm

3

approximately
universal sets

of gates

4

A universal set of gatesA universal set of gates
Theorem: any unitary operation U acting on k qubits can
be decomposed into O(4k) CNOT and one-qubit gates

Thus, the set of all one-qubit gates and the CNOT gate are
universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal?

Answer 1: strictly speaking, no, because this results in only
countably many quantum circuits, whereas there are
uncountably many unitary operations on k qubits (for any k)

5

Approximately universal gate setsApproximately universal gate sets
Answer 2: yes, for universality in an approximate sense

As an illustrative example, any rotation can be approximated
within any precision by repeatedly applying








 −
=

)()(
)()(

πcosπsin
πsinπcos

22

22R

some number of times

In this sense, R is approximately universal for the set of
all one-qubit rotations: any rotation S can be approximated
within precision ε by applying R a suitable number of times

It turns out that O((1/ε)c) times suffices (for a constant c)

6

Approximately universal gate setsApproximately universal gate sets
Theorem: the gates CNOT, H, and 








= 4π0

01
/ie

S

are approximately universal, in the sense
that any unitary operation on k qubits can be
simulated within precision ε by applying
O(4klogc(1/ε)) of them (c is a constant)

[Solovay �96][Kitaev �97]

7

more on
complexity

classes

8

Complexity classesComplexity classes

� P (polynomial time): problems solved by O(nc)-size
classical circuits (decision problems and uniform circuit
families)

� BPP (bounded error probabilistic polynomial time):
problems solved by O(nc)-size probabilistic circuits that
err with probability ≤ ¼

� BQP (bounded error quantum polynomial time):
problems solved by O(nc)-size probabilistic circuits that
err with probability ≤ ¼

� PSPACE (polynomial space): problems solved by
algorithms that use O(nc) memory.

Recall from Lecture 6:

9

Summary of previous containmentsSummary of previous containments
P ⊆ BPP ⊆ BQP ⊆ PSPACE ⊆ EXP

P
BPP

BQP

PSPACE

EXP
We now consider further
structure between P and
PSPACE

Technically, we will restrict
our attention to languages
(essentially {0,1}-problems)

Many problems of interest can
be cast in terms of languages
For example,
FACTORING = {(x,y) : ∃ 2≤ z ≤y, such that z divides x}

10

NPNP
Define NP (non-deterministic polynomial time) as
the class of languages whose positive instances have
�witnesses� that can be verified in polynomial time

() () () ()nn xxxxxxxxxx,...,xf ∨∨∧∧∨∨∧∨∨= 515324311 L

Example: Let 3-CNF-SAT be the language consisting of all
3-CNF formulas that are satisfiable

()nx,...,xf 1 { }101 ,b,...,b n ∈
() 11 =nb,...,bf

is satisfiable iff there exists
such that

But poly-time verifiable witnesses exist (namely, b1, ..., bn)

3-CNF formula:

No sub-exponential-time algorithm is known for 3-CNF-SAT

11

Other “logic” problems in NPOther “logic” problems in NP
� k-DNF-SAT:

� CIRCUIT-SAT:

() () () ()nn xxxxxxxxxx,...,xf ∧∧∨∨∧∧∨∧∧= 515324311 L

¬

¬

¬

¬

¬

0

0

1

1

1

¬

Λ

Λ ¬

Λ

Λ

Λ

¬

Λ

Λ

¬

Λ

Λ

Λ

Λ

Λ

Λ

Λ

¬

output
bit

∗ But, unlike with k-CNF-SAT, this one is known to be in P

∗ All known
algorithms
exponential-
time

12

“Graph theory” problems in NP“Graph theory” problems in NP

� k-COLOR: does G have a k-coloring?
� k-CLIQUE: does G have a clique of size k?
� HAM-PATH: does G have a Hamiltonian path?
� EUL-PATH: does G have an Eulerian path?

13

“Arithmetic” problems in NP“Arithmetic” problems in NP
� FACTORING = {(x, y) : ∃ 2≤ z ≤y, such that z divides x}

� SUBSET-SUM: given integers x1, x2 , ..., xn, y, do there exist
i1, i2 , ..., ik ∈ {1, 2,... , n} such that xi1+ xi2 + ... + xik = y?

� INTEGER-LINEAR-PROGRAMMING: linear programming
where one seeks an integer-valued solution (its existence)

14

P vs. NPP vs. NP

If a polynomial-time algorithm is discovered for 3-CNF-SAT
then there is a polynomial-time algorithm for 3-COLOR

All of the aforementioned problems have the property that
they reduce to 3-CNF-SAT, in the sense that a polynomial-
time algorithm for 3-CNF-SAT can be converted into a poly-
time algorithm for the problem

algorithm for
3-CNF-SAT

algorithm for 3-COLORExample:

In fact, this holds for any problem X ∈ NP, hence 3-CNF-SAT
is NP-hard ... and so are CIRCUIT-SAT, k-COLOR, ...

15

FACTORING vs. NPFACTORING vs. NP

3-CNF-SAT

FACTORING

P

NP

PSPACE

co-NP

Is FACTORING NP-hard too?

But FACTORING has
not been shown to be
NP-hard

Moreover, there is �evidence�
that it is not NP-hard:
FACTORING ∈ NP∩co-NP

If so, then every problem in
NP is solvable by a poly-time
quantum algorithm!

If FACTORING is NP-hard then NP = co-NP

16

FACTORING vs.FACTORING vs. co-NPNP

P

NP

PSPACE

co-NP

FACTORING

FACTORING = {(x, y) : ∃ 2≤ z ≤y, s.t. z divides x}

Question: what is a
good witness for the
negative instances?

co-NP: languages whose negative
instances have �witnesses� that can
be verified in poly-time

Answer: the prime factorization
p1, p2 , ..., pm of x will work

Can verify primality and compare
p1, p2 , ..., pm with y, all in poly-time

17

Quantum speedQuantum speed--up for up for
NPNP--complete problemscomplete problems

Can use Grover�s quantum search algorithm to find a
witness quadratically faster than with known classical
algorithms

Example: for CIRCUIT-SAT, best classical algorithm is to
search for a satisfying assignment, taking time O(nc 2n)

Quantum algorithm takes time O(nc 2n/2)

18

optimality of
Grover’s search

algorithm

19

Optimality of Grover’s algorithmOptimality of Grover’s algorithm

Proof (of a slightly simplified version):

fU0 U1 U2 U3 Ukf f f
and that a k-query algorithm is of the form

where U0, U1, U2, ..., Uk, are any unitary operations

Theorem: any quantum search algorithm for f : {0,1}n ! {0,1}
must make Ω(√2n) queries to f

f|x〉 (−1) f(x)|x〉Assume queries are of the form

|0...0〉

20

Optimality of Grover’s algorithm Optimality of Grover’s algorithm
Define fr : {0,1}n ! {0,1} as fr (x) = 1 iff x = r

frU0 U1 U2 U3 Ukfr fr fr
|0〉 |ψr,k〉

Consider

versus

IU0 U1 U2 U3 UkI I I|0〉 |ψr,0〉

We�ll show that, averaging over all r ∈ {0,1}n,
|| |ψr,k〉 − |ψr,0〉 || ≤ 2k / √2n

21

Optimality of Grover’s algorithmOptimality of Grover’s algorithm
Consider

IU0 U1 U2 U3 UkI fr fr
|0〉 |ψr,i〉

k − i i

|ψr,k〉 − |ψr,0〉 = (|ψr,k〉 − |ψr,k−1〉) + (|ψr,k−1 〉 − |ψr,k−2〉) + ... + (|ψr,1〉 − |ψr,0〉)
Note that

|| |ψr,k〉 − |ψr,0〉 || ≤ || |ψr,k〉 − |ψr,k−1〉 || + ... + || |ψr,1〉 − |ψr,0〉 ||
which implies

22

Optimality of Grover’s algorithmOptimality of Grover’s algorithm

IU0 U1 U2 U3 UkI fr fr
|0〉 |ψr,i〉

query i query i+1

|| |ψr,i〉 − |ψr,i-1〉 || = |2αi,r|, since query only negates |r〉

IU0 U1 U2 U3 UkI I fr
|0〉

query i query i+1

|ψr,i-1〉

x
x

x,i∑α

Therefore, || |ψr,k〉 − |ψr,0〉 || ≤ r,i

k

i
α2

1

0
∑

−

=

23

Optimality of Grover’s algorithmOptimality of Grover’s algorithm

∑ ∑∑ 






≤−
−

=r
r,i

k

ir
,rk,r nn α2

2
1ψψ

2
1 1

0
0

∑ ∑
−

=







=
1

0
α2

2
1 k

i r
r,in

()∑
−

=

≤
1

0
22

2
1 k

i

n
n

n

k
2

2=

Therefore, for some r ∈ {0,1}n, the number of queries k must
be Ω(√2n), in order to distinguish fr from the all-zero function

Now, averaging over all r ∈ {0,1}n,

(By Cauchy-Schwarz)

This completes the proof

24

