Introduction to Quantum
Information Processing

Lecture 19

Richard Cleve

Overview of Lecture 19

« Approximately universal sets of gates

 More on complexity classes

— NP: definitions and examples of problems therein
— FACTORING versus NP and co-NP
— quantum speed-up for NP-complete problems

« Optimality of Grover’'s search algorithm

approximately

universal sets
of gates

A universal set of gates

Theorem: any unitary operation U acting on K qubits can
be decomposed into O(4K) CNOT and one-qubit gates

Thus, the set of all one-qubit gates and the CNOT gate are
universal in that they can simulate any other gate set

Question: is there a finite set of gates that is universal?

Answer 1: strictly speaking, no, because this results in only
countably many quantum circuits, whereas there are

uncountably many unitary operations on K qubits (for any K)

Approximately universal gate sets

Answer 2: yes, for universality in an approximate sense

As an illustrative example, any rotation can be approximated
within any precision by repeatedly applying
_(cos(v2m) —sin(v2m)
R=
sin(v2m) cos(v2n)

some number of times

In this sense, Ris approximately universal for the set of
all one-qubit rotations: any rotation Scan be approximated
within precision € by applying R a suitable number of times

It turns out that O((1/€)°) times suffices (for a constant C)

Approximately universal gate sets

1 O
Theorem: the gates CNOT, H, and S :(i ,4j
0 e’

are approximately universal, in the sense
that any unitary operation on K qubits can be

simulated within precision € by applying
O(4Klog®(1/€)) of them (C is a constant)

[Solovay '96][Kitaev ’97] 6

maore on

complexity
classes

Complexity classes

Recall from Lecture 6:

« P (polynomial time): problems solved by O(N%)-size
classical circuits (decision problems and uniform circuit
families)

« BPP (bounded error probabilistic polynomial time):
problems solved by O(N%)-size probabilistic circuits that
err with probability < 74

« BQP (bounded error qguantum polynomial time):
problems solved by O(N%)-size probabilistic circuits that
err with probability < 74

- PSPACE (polynomial space): problems solved by
algorithms that use O(N®) memory.

Summary of previous containments

P L BPP I BQP UUPSPACE JEXP

EXP

We now consider further
structure between P and
PSPACE

PSPACE

Technically, we will restrict
our attention to languages
(essentially {0,1}-problems)

Many problems of interest can
be cast in terms of languages

For example,
FACTORING = {(X)Y) : [12< Z<Y, such that zdivides X}

NP

Define NP (non-deterministic polynomial time) as
the class of languages whose positive instances have
“‘witnesses” that can be verified in polynomial time

Example: Let 3-CNF-SAT be the language consisting of all
3-CNF formulas that are satisfiable

3-CNF formula:
f(x,....x.)=(x O% Ox,)0(x, Ox, O%,)0---0(x Ox, OX,)

f (X ,....X,) is satisfiable iff there exists b ,...,b. D{OJ}
such that f(b,....b) =1

No sub-exponential-time algorithm is known for 3-CNF-SAT

But poly-time verifiable witnesses exist (namely, b, ..., b))

Other “logic” problems in NP

o K-DNF-SAT:
f(x,...x.)=(x 0% Ox,)0(x, Ox, O%,)0---0(x Ox, OX,)

[1But, unlike with K-CNF-SAT, this one is known to be in P

 CIRCUIT-SAT:

1—B—O_ B —O— <«
0 a——\\ —NV—N

o Y W - LAl known
1 0 /Q\a / Qvﬁ algorithms
1—C—0—A A exponential-
0 0 _°>Q time

11

“Graph theory” problems in NP

K-COLOR: does G have a k-coloring ?
K-CLIQUE: does G have a clique of size K?
HAM-PATH: does G have a Hamiltonian path?
EUL-PATH: does G have an Eulerian path?

12

“Arithmetic” problems in NP

FACTORING = {(X,¥) : 02< z<Y, such that zdivides X}

SUBSET-SUM: given integers X, X, , ..., X, Y, do there exist
I, 15, o 1 O41, 2,00, N} such that X+ X, + ... + X, = y?

INTEGER-LINEAR-PROGRAMMING: linear programming
where one seeks an integer-valued solution (its existence)

13

P vs. NP

All of the aforementioned problems have the property that
they reduce to 3-CNF-SAT, in the sense that a polynomial-
time algorithm for 3-CNF-SAT can be converted into a poly-
time algorithm for the problem

Exam ple: algorithm for 3-COLOR

algorithm for
3-CNF-SAT

If a polynomial-time algorithm is discovered for 3-CNF-SAT
then there is a polynomial-time algorithm for 3-COLOR

In fact, this holds for any problem X [NP, hence 3-CNF-SAT
is NP-hard ... and so are CIRCUIT-SAT, k-COLOR, ... y

FACTORING vs. NP

Is FACTORING NP-hard too?

If so, then every problem in
NP is solvable by a poly-time
quantum algorithm!

3-CNF-SAT

But FACTORING has

not been shown to be
NP-hard FACTORING

Moreover, there is “evidence”
that it is not NP-hard:
FACTORING O NPnco-NP

If FACTORING is NP-hard then NP = co-NP 15

FACTORING vs. co-NP

FACTORING = {(X,y) : 02 z<Y, s.t. Zdivides X}

co-NP: languages whose negative
instances have “witnesses” that can
be verified in poly-time

Question: what is a
good witness for the
negative instances? FACTORING

Answer: the prime factorization
P, Py s - Py OF X Will work

Can verify primality and compare
PL B, .., PpyWith'Y, all in poly-time

16

Quantum speed-up for
NP-complete problems

Can use Grover’s quantum search algorithm to find a
witness quadratically faster than with known classical
algorithms

Example: for CIRCUIT-SAT, best classical algorithm is to
search for a satisfying assignment, taking time O(n¢2")

Quantum algorithm takes time O(nc¢ 2"'2)

17

optimality of

Grover’s search
algorithm

Optimality of Grover’s algorithm

Theorem: any quantum search algorithm for f: {0,1}" > {0,1}
must make Q(V2") queries to f

Proof (of a slightly simplified version):

Assume queries are of the form |X) i (—l)f(x)|X>

and that a K-query algorithm is of the form

Sl e Bl

where U, U,, U,, ..., U,, are any unitary operations

19

Optimality of Grover’s algorithm

1, SR
n; Uk E |‘Vr,0>

20

Define f.: {0,1}"> {0,1} asf, (X)=1iff X=r

1
versus
IR

We'll show that, averaging over all r [{0,1}",

” |‘Vr,k> - |‘Vr,0> ” < 2k/~/2"

Consider

o [

Optimality of Grover’s algorithm
Consider

BEmE e e A

. J . J
Y Yo

K—I |

Note that
|\|’r,k> - |\|’r,0> = (l‘l’r,k> - |\|’r,k—1>) + (l‘l’r,k—1> - |\|’r,k—2>) Tt (l\l’r,1> - |\|’r,0>)

which implies

” |\|’r,k> - |\|’r,0> ” < ” |\|’r,k> - |\|’r,k—1> ” Tt ” |\|’r,1> - |\|’r,0> ”
21

Optimality of Grover’s algorithm

0)=

U

0)=

U

U,

query |

U,

query |

query 1+1

U,

U;

query 1+1

U,

U;

U, E

|‘Vr,i>

Yt %

U, o

_l‘Vr,i-1>

| 1ve) = lwia) Il = 20|, since query only negates 1

Therefore, ” |‘Vr k> - |‘Vr O> ” < 22

I g

22

Optimality of Grover’s algorithm
Now, averaging over all r (I {0,1}",

1] &
2D IMEVSERD b
r 1=0

r

\Vr,k>_

k-1
< 2—1n 2(\/27”) (By Cauchy-Schwarz)
i=0
2k
Jar

Therefore, for some r O {0,1}", the number of queries K must
be Q(v2"), in order to distinguish f, from the all-zero function

This completes the proof 23

