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Overview of Lecture 20

* Cryptography: the key distribution problem
 The BB84 quantum key distribution protocol
e The bit commitment problem
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« Suppose Alice and Bob would like to communicate privately
In the presence of an eavesdropper Eve

« A provably secure (classical) scheme exists for this, called
the one-time pad

e The one-time pad requires Alice & Bob to share a secret
key: KO {0,1}", uniformly distributed (secret from Eve)




Private communication
kK, ... K, kik, ... Ky
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One-time pad protocol:

» Alice sends ¢ = MmOk to Bob
« Bob receives computes cOK, which is (MOK)Ok=m

This Is secure because, what Eve sees is C, and Cis uniformly
distributed, regardless of what mis



Key distribution scenario

e For security, Alice and Bob must never reuse the
key bits
— E.g., If Alice encrypts both m and M using the same
key K then Eve can deduce mOm = cOcC

* Problem: how do they distribute the secret key bits
In the first place?

— Presumably, there is some trusted preprocessing stage
where this is set up (say, where Alice and Bob get
together, or where they use a trusted third party)

 Key distribution problem: set up a large number

of secret key bits



Key distribution based on
computational hardness

The RSA protocol can be used for key distribution:

— Alice chooses a random key, encrypts it using Bob’s public key,
and sends it to Bob

— Bob decrypts Alice’s message using his secret (private) key

The security of RSA is based on the presumed
computational difficulty of factoring integers

More abstractly, a key distribution protocol can be based
on any trapdoor one-way function

Most such schemes are breakable by quantum computers
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Quantum key distribution (QKD)

« A protocol that enables Alice and Bob to set up a secure*
secret key, provided that they have:
— A quantum channel, where Eve can read and modify messages
— An authenticated classical channel, where Eve can read
messages, but cannot tamper with them (the authenticated classical
channel can be simulated by Alice and Bob having a very short
classical secret key)
« There are several protocols for QKD, and the first one
proposed is called “BB84” [Bennett & Brassard, 1984].
— BB84 is “easy to implement” physically, but “difficult” to prove secure
— [Mayers, 1996]. first true security proof (quite complicated)
— [Shor & Preskill, 2000]: “simple” proof of security

[IInformation-theoretic security 8
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Alice begins with two random n-bit strings a, b O {0,1}"

Alice sends the state [) = [W, p)|W, ) -+ (W ) to Bob
Note: Eve may see these qubits (and tamper wth them)

After receiving |)), Bob randomly chooses b' O {0,1}" and
measures each qubit as follows:

— If b';= 0 then measure qubit in basis {|0), |1)}, yielding outcome &',

— If b'i =1 then measure qubit in basis {|+), |-}, yielding outcome a'i
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BB84 I

Note: W,,)
— Ifb',=b then @;=4a

— Ifb#Db then Pr[a’,=a] =% |Woo)
Bob informs Alice when he has performed W)

his measurements (using the public channel)

Next, Alice reveals b and Bob reveals b' over the public
channel

They discard the cases where D', # b; and they will use the
remaining bits of aand &' to produce the key

Note:

— If Eve did not disturb the qubits then the key can be justa (= a')

— The interesting case is where Eve may tamper with |J) while
it is sent from Alice to Bob 10
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e [ntuition: W)

— Eve cannot acquire information about |J) without disturbing it,
which will cause some of the bits of aand &' to disagree

— It can be proven* that: the more information Eve acquires about a,
the more bit positions of a and &' will be different

« From Alice and Bob’s remaining bits, & and &' (where the

positions where b'; # b, have already been discarded):
— They take a random subset and reveal them in order to estimate
the fraction of bits where @ and &' disagree
— If this fraction is not too high then they proceed to distill a key from
the bits of & and &’ that are left over (around N/4 bits)

[JTo prove this rigorously is nontrivial 11



BB3d4

« |f the error rate between a and &' is below some threshold
(around 11%) then Alice and Bob can produce a good key
using techniques from classical cryptography:

— Information reconciliation (“distributed error correction”): to produce
shorter a and &' such that (i) @ =a’, and (ii) Eve doesn’t acquire much
information about @ and @' in the process

— Privacy amplification: to produce shorter @ and @' such that Eve’s
information about @ and &' is very small

« There are already commercially available implementations of
BB84, though assessing their true security is a subtle matter
(since their physical mechanisms are not ideal)
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Bit-commitment

bit D g — commit stage ——> g

— de-commit stage —>

e Alice has a bit b that she wants to commit to Bob:

« After the commit stage, Bob should know nothing about
D, but Alice should not be able to change her mind
o After the de-commit stage, either:

— Bob should learn b and accept its value, or

— Bob should reject Alice’s de-commitment messages, if she
deviates from the protocol
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Simple physical implementation

« Commit: Alice writes b down on a piece of paper, locks
It in a safe, sends the safe to Bob, but keeps the key

 De-commit: Alice sends the key to Bob, who then opens
the safe

* Desireable properties:
— Binding: Alice cannot change b after commit

— Concealing: Bob learns nothing about b until de-commit

Question: why should anyone care about bit-commitment?

Answer: It is a useful primitive operation for other protocols,
such as zero-knowledge proofs of language-membership
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Complexity-theoretic implementation

Based on a one-way function f: {0,1}1" > {0,1}"and a
hard-predicate h: {0,1}" > {0,1} forf

Commit: Alice picks a random X [J{0,1}", sets y = f(X) and
c = bOh(X) and then sends y and C to Bob

De-commit: Alice sends Xto Bob, who verifies that y = f(X)
and then sets b = cOh(X)

This is (i) perfectly binding and (ii)) computationally concealing,
based on the hardness of predicate h

16



Quantum implementation

 Inspired by the success of QKD, one can try to use the
properties of quantum mechanical systems to design an
iInformation-theoretically secure bit-commitment scheme

e One simple idea:
— To commit to O, Alice sends a random sequence from {|0), 1)}
— To commit to 1, Alice sends a random sequence from {|+), |-}
— Bob measures each qubit received in a random basis

— To de-commit, Alice tells Bob exactly which states she sent in
the commitment stage (by sending its index 00, 01, 10, or 11),
and Bob checks for consistency with his measurement results

e A paper appeared in 1993 proposing a quantum bit-
commitment scheme and a proof of security
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Quantum implementation

* Not only was the 1993 scheme shown to be insecure,
but it was later shown that no such scheme can exist

« To understand the impossibility proof, recall the
Schmidt decomposition:

Let |lJ) be any bipartite quantum state:

|LIJ> = Zax,y‘ X>‘ y>

XX

Then there exist orthonormal states

|u1>9 “'12>9 AR “'lm> and |¢1>9 |¢2>9 T |¢m> such that

W) = > Bl 8.) /f

[Mayers '96][Lo & Chau '96] Eigenvectors of Tr |Y)Y| 18




Quantum implementation

Corollary: if [y), [Y;) are such that Tr, |Wy)(Wo| = Tr, [W )W
then there exists a unitary U (acting on the first register) such

that (UD)[,) = |P,)

Proof:

W)= 2. Bal)|0z) and i) = 2 Balw)le:)

2Lz zZL1Z

Let U “'lz> = ||J"z> .

Protocol can be “purified” so that Alice’s commit states are
|W,) & |W,) (where she sends the second register to Bob)

By applying U to her register, Alice can change her
commitment from b= 0to b =1 (by changing |U,) to [};))
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