Random Select

497 - Randomized Algorithms

Sariel Har-Peled

September 12, 2002

1 Randomized Selection

We are given a se$ of n distict elements, with an associated ordering. 1S, letrg(t) denote
the rank oft (the smallest elelenmt i8 has rank 1). Le§;) denote the-th element in the sorted
list of S
Givenk, we would like to computé& (i.e., select th&-th element).
FUNC LazySelect(S k)
Input: S- setofnelementsk - index of element to be output.
begin
repeat
R« {Sample with replacement af/* elements fronS} U{—0o0, +00}.
SortR.
| — max(l, Lkn*l/4 — \/ﬁJ ) h — min (n3/4, Lkn*1/4+ \/ﬁD
a<«— R(|), b— R(h)
Compute the ranks(a) of a and the rankgs(b) of b in S(2n comparisons).
/* can be done while computing the
<y<
PH{yES’a_y_b} rank of a and b */
Until (rs(a) <k < rs(b)) and (|P\ < 8n3/4+2>

SortP in O(n®*logn) time.

return Be_rga)+1
endLazySelect

Exercise 1.1 Show how to compute the ranks gfa) and rs(b), such that the expected number of
comparisions performed k5n.

Lemma 1.2 LazySelect succeeds with probability 1 —O(n~%/4) in the first iteration. And it
performs only2n+ o(n) comparisons.

Proof: One possible bad event is that> Sy). Let X be an indicator variable which is 1 if the
i-th sample is smaller equal &), otherwise 0. WE have = Pr{X] = k/n, = 1-k/n, and let
X = 7' %;. Clearly,X ~ B(n34 k/n) (i.e.,X has a binomial distribution witpp = k/n, andn3/4
trials).



By Chebyshev inequality

Pr{|X— pn/4| 2t\/n3/4pq} < tlz

Sincepn®/# = kn~%/4 and/n%4(k/n)(1—k/n) < n¥8/2, we have that the probability af> S
IS

Pr[x < (kn /4 — \/ﬁ)} < Pr[|X—kn‘1/4| > 2n'/8. n3/8] <Lt 1

- - 2 |~ (2n1/8)2 4nt/4’
Thus, the probablity thaa > Sy, is smaller than 1(4n%/4). And similarly, the probablity that
b < Sy is smalelr than 1(4n'/4).

So the only other source for a failure of the algorithm, is that th@$ets more thanm#/4 + 2
elements. Let = {S(k),S(kH),...,S(k+4n3/4)}. Clearly,ais not inl, only if we pick less than
2,/n elements from this interval intB. This, however, i©(1/n'/4) using he same argumentation
as above. Using a symetrical argument, we concludeFt@t{S(k%ngM),S<k+1), .. .,S(k+4n3/4)},
with probability> 1 — c/nl/"', wherec is an appropriate constant. [ |

Any deterministic selection algorithm requiras@mparisons, antkzySelect can be changes
to require only 15n+ o(n) comparisons (expected).

2 Two-Point Sampling

2.1 About Modulo Rings and Pairwise Independence

Let p be a prime number, and |&, = {0,1,..., p— 1} denote the ring of integers modules
Two integersa, b are equivalent modulp, if a= p(mod p; namely, the reminder of dividingand
b by pis the same.

Lemma 2.1 Given yi € Zp, and choosing & randomly and uniformly fron#Z ,, the probablity
of y=ai+b (modp) is 1/p.

Proof: Imagine that we first choosg then the required probablity, is that we chotsguch
thaty — ai = b (modp). And the probablity for that is Ap, as we choosb uniformly. [ |

Lemma 2.2 Givenyz,x,w € Z, such that x# w, and choosing @ randomly and uniformly from
Z , the probablity that y= ax+ b (modp) and z= aw+b is 1/ p?.

Proof: This equivalent to claiming that the system of equalijiesax+ b (modp) andz=aw+Db
have a unique solution iaandb.

To see why this is true, substract one equation from the other. We-get a(x—w) (modp).
Sincex—w # 0 (modp), it must be that there is a unique valueaoduch that the equation holds.
This in turns, imply a specific value fdx. ]

Lemma 2.3 Let i, j be two distinct elements @& . And choose @ randomly and independetly
from Zp. Then, the two random variables ¥ ai+ b (modp) and Y = aj + b (modp) are uni-
formly distributed orZZ,, and are pairwise independent.
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Proof: The claim about the uniform distribution follows from Lemma 2.1, a%YPt a] =
1/p, for anya € Z. As for being pairwise indepedent, observe that

PriYi=anYj=p 2
Pr[Yi:o(‘szﬁ] = [Pr[Yj[;} ] :11//?] :%:Pr[\ﬁ:a],

by Lemma 2.1 and Lemma 2.2. ThitsandY;j are pairwise independent. |

Remark 2.4 It is important to understand what independence between random variables mean: It
means that having information about the valu&ogives you no infomration aboit. But this is
only pairwise independence. Indeed, consider the variahl&s, Y3, Y, defined above. Every pair
of them are pairwise independent. But, if you give the valu¥ aindY,, | know the value oiys
andY; immediately. Indeed, giving me the valueXafandY> is enough to figure out the value of
aandb. Once we knova andb, we immidately can compute all ths.

Thus, the notion of independence can be exterdedirwise independence afrandom vari-
ables, where only if you know the value k¥ariables, you can compute the value of all the other
variables. More on that later in the course.

Lemma 2.5 Let X, Xo, ..., X, be pairwise independent random variables, ane-% ' ; X;. Then
var [X] =S var [X,}

Proof: Observe, that

] =& [(x£[x)) ~e e (e]x))"

Let X andY be pairwise independent variables. Observe Eh%XY} =E [X] E M as can be
easily verfied. Thus,

var[xw} - E:(X+Y—E[X]—E[Y])2}
= E[(X+Y)*=2(X+Y) (E[X] +EIY]) + (E[X] + EN])
= E|(X+Y)?| - (EX] +EY])?
— E[X42XY+¥2] - (E[X)? - 2E[XEN] - (EIV])
= (E[x?] - EX)?) + (E[Y?] - (EIV])?) + 28 x| - 2E[X[EIY]

= var:x}qtvar[ }++2E [X}E[ ] 2E[X]E[Y]

= var _X} + var [Y} .

Using the above argumentation for several varaibles, isntead of just two, implies the lemma.



2.2 What is a randomzied algorithm? And how to save random bits?

We can consider a randomized algorithm, to be a deterministic algodthxgr) that receives
together with the inpux, a random string of bits, that it uses to read random bits from. Let us
redefineRP:

Definition 2.6 The clasRP (for Randomized Polynomial time) consists of all langualyekat
have a deterministic algorithi(x,r) with worst case polynomial running time such that for any
inputx € *,

e xe L= A(x,r)=1for half the possible values of
e X¢ L =-A(x,r) =0 forall values ofr.

LEt assume that we now want to minimize the number of random bits we use in the execution of
the algorithm (Why?). If we run the algorithttimes, we have confidence2in our result, while
usingt logn random bits (assuming our random algorithm needs only lats in each execution).
Simialrly, let us choose two random numbers frédtp, and runA(x, a) andA(x, b), gaining us only
confidence 14 i nthe correctness of our results, while requiring 2iduits.

Can we do better? Let us define= ai+b modn, wherea,b are random values as above
(note, that we assume thatis prime), fori = 1,...,t. ThusY = S!_  A(x,r;) is a sum of random
variables whcih are pairwise independent, asrtlage pairwise independent. Assume, thatL,

thenE[Y] = t/2, ando? = var [Y} =5t jvar [A(x,ri)] <t/4, andoy < v/t/2. The probablity
that all those executions failed, corresponds to the evenYtka, and

Pilv=o] <pillv e v]| = 5 prl e ]2 5] <

by the Chebyshev inequality. Thus we were able to “extract” from our random bits, much more
than one would naturally suspect is possible.



