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1 Randomized Selection

We are given a setSof n distict elements, with an associated ordering. Fort ∈ S, let rS(t) denote
the rank oft (the smallest elelenmt inShas rank 1). LetS(i) denote thei-th element in the sorted
list of S.

Givenk, we would like to computeSk (i.e., select thek-th element).

FUNC LazySelect( S, k )
Input: S- set ofn elements,k - index of element to be output.

begin
repeat

R←
{

Sample with replacement ofn3/4 elements fromS
}
∪{−∞,+∞}.

SortR.

l ←max
(

1,
⌊
kn−1/4−

√
n
⌋)

, h←min
(

n3/4,
⌊
kn−1/4 +

√
n
⌋)

a← R(l), b← R(h).
Compute the rankrS(a) of a and the rankrS(b) of b in S(2n comparisons).

P←
{

y∈ S
∣∣∣a≤ y≤ b

}
/* can be done while computing the

rank of a and b */
Until (rS(a)≤ k≤ rS(b)) and

(
|P| ≤ 8n3/4 +2

)
SortP in O(n3/4 logn) time.
return Pk−rS(a)+1

endLazySelect

Exercise 1.1Show how to compute the ranks of rS(a) and rS(b), such that the expected number of
comparisions performed is1.5n.

Lemma 1.2 LazySelect succeeds with probability≥ 1−O(n−1/4) in the first iteration. And it
performs only2n+o(n) comparisons.

Proof: One possible bad event is thata > S(k). Let Xi be an indicator variable which is 1 if the
i-th sample is smaller equal toS(k), otherwise 0. WE havep = Pr[Xi ] = k/n, q = 1−k/n, and let

X = ∑n3/4

i=1 Xi . Clearly,X ∼ B(n3/4,k/n) (i.e.,X has a binomial distribution withp = k/n, andn3/4

trials).
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By Chebyshev inequality

Pr

[
|X− pn3/4| ≥ t

√
n3/4pq

]
≤ 1

t2 .

Sincepn3/4 = kn−1/4 and
√

n3/4(k/n)(1−k/n)≤ n3/8/2, we have that the probability ofa > S(k)
is

Pr
[
X < (kn−1/4−

√
n)

]
≤ Pr

[
|X−kn−1/4| ≥ 2n1/8 · n

3/8

2

]
≤ 1(

2n1/8
)2 =

1

4n1/4
.

Thus, the probablity thata > S(k) is smaller than 1/(4n1/4). And similarly, the probablity that

b < S(k) is smalelr than 1/(4n1/4).
So the only other source for a failure of the algorithm, is that the setP has more than 4n3/4+2

elements. LetI =
{

S(k),S(k+1), . . . ,S(k+4n3/4)

}
. Clearly, a is not in I , only if we pick less than

2
√

n elements from this interval intoP. This, however, isO(1/n1/4) using he same argumentation

as above. Using a symetrical argument, we conclude thatP⊆
{

S(k−4n3/4),S(k+1), . . . ,S(k+4n3/4)

}
,

with probability≥ 1−c/n1/4, wherec is an appropriate constant.
Any deterministic selection algorithm requires 2ncomparisons, andLazySelect can be changes

to require only 1.5n+o(n) comparisons (expected).

2 Two-Point Sampling

2.1 About Modulo Rings and Pairwise Independence

Let p be a prime number, and letZZp = {0,1, . . . , p−1} denote the ring of integers modulesp.
Two integersa,b are equivalent modulop, if a≡ p(modp); namely, the reminder of dividinga and
b by p is the same.

Lemma 2.1 Given y, i ∈ ZZp, and choosing a,b randomly and uniformly fromZZp, the probablity
of y≡ ai+b (modp) is 1/p.

Proof: Imagine that we first choosea, then the required probablity, is that we chooseb such
thaty−ai≡ b (modp). And the probablity for that is 1/p, as we chooseb uniformly.

Lemma 2.2 Given y,z,x,w∈ ZZp, such that x6= w, and choosing a,b randomly and uniformly from
ZZp, the probablity that y≡ ax+b (modp) and z= aw+b is1/p2.

Proof: This equivalent to claiming that the system of equalitiesy≡ ax+b (modp) andz= aw+b
have a unique solution ina andb.

To see why this is true, substract one equation from the other. We gety−z≡ a(x−w) (modp).
Sincex−w 6≡ 0 (modp), it must be that there is a unique value ofa such that the equation holds.
This in turns, imply a specific value forb.

Lemma 2.3 Let i, j be two distinct elements ofZZp. And choose a,b randomly and independetly
from ZZp. Then, the two random variables Yi = ai + b (modp) and Yj = a j + b (modp) are uni-
formly distributed onZZp, and are pairwise independent.
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Proof: The claim about the uniform distribution follows from Lemma 2.1, as Pr
[
Yi = α

]
=

1/p, for anyα ∈ ZZp. As for being pairwise indepedent, observe that

Pr
[
Yi = α

∣∣∣Yj = β
]

=
Pr

[
Yi = α∩Yj = β

]
Pr

[
Yj = β

] =
1/n2

1/n
=

1
n

= Pr
[
Yi = α

]
,

by Lemma 2.1 and Lemma 2.2. Thus,Yi andYj are pairwise independent.

Remark 2.4 It is important to understand what independence between random variables mean: It
means that having information about the value ofX, gives you no infomration aboutY. But this is
only pairwise independence. Indeed, consider the variablesY1,Y2,Y3,Y4 defined above. Every pair
of them are pairwise independent. But, if you give the value ofY1 andY2, I know the value ofY3

andY4 immediately. Indeed, giving me the value ofY1 andY2 is enough to figure out the value of
a andb. Once we knowa andb, we immidately can compute all theYis.

Thus, the notion of independence can be extendedk-pairwise independence ofn random vari-
ables, where only if you know the value ofk variables, you can compute the value of all the other
variables. More on that later in the course.

Lemma 2.5 Let X1,X2, . . . ,Xn be pairwise independent random variables, and X= ∑n
i=1Xi . Then

var
[
X

]
= ∑n

i=1var
[
Xi

]
.

Proof: Observe, that

var
[
X

]
= E

[(
X−E

[
X

])2
]

= E
[
X2

]
−

(
E

[
X

])2
.

Let X andY be pairwise independent variables. Observe thatE
[
XY

]
= E

[
X

]
E

[
Y

]
, as can be

easily verfied. Thus,

var
[
X +Y

]
= E

[
(X +Y−E[X]−E[Y])2

]
= E

[
(X +Y)2−2(X +Y)(E[X]+E[Y])+(E[X]+E[Y])2

]
= E

[
(X +Y)2

]
− (E[X]+E[Y])2

= E
[
X2 +2XY+Y2

]
− (E[X])2−2E[X]E[Y]− (E[Y])2

=
(

E
[
X2

]
− (E[X])2

)
+

(
E

[
Y2

]
− (E[Y])2

)
+2E

[
XY

]
−2E[X]E[Y]

= var
[
X

]
+var

[
Y

]
++2E

[
X

]
E

[
Y

]
−2E[X]E[Y]

= var
[
X

]
+var

[
Y

]
.

Using the above argumentation for several varaibles, isntead of just two, implies the lemma.
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2.2 What is a randomzied algorithm? And how to save random bits?

We can consider a randomized algorithm, to be a deterministic algorithmA(x, r) that receives
together with the inputx, a random stringr of bits, that it uses to read random bits from. Let us
redefineRP:

Definition 2.6 The classRP (for Randomized Polynomial time) consists of all languagesL that
have a deterministic algorithmA(x, r) with worst case polynomial running time such that for any
inputx∈ Σ∗,

• x∈ L⇒ A(x, r) = 1 for half the possible values ofr.

• x /∈ L⇒ A(x, r) = 0 for all values ofr.

LEt assume that we now want to minimize the number of random bits we use in the execution of
the algorithm (Why?). If we run the algorithmt times, we have confidence 2−t in our result, while
usingt logn random bits (assuming our random algorithm needs only logn bits in each execution).
Simialrly, let us choose two random numbers fromZZn, and runA(x,a) andA(x,b), gaining us only
confidence 1/4 i nthe correctness of our results, while requiring 2logn bits.

Can we do better? Let us definer i = ai + b modn, wherea,b are random values as above
(note, that we assume thatp is prime), fori = 1, . . . , t. ThusY = ∑t

i=1A(x, r i) is a sum of random
variables whcih are pairwise independent, as ther i are pairwise independent. Assume, thatx∈ L,

thenE[Y] = t/2, andσ2
Y = var

[
Y

]
= ∑t

i=1var
[
A(x, r i)

]
≤ t/4, andσY ≤

√
t/2. The probablity

that all those executions failed, corresponds to the event thatY = 0, and

Pr
[
Y = 0

]
≤ Pr

[∣∣∣Y−E
[
Y

]∣∣∣≥ t
2

]
= Pr

[∣∣∣Y−E
[
Y

]∣∣∣≥ √t
2
·
√

t

]
≤ 1

t
,

by the Chebyshev inequality. Thus we were able to “extract” from our random bits, much more
than one would naturally suspect is possible.
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