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“The Electric Monk was a labor-saving device, like a dishwasher or a video recorder. Dishwashers washed

tedious dishes for you, thus saving you the bother of washing them yourself, video recorders watched tedious

television for you, thus saving you the bother of looking at it yourself; Electric Monks believed things for

you, thus saving you what was becoming an increasingly onerous task, that of believing all the things the

world expected you to believe.” — Dirk Gently’s Holistic Detective Agency, Douglas Adams.

1 Filters and Martingales

Definition 1.1 Given a σ-field (Ω, F) with F = 2Ω, a filter (also filtration) is a nested
sequence F0 ⊆ F1 ⊆ · · · ⊆ Fn of subsets of 2Ω such that

1. F0 = {∅, Ω}.

2. Fn = 2Ω.

3. For 0 ≤ i ≤ n, (Ω, Fi) is a σ-field.

Intuitively, each Fi define a partition of Ω into blocks. This partition is getting more and
more refined as we progress with the filter.

Example 1.2 Consider an algorithm A that uses n random bits, and let Fi be the σ-field
generated by the partition of Ω into the blocks Bw, where w ∈ {0, 1}i. Then F0, F1, . . . , Fn

form a filter.

Definition 1.3 A random variable X is said to be Fi-measurable if for each x ∈ R, the
event {X ≤ x} is contained in Fi.

Example 1.4 Let F0, . . . , Fn be the filter defined in Example 1.2. Let X be the parity of
the n bits. Clearly, X is a valid event only in Fn (why?). Namely, it is only measurable in
Fn, but not in Fi, for i < n.

Namely, a random variable X is Fi-measurable, only if it is a constant on the blocks of
Fi.

Definition 1.5 Let (Ω, F) be any σ-field, and Y any random variable that takes on distinct

values on the elementary elements in F. Then E
[
X
∣∣∣F] = E

[
X
∣∣∣Y ].
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2 Martingales

Definition 2.1 A sequence of random variables Y1, Y2, . . . , is said to be a martingale dif-
ference sequence if for all i ≥ 0,

E
[
Yi

∣∣∣Y1, . . . , Yi−1

]
= 0.

Clearly, X1, . . . , is a martingale sequence iff Y1, Y2, . . . , is a martingale difference sequence
where Yi = Xi −Xi−1.

Definition 2.2 A sequence of random variables Y1, Y2, . . . , is said to be a super martingale
sequence if for all i ≥,

E
[
Yi

∣∣∣Y1, . . . , Yi−1

]
≤ Yi−1,

and a sub martingale sequence if

E
[
Yi

∣∣∣Y1, . . . , Yi−1

]
≥ Yi−1.

Example 2.3 Let U be a urn with b black balls, and w white balls. We repeatedly select
a ball and replace it by c balls having the same color. Let Xi be the fraction of black balls
after the first i trials. This sequence is a martingale.

Indeed, let ni = b + w + i(c − 1) be the number of balls in the urn after the i-th trial.
Clearly,

E
[
Xi

∣∣∣Xi−1, . . . , X0

]
= Xi−1 ·

(c− 1) + Xi−1ni−1

ni

+ (1−Xi−1) ·
Xi−1ni−1

ni

=
Xi−1(c− 1) + Xi−1ni−1

ni

= Xi−1
c− 1 + ni−1

ni

= Xi−1
ni

ni

= Xi−1.

2.1 Martingales, an alternative definition

Definition 2.4 Let (Ω, F,Pr) be a probability space with a filter F0, F1, . . . . Suppose that
X0, X1, . . ., are random variables such that for all i ≥ 0, Xi is Fi-measurable. The sequence
X0, . . . , kXn is a martingale provided, for all i ≥ 0,

E
[
Xi+1

∣∣∣Fi

]
= Xi.

Lemma 2.5 Let (Ω, F) and (Ω, G) be two σ-fields such that F ⊆ G. Then, for any random

variable X, E
[
E
[
X
∣∣∣G] ∣∣∣F] = E

[
X
∣∣∣F].
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Proof:

E
[
E
[
X
∣∣∣G] ∣∣∣F] = E

[
E
[
X
∣∣∣G = g

] ∣∣∣F = f
]

= E

[∑
x xPr[X = x ∩G = g]

Pr[G = g]

∣∣∣F = f

]
=

∑
g∈G

∑
x xPr[X=x∩G=g]

Pr[G=g]
·Pr[G = g ∩ F = f ]

Pr[F = f ]

=
∑

g∈G,g⊆f

∑
x xPr[X=x∩G=g]

Pr[G=g]
·Pr[G = g ∩ F = f ]

Pr[F = f ]

=
∑

g∈G,g⊆f

∑
x xPr[X=x∩G=g]

Pr[G=g]
·Pr[G = g]

Pr[F = f ]

=
∑

g∈G,g⊆f

∑
x xPr[X = x ∩G = g]

Pr[F = f ]

=

∑
x x
(∑

g∈G,g⊆f Pr[X = x ∩G = g]
)

Pr[F = f ]

=

∑
x xPr[X = x ∩ F = f ]

Pr[F = f ]

= E
[
X
∣∣∣F] .

Theorem 2.6 Let (Ω, F,Pr) be a probability space, and let F0, . . . , Fn be a filter with respect

to it. Let X be any random variable over this probability space and define Xi = E
[
X
∣∣∣Fi

]
then, the sequence X0, . . . , Xn is a martingale.

Proof: We need to show that E
[
Xi+1

∣∣∣Fi

]
= Xi. Namely,

E
[
Xi+1

∣∣∣Fi

]
= E

[
E
[
X
∣∣∣Fi+1

] ∣∣∣Fi

]
= E

[
X
∣∣∣Fi

]
= Xi,

by Lemma 2.5 and by definition of Xi.

Definition 2.7 Let f : D1×· · ·×Dn → R be a real-valued function with a arguments from
possibly distinct domains. The function f is said to satisfy the Lipschitz condition If for any
x1 ∈ D1, . . . , xn ∈ Dn , and i ∈ {1, . . . , n} and any yi ∈ Di,

|f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, yi, xi+1, . . . , xn)| ≤ 1.

Definition 2.8 Let X1, . . . , Xn be a sequence of random variables, and a function f(X1, . . . , Xn

defined over them that such that f satisfies the Lipschitz condition. The Dobb martingale se-

quence Y0, . . . , Ym is defined by Y0 = E
[
f(X1, . . . , Xn)

]
and Yi = E

[
f(X1, . . . , Xn)

∣∣∣X1, . . . , Xi

]
,

for i = 1, . . . , n. Clearly, Y0, . . . , Yn is a martingale, by Theorem 2.6.
Furthermore, |Xi −Xi−1| ≤ 1, for i = 1, . . . , n. Thus, we can use Azuma’s inequality on

such a sequence.
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3 Occupancy Revisited

We have m balls thrown independently and uniformly into n bins. Let Z denote the
number of bins that remains empty. Let Xi be the bin chosen in the i-th trial, and let
Z = F (X1, . . . , Xm). Clearly, we have by Azuma’s inequality that Pr[|Z − E[Z]| > λ

√
m] ≤

2e−λ2/2.
The following is an extension of Azuma’s inequality shown in class. We do not provide a

proof.

Theorem 3.1 (Azuma’s Inequality - Stronger Form) Let XS0, X1, . . . , be a martin-
gale sequence such that for each k,

|Xk −Xk−1| ≤ ck,

where ck may depend on k. Then, for all t ≥ 0, and any λ > 0,

Pr[|Xt −X0| ≥ λ] ≤ 2 exp

(
− λ2

2
∑t

k=1 c2
k

)
‘.

Theorem 3.2 Let r = m/n, and Zm be the number of empty bins when m balls are thrown
randomly into n bins. Then

µ = E
[
Zm

]
= n

(
1− 1

n

)m

≈ ne−r

and for λ > 0,

Pr[|Zm − µ| ≥ λ] ≤ 2 exp

(
−λ2(n− 1/2)

n2 − µ2

)
.

Proof: Let z(Y, t) be the expected number of empty bins, i there are Y empty bins in
time t. Clearly,

z(Y, t) = Y

(
1− 1

n

)m−t

.

In particular, µ = z(n, 0) = n
(
1− 1

n

)m
.

Let Ft be the σ-field generated by the bins chosen in the first t steps. Let Zm be the end

of empty balls at time m, and let Zt = E
[
Zm

∣∣∣Ft

]
. Namely, Zt is the expected number

of empty bins after we know where the first t balls had been placed. The random variables
Z0, Z1, . . . , Zm form a martingale. Let Yt be the number of empty bins after t balls where
thrown. We have Zt−1 = z(Yt−1, t− 1). Consider the ball thrown in the t-step. Clearly:

1. With probability 1− Yt−1/n the ball falls into a non-empty bin. Then Yt = Yt−1, and
Zt = z(Yt−1, t). Thus,

∆t = Zt − Zt−1 = z(Yt−1, t)− z(Yt−1, t− 1) = Yt−1

((
1− 1

n

)m−t

−
(

1− 1

n

)m−t+1
)

=
Yt−1

n

(
1− 1

n

)m−t

≤
(

1− 1

n

)m−t

.
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2. Otherwise, with probability Yt−1/n the ball falls into an empty bin, and Yt = Yt−1− 1.
Namely, Zt = z(Yt − 1, t).

∆t = Zt − Zt−1 = z(Yt−1 − 1, t)− z(Yt−1, t− 1)

= (Yt−1 − 1)

(
1− 1

n

)m−t

− Yt−1

(
1− 1

n

)m−t+1

=

(
1− 1

n

)m−t(
Yt−1 − 1− Yt−1

(
1− 1

n

))
=

(
1− 1

n

)m−t(
−1 +

Yt−1

n

)
= −

(
1− 1

n

)m−t(
1− Yt−1

n

)
≥ −

(
1− 1

n

)m−t

.

Thus, Z0, . . . , Zm is a martingale sequence, where |Zt − Zt−1| ≤ |∆t| ≤ ct, where ct =(
1− 1

n

)m−t
. We have

n∑
t=1

c2
t =

1− (1− 1/n)2m

1− (1− 1/n)2
=

n2(1− (1− 1/n)2m)

2n− 1
=

n2 − µ2

2n− 1
.

Now, deploying Azuma’s inequality, yield the result.
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