
The Probabilistic Method
497 - Randomized Algorithms

Sariel Har-Peled

September 30, 2002

“Shortly after the celebration of the four thousandth anniversary of the opening of space, Angary J.
Gustible discovered Gustible’s planet. The discovery turned out to be a tragic mistake.

Gustible’s planet was inhabited by highly intelligent life forms. They had moderate telepathic powers.
They immediately mind-read Angary J. Gustible’s entire mind and life history, and embarrassed him very
deeply by making up an opera concerning his recent divorce.”

— From Gustible’s Planet, Cordwainer Smith

1 Introduction

The probabilistic method is a combinatorial technique to use probabilistic algorithms to
create objects having desirable properties, and furthermore, prove that such objects exist.
The basic technique is based on two basic observations:

1. If E[X] = µ, then there exists a value x of X, such that x ≥ E[X].

2. If the probability of event E is larger than zero, then E exists and it is not empty.

The surprising thing is that despite the elementary nature of those two observations, they
lead to a powerful technique that leads to numerous nice and strong results. Including some
elementary proofs of theorems that previously had very complicated and involved proofs.

The main proponent of the probabilistic method, was Paul Erdős. An excellent text on
the topic is the book by Noga Alon and Joel Spencer [AS00].

This topic is worthy of its own course. The interested student is refereed to the course
“Math 475 — The Probabilistic Method”.

1.1 Examples

Theorem 1.1 For any undirected graph G(V, E) with n vertices and m edges, there is a
partition of the vertex set V into two sets A and B such that∣∣∣{uv ∈ E

∣∣∣u ∈ A and v ∈ B
}∣∣∣ ≥ m

2
.

Proof: Consider the following experiment: randomly assign each vertex to A or B, inde-
pendently and equal probability.

1

For an edge e = uv, the probability that one endpoint is in A, and the other in B is 1/2,
and let Xe be the indicator variable with value 1 if this happens. Clearly,

E
[∣∣∣{uv ∈ E

∣∣∣u ∈ A and v ∈ B
}∣∣∣] =

∑
e∈E(G)

E[Xe] =
∑

e∈E(G)

1

2
=

m

2
.

Thus, there must be a partition of V that satisfies the theorem.

Definition 1.2 For a vector v = (v1, . . . , vn) ∈ Rn, ‖v‖∞ = max
i
|vi|.

Theorem 1.3 Let A be an n×n binary matrix (i.e., each entry is either 0 or 1), then there
always exists a vector b ∈ −1, +1n such that ‖Ab‖∞ ≤ 4

√
n log n.

Proof: Let v = (v1, . . . , vn) be a row of A. Chose a random b = (b1, . . . , bn) ∈ −1, +1n.
Let i1, . . . , im be the indices such that vij = 1. Clearly,

E[v · b] =
∑

i

E[vibi] =
∑

j

vi E
[
bij

]
= 0.

Let Xj = 1 if bij = +1, for j = 1, . . . ,m. We have E
[∑

j Xj

]
= n/2, and

Pr
[
|v · b| ≥ 4

√
n ln n

]
= 2Pr

[
v · b ≤ −4

√
n ln n

]
= 2Pr

[∑
j

Xj −
n

2
≤ −2

√
n ln n

]

= 2Pr

[∑
j

Xj <

(
1− 4

√
ln n

n

n

m

)
m

2

]

≤ 2 exp

−m

2

(
4

√
ln n

n

n

m

)2
 = 2 exp

(
−m

2

(
16

n ln n

m2

))

= 2 exp

(
−8n ln n

m

)
≤ 2 exp(−8 ln n) =

2

n8

by the Chernoff inequality and symmetry. Thus, the probability that any entry in Ab exceeds√
4n ln n is smaller than 2/n7. Thus, with probability at least 1− 2/n7, all the entries of Ab

have value smaller than 4
√

n ln n.
In particular, there exists a vector b ∈ {−1, +1}n such that ‖Ab‖∞ ≤ 4

√
n ln n.

2 Maximum Satisfiability

Theorem 2.1 For any set of m clauses, there is a truth assignment of variables that satisfies
at least m/2 clauses.

2

Proof: Assign every variable a random value. Clearly, a clause with k variables, has
probability 1 − 2−k to be satisfied. Using linearity of expectation, and the fact that even
clause has at least one variable, it follows, that E[X] = m/2, where X is the random variable
counting the number of clauses being satisfied. In particular, there exists an assignment for
which X ≥ m/2.

For an instant I, let mopt(I), denote the maximum number of clauses that can be satisfied
by the “best” assignment. For an algorithm A, let mA(I) denote the number of clauses
satisfied computed by the algorithm A. The approximation factor of A, is mA(I)/mopt(I).
Clearly, the algorithm of Theorem 2.1 provides us with 1/2-approximation algorithm.

For every clause, Cj in the given instance, let zj ∈ {0, 1} be a variable indicating whether
Cj is satisfied or not. Similarly, let xi = 1 if the i-th variable is being assigned the value
TRUE. Let C+

j be indices of the variables that appear in Cj in the positive, and C−
j the

indices of the variables that appear in the negative. Clearly, to solve MAX-SAT, we need to
solve:

maximize
m∑

j=1

zj

subject to yi, zj ∈ {0, 1} for all i, j∑
i∈C+

j

yi +
∑
i∈C−j

(1− yi) ≥ zj for all j.

We relax this into the following linear program:

maximize
m∑

j=1

zj

subject to 0 ≤ yi, zj ≤ 1 for all i, j∑
i∈C+

j

yi +
∑
i∈C−j

(1− yi) ≥ zj for all j.

Which can be solved in polynomial time. Let ·̂ denote the values assigned to the variables
by the linear-programming solution. Clearly,

∑m
j=1 ẑj is an upper bound on the number of

clauses of I that can be satisfied.
We set the variable yi to 1 with probability ŷi. This is called randomized rounding.

Lemma 2.2 Let Cj be a clause with k literals. The probability that it is satisfied by ran-
domized rounding is at least βkẑj ≥ (1− 1/e)ẑj, where βk = 1− (1− 1/k)k.

Proof: Assume Cj = y1∨v2 . . .∨vk. By the LP, we have ŷ1+· · ·+ŷk ≥ ẑj. Furthermore, the

probability that Cj is not satisfied is
∏k

i=1(1− ŷi). Note that 1−
∏k

i=1(1− ŷi) is minimized
when all the ŷi’s are equal (by symmetry). Namely, when ŷi = ẑj/k. Consider the function
f(x) = 1 − (1 − x/k)k. This is a concave function, which is larger than g(x) = βkx for all
0 ≤ x ≤ 1, as can be easily verified, by checking the inequality at x = 0 and x = 1.

3

Thus,

Pr[Cj is satisfied] = 1−
k∏

i=1

(1− ŷi) ≥ f(ẑj) ≥ βkẑj.

The second part of the inequality,m follows from the fact that βk ≥ 1−1/e, for all k ≥ 0.
Indeed, for k = 1, 2 the claim trivially holds. Furthermore,

1−
(

1− 1

k

)k

≥ 1− 1

e
⇔
(

1− 1

k

)k

≤ 1

e
⇔ 1/

(
1− 1

k

)k

≥ e ⇔
(

1 +
1

k − 1

)k

≥ e

Note that for

u(x) =

(
1 +

1

x

)x

and

u′(x) =

(
1 +

1

x

)x

ln

(
1 +

1

x

)
− 1

x

(
1 +

1

x

)(x−1)

< 0,

for x ≥ 3. Thus u(x) is monotone, decreasing for x ≥ 3 and limx→∞ u(x) = e. Thus, for
x ≥ 3, we have u(x) ≥ e. We conclude that

(1 + 1/(k − 1))k ≥ (1 + 1/(k − 1))k−1 = u(k − 1) ≥ e,

as required.

Theorem 2.3 Given an instance of MAX-SAT, the expected number of clauses satisfied by
linear programming and randomized rounding is at least (1−1/e) times the maximum number
of clauses that can be satisfied on that instance.

Theorem 2.4 Let n1 be the expected number of clauses satisfied by randomized assignment,
and let n2 be the expected number of clauses satisfied by linear programming followed by
randomized rounding. Then, max(n1, n2) ≥ 3

4

∑
j ẑj.

Proof: It is enough to show that (n1 + n2)/2 ≥ 3
4

∑
j ẑj. Let Sk denote the set of clauses

that contain k literals. We know that

n1 =
∑

k

∑
Cj∈Sk

(
1− 2−k

)
≥
∑

k

∑
Cj∈Sk

(
1− 2−k

)
ẑj.

By Lemma 2.2 we have n2 ≥
∑

k

∑
Cj∈Sk

βkẑj. Thus,

n1 + n2

2
≥
∑

k

∑
Cj∈Sk

1− 2−k + βk

2
ẑj.

One can verify that
(
1− 2−k

)
+ βk ≥ 3/2, for all k, so that we have

n1 + n2

2
≥ 3

4

∑
k

∑
Cj∈Sk

ẑj =
3

4

∑
j

ẑj.

References

[AS00] N. Alon and J. H. Spencer. The probabilistic method. Wiley Inter-Science, 2nd
edition, 2000.

4

