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The exposition here is based on [AS00].

1 VC Dimension

Definition 1.1 A range space & a pair(X,R), whereX is a (finite or infinite) set anRis a (finite
or infinite) family of subsets oK. The elements oK arepointsand the elements & areranges

ForAC X, Pr(A) = {r NA ‘ re R} is theprojectionof Ron A.

If Pr(A) contains all subsets d(i.e., if Ais finite, we havePgr(A)| = 21A) thenAis shattered
by R.

The Vapnik-Chervonenkidimension (or VC-dimension) @&, denoted by VCS), is the max-
imum cardinality of a shattered subsetXf It there are arbitrarility large shattered subsets then
VC(S) = .

Let
d /n
g(d,n) = ()
i; :
Note that for alln,d > 1,g(d,n) =g(d,n—1)+g(d—1,n—1)

Lemma 1.2 (Sauer’'s Lemma)lf (X,R) is a range space 0¥ C-dimension d withX| = n points
then|R| < g(d,n).

Proof: The claim trivially holds fod = 0 orn=0.
Let x be any element oX, and consider the sets

RX:{r\{x} ‘xe r,reR,r\{x}eR}

and
R\x={r\{x} ‘r eR}.

Observe thatR| = |R| + |R\ X| (Indeed, ifr does not contaix than it is counted iRy, if does
containx butr \ x ¢ R, then it is also counted iRy. The only remaining case is when bath{x}
andr U{x} are inR, but then it is being counted oncefy and once iR\ x.)



Observe thaRy has VC dimension — 1, as the largest set that can be shattered is ofisizé.
Indeed, any seA C X shattered byry, implies thatAU {x} is shattered ifR.
Thus,
IRl =[Ry[+|R\x| =g(n—1,d—-1)+g(n—1,d) =g(d,n),

by induction. |
By applying Lemma 1.2, to a finite subsetXfwe get:

Corollary 1.3 If (X,R) is a rnage space d¥C-dimension d then for every finitte subset A of X,
we havePr(A)| < g(d, |A]).

Definition 1.4 Let (X,R) be a range space, and febe a finite subset of. For 0< e <1, a subset
B C A, is ane-samplefor A if for any ranger € R, we have

<e.
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Similarly, N C Ais ane-netfor A, if for any ranger € R, if [rNA| > €|A| implie thatr contains at
least one point oN (i.e.,r "N #£ 0).

Theorem 1.5 There is a postive constant ¢ such thai{f R) is any range space &fC-dimension
at most d, AC X is a finite subset angl d > 0, then a random subset B of cardinality s of A wwhere
s is at least the minimum betwep and

° dlo d +lo 1
g2 dg 71993
is ane-sample for A with probability at least— d.

Theorem 1.6 Let (X,R) be a range space ofC-dimension d, let A be a finite subset of X and
supposé < €,0 < 1. Let N be a set obtained by m random independent draws from A, where

4 28, &d
> —log<,—log— ).
m_max(alogé, . log s) Q)

Then N is are-net for A with probablity at least — d.

1.1 Proof of Theorem 1.6

Let (X,R) be arange space of VC-dimensidyand letA be a subset oX of cardinalityn. Suppose
thatmsatisfiers Equation (1). L&t = (X, ...,Xn) be the sample obtained byindependet samples
from A (the elements dN are not necessarily distinct, and thats why we treat them as ordered set).
Let E; be the probablity thall fails to be are-net. Namely,

Elz{ﬂreR‘|rmA|zsn,rmN:(b}.



(Namely, there exists a “heavy” rangehat does not contain any point bfft) To complete the
proof, we must show th&r[E;] <d. LetT = (y1,...,Ym) be another random sample generated in
a similar fashion td\. Let E, be the event thall fails, butT “works”, formally

em
Ezz{HreR‘]rﬂA]28n,rﬂN:O,|rﬂT|27}_

(I[rN'T| denotes the number of elementslobelong tor.)
Intuitively, sinceEr [[r mT|} > em, then for the range thatN fails for, we have with “good”
probability thatlr N T| > £'. Namely,E; andE have more or less the same probablity.

Claim 1.7 Pr[Ez] < Pr[E1] < 2Pr[E,].

Proof: Clearly,E; C E3, and thusr [E»] < Pr[E;]. As for the other part, note thBr [Ez ) El] =

Pr[E2NEj1] /Pr[E1] = Pr[Ez] / Pr[Ea]. Itis thus enough to show thBt [EZ ’ El} >1/2.

Assume thaE; occur. There is € R, such thatr NA| > enandr "N = 0. The required prob-
ablity is at least the probablity that for this spacifiove havelrNT| > £'. However,[rNT| is a
binomial variable with expectaticem, and variance(1—&)m < em. Thus, by Cheby’s inequality,

VEM 1
Pr[[mT| < —] < Pr[|]mT| —&m| > —] Pri|rnT|—em| > —\/sm -
2 2 2
by Equation (1). ThusRr[Ep] /Pr[Ey] =Pr[[rnT|> %] =1-Pr[rnT| < &] > %. n

Thus, it is enough to bound the probablityms. Let
/ &m
= — >
= {HreR)mN 0,rNT| 2},

Clearly,E, C E5. Thus, bounding the probablity &, is enough to prove the theorem. Note how-
ever, that a shocking thing happend! We no longer aes participating in our event. Namely,

we turned bounding an event that dependends on a global quantity, into bounding a quantity that
depends only on local quantity/experiment. This is the crucial idea in this proof.

Claim 1.8 Pr[Ep] < Pr[E}] < g(d,2m)2-em?2,

Proof: We imagine that we sample the elementdlof T together, by picking = (zi, ..., zm)
independetly fronA. Next, we randomly decide thm elements o¥ that go intoN, and remaining
elements go intd@. Clearly,

Pr[Ey] = Zpr [Eg } Pr(z].
Thus, from this point on, we fix the s&f and we boundPr [Eé ‘ Z} :

It is now enough to consider the ranges in the projection sBad®). By Lemma 1.2, we have
|Pz(r)| < g(d,2m).
Let us fix anyr € P7(R), and consider the event

Er:{]rﬂT|>%nandmN:(I)}.
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Forp=|rn(NUT)|, we have

em) _ (")
PriE] < pr[mm_o‘ym(NuT)\>?]_W
(2m—p)2m—p—-1)---(Mm—p+1)
2m(2m—1)---(m+1)
m(m—1)---(m—p-+1)

_ <2 P< M2
2m(2m—1)---(2m—p+1)_2 =2

Thus,
PrlEs|z] < 3 PriE] < IPe(R)I2 2 = g 2my2 o2
rePz(R)
implying thatPr[Ej] < g(d,2m)27¢m/2, .

Proof of Theorem 1.8y Lemma 1.7 and Lemma 1.8, we haRelE;] < 2g(d,2m)2-8"2, |t
is thus remains to verify that ifi satisfies Equation (1), themy@l, 2m)2-¢™2 < §. One can verify
that this inequality is implied by Equation (1). However, we omit the details, as this is tedimus.
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