18.419 Random Walks and Polynomial-Time Algorithms 2002 March 14

Lecture 11: Coupling

Lecturer: Santosh Vempala Scribe: Fumei Lam

In this lecture, we introduce the method of coupling, which will allow us to obtain bounds
on the mixing time of several Markov chains. The idea of coupling is to consider two
random walks on a Markov chain such that the walks viewed in isolation have the correct
distribution but make dependent transitions at each stage. By starting one of the random
walks from the stationary distribution and bounding the time for the two chains to collide,

we obtain bounds on the mixing time of the random walk.

Example. Consider the following random walk on the n-dimensional hypercube. At any
state Y3,

1. pick 7 € [n],r € {0,1} uniformly at random

2. set the ¢th bit of Y; to r

In a coupling of walks X = Xo,X1,X2...and Y = Yy,Y1,Ys..., we allow X; to depend
on Xg, X1,...X: 1 and Yy, Y3,...Y;, as long as it remains faithful to the Markov Chain.
Consider the following coupling for the random walk on the hypercube. At state X, Y,

1. pick i € [n],r € {0,1} uniformly at random

2. set the ¢th bit of X; and the ith bit of Y; to r

Note that if Yy is chosen from the stationary distribution, then Y; will be uniform for all i,
and if the ith coordinate of X; and Y; agree for some ¢, this coordinate will agree thereafter.
Let D; denote the number of positions in which X; and Y; differ. We would like to bound
the expected value of D;. Since at time ¢, the probability of choosing one of the D; positions

in which X; and Y; differ is %, we have

D
E[D¢11] = Dy — f,
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We say X and Y are coupled at time t if X; = Y;. The following lemma shows that a bound

on the coupling time of a random walk provides a bound on the mixing rate.

Lemma 1. Coupling Lemma |P} — P}| < 2Pr[X; # Y]

Proof. Let A = {v : P%(v) > P.}. Then

1
5 Px =Pyl = ) Pk(v) = Py(v) = Px(4) - Py(4) = Pr(X, € A) - Pr(Y; € 4)
vEA
= Pr(X;€AYicA)+Pr(Xy € AY; ¢ A) — Pr(X; € AY; € A)

—Pr(X; € A)Y; € A)

IN

Pr(X, € A,Y, ¢ A)
< Pr(X,#£Y)).

As a corollary, the random walk on the hypercube has mixing time is O(nlogn).

Examples.

1. Consider the random walk on the line [0,n — 1] with

P’I"[Xt+1 = Xt + 1] = P’I"[Xt+1 = Xt - 1] =
PT[Xt+1 = Xt] = P’I"[X,H_l = Xt + 1] =

for z=n-1.

PT‘[XH_l = Xt] = P‘I"[X,H_l = Xt - 1] =

DN = DN = DN =

Let Yy be chosen from the stationary distribution and couple X and Y by setting
Xit1 = X¢ + (Yie1 — Vi) if possible, and X;11 = X; otherwise. Without loss of
generality, assume Xg < Y. Then the expected coupling time for X and Y is bounded
above by the expected hitting time for a random walk starting at Xy to reach n — 1.
Since this is at most n?, the coupling time (and by the Coupling Lemma, the mixing

time) is at most n2.



2. Consider the random walk on a cycle, in which transitions are unit steps clockwise or
counterclockwise and stationary moves, each with probability % Note that if Xy and
Yy have different parity and we attempt to use the identity coupling for X and Y,
then X; and Y; will have different parity for all £ and the two chains will never couple.

Instead, we must adjust the coupling according to the distance between the states.
Case 1. X;,Y; have the same parity. In this case, X choses the same move as Y.

Case II. X;,Y; have different parity. In this case, couple X and Y as follows

Y X
counterclockwise — counterclockwise
clockwise — stationary

stationary — clockwise

Now, if X; and Y; have different parity, then X;,; and Y; ;1 have the same parity with

probability % Thus, in expected % steps, we will move to Case 1.

Sampling Proper Colorings

Recall that a proper coloring of a graph G = (V, E) is a coloring of the vertices such that
any pair of adjacent vertices receives different colors. If the maximum degree of G is A,
then the greedy algorithm gives a proper coloring of G with £ = A + 1 colors. Our goal is

to sample uniformly from the set of proper colorings using the following Markov Chain.
(i) Pick vertex v at random
(ii) Pick color ¢ at random
(iii) Recolor v with c if possible, otherwise do nothing

Notice that because the loop probabilities are nonzero, the chain is aperiodic. For what
values of k is the chain irreducible? The complete graph K2 shows that the chain is not

irreducible for £k = A + 1, since no vertex can be recolored at any step.

For k = A + 2, consider two colorings o and 7 and an ordering v, v2,...v, on the vertices
of G. Starting from coloring o, recolor the vertices v; in order as follows: switch v; from
color o(v;) to 7(v;) if such a switch results in a proper coloring. Otherwise, v; has adjacent
vertices vj,, vj, . . . vj, of color 7(v;), with ¢ < ji for 1 < k <[ (since 7 is a proper coloring).
Now, for each v;,, recolor v;, to a color not in the neighborhood of v;, and not equal to

7(v;). Since this forbids at most A + 1 colors, there is at least one legal color for each vj, .



After recoloring all the vj, , giving v; color 7(v;) will result in a proper coloring. This gives a

path in the Markov chain between any two colorings and therefore, the chain is irreducible.

Theorem 2. The Markov chain is rapidly mizing for k > 2A.

Proof. Let A; denote the set of vertices which agree in the two colorings at time ¢, let D;

denote the vertices which disagree, and define

() number of neighbors of v in A; for v € Dy
V)=
number of neighbors of v in D; for v € A;

Then ), 4, d'(v) = Y ,cp, d'(v) = m!, the number of edges crossing D; and A;. We will
define a bijection g on the colors and onsider the following coupling: if Y picks color ¢ and
recolors vertex v with ¢, then X recolors v with color g(c). Let Cx (Cy) denote the colors
X (Y) has in the neighborhood of v that ¥ (X) does not have. Cx corresponds to the set

of colors Y (but not X) can use to recolor v.

If v € Dy, let g be the identity. Otherwise, we can assume |Cx| < |Cy| without loss of
generality. Define g in such a way that it is a bijection from Cx onto a subset S of colors

in Cy with |Cx| = |S| and leaves all other colors fixed.

If v moves from the set of agreeing vertices to the set of disagreeing vertices after recoloring,
|D¢t1]| = |De| +1. In order for this to occur, the color ¢ must be an element of Cy (if ¢ is an
element of Cx, then v remains the same color in both). Since |Cy| < d'(v), the probablity
of this is

1 dw) m
Pr(|Dya| =D +1] < = Y _m.
r[|Dera| = | Dyl ]_n

Now, if v moves from the set of disagreeing vertices to agreeing vertices, then |D;yq1| =
|D¢| — 1. Since v € Dy, g is the identity and in order for v to be in A;1, it suffices for the
color c¢ to be different from all the colors X; and Y; assigned to neighbors of v. The number

of such colors is at least kK — 2A + d'(v), so we have

1 k-2A+d'(v) k-2A m/

> — E = —
Pr [|Dt_|_1| < |Dt|] = 2 A n |Dt| + o
vED,

Then
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implying

E—2A\¢
E(D,) < [1- )
(t)_( kn )n

In particular, for t ~ 22 log 2, we have E(D;) < ¢, so |P% — P4| < 2¢ by the coupling

lemma. O

In the next class, we will see a different chain for sampling proper colorings and show that
it is rapidly mixing for any k > %A using the method of path coupling. Furthermore, rapid
mixing of the new chain will also imply rapid mixing for the chain we have considered here
with & > 16—1A. The problem of whether this chain is rapidly mixing for smaller values of k

remains open.

Although coupling is often a useful tool in proving rapid mixing results, it can often be
difficult to design appropriate couplings to specific Markov Chains. When the coupling
technique works, it usually establishes better bounds on mixing times than known through
methods of conductance and canonical paths. However, in 1999, Kumar and Ramesh showed
that there are chains for which no Markovian coupling argument can prove rapid mix-
ing. In particular, they show that for the Jerrum-Sinclair chain for sampling perfect and
near-perfect matchings, there is a notion of ”distance” between states, under which most
transitions under any coupling are distance increasing. In particular, any coupling requires
an exponential number of steps ¢ before states X;,Y; become equal, giving an exponential

lower bound on the coupling time for any such method.



