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Lecture 17 : Ball Walk I

Lecturer: Santosh Vempala Scribe: Prahladh Harsha

In today’s lecture, we will discuss ball-walk one of the random walks proposed for sampling

in continuous spaces.

First for some notation. Let B, denote the r-dimensional unit ball centered at the origin.
If r = n, then we will drop the subscript r. Let § B denote the ball of radius ¢ centered at
the origin. For any u € R", let u + 0 B denote the translated ball B such that its center is

at u.

Let K be a continuous convex body. The ball-walk in K can now be described as follows:

Ball Walk
At any point z € K,

1. Choose y uniformly at random from z + §B.

2. If y € K, go to y, else stay at z.

: Y

z+ 0B

Figure 1: (a) Ball Walk (b) Points with low local conductance.

The ball-walk is smoother than the discrete-sampling methods proposed a couple of lectures

back. However, akin to isolated points in the discrete methods, we have that at certain

points (close to the boundary of K) there is a high probability of staying at the same point

(See Figure 1(b)). This is captured by the fact that the local conductance I(u)! is low.
'Recall local conductance at u € K is defined as P, (K\{u}).




We can now describe the ball-walk in the language of Markov schemes. The probability
density function is given as follows. For any u € K,
1 .
vay ifv € K\{u} and |u —v| <4
p(u,'u) — Vol(4B) \{ } ‘ | =
0 otherwise

P.(4) = / plu, v)dv

/ ok
= v
v€(u+dB)NK VO]((sB)

We can now easily check that the uniform distribution is a stationary distribution for the
ball-walk. For the uniform distribution @, Q(A) = Vol(A4)/Vol(K) and hence, dQ(u) =
du/Vol(K). Thus,

1
/M Fu(A)dQ(u) = /K /UEWBM Voi(s5) 1)

1
B Vol(6B) /veK /uEvHB dQ(u)dv

B 1 Vol(A4)
= YolpB) VoK) "OeB)
= Q(4)

The mixing time of a continuous random walk is related to the conductance? of the walk

as indicated in the following theorem.

Theorem 1 (Lovész and Simonovits (1993)). If the Markov chain is started in distri-
bution Qq, then for all A € A,

@) - o) < VT (1- %)

where M = supy %0(%) .

Thus, to show that the ball-walk mixes well, we need to demonstrate that the conductance
of the ball-walk is large. So, our goal for the rest of today’s lecture and the next lecture
will be to show that that ® for the ball walk is large.

To begin with, we observe that the conductance can be no larger than the minimum local

conductance. It is possible for certain points to have very low local conductance, however

2Conductance @ is defined as ® = min0<Q(A)S% g(&g where ®(A) = fueA P,(A)dQ(u)



the set of such points may have measure zero and hence is irrelevant to the ball-walk. Let
H; = {z € K|l(z) < t}. For any such Hy such that Q(H;) > 0, we have ®(H;) < tQ(Hy).
Hence, ® < ®(H;)/Q(t) <t. Thus, & <I.

We observe that only points close to the boundary can have low local conductance. For
interior points, if u + 6B C K, then I(u) = 1. For starters, we will assume that the local
conductance of all points is bounded below by [. (i.e., [(u) > I,Vu € K.) We need to show
that for all subsets S C K, ®(S) = [ P,(5)dQ(u) is not too small compared to Q(S). For
this purpose, we shall show that if two points z,y € K are close, then the variation distance

between the distribution attained after a random step from z and y is also small.

Suppose z,y € K such that |z — y| = §, then the volume of the intersection of the balls
(z + 6B) and (y + 0B) can be computed as follows (See Figure 2):

Vb(@z+63)ﬂ(y+wﬂﬂ) Vbh_l(%?&BWJ)-é
<
Vol(6B) - Vol(0B)

(4]
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Thus, if |z —y| = §, then the intersection is exponentially small. How small should |z —y| be
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Figure 2: Intersection of z + 6B and y + §B when |z —y| =4

such that the intersection is sufficiently large. For the intersection to be at least a constant
fraction of Vol(dB), we need AO (see Figure 2) to be at least (1 —1/n)d. In that case we

have
2
1|a:—y| S\/éQ— <1—1) (52§5\/§
2 n n

Thus, we need to have z and y such that |z — y| is at most §1/8/n. Let us now compute




t(s —————

&

Figure 3: Intersection of z + 0B and y + 6 B when |z — y| < \t/—‘%

the volume of the intersection when |z — y| < t§/y/n for some constant t. We need to
compute the volume of the intersection as shown in Figure 3(a). But this volume is exactly
the same as the volume of the ball excluding the middle strip in Figure 3(b). Hence, when
|z —y| < td/+/n, we have

Vol((a: Y 6B) N (y + 5B)) = Vol(6B) — Vol(Middle Strip in ball in Figure 3(b))

td
Z VO]((SB) - Volnfl(danl) ° %
C\/ﬁ to
> _ovE il
> Vol(éB) 5 Vol(6B) \/ﬁfor some constant ¢

= (1 —ct)Vol(éB)

The last but one step follows from the fact that Vol,(6B,) = 2a™/?6" /nI'(n/2). Thus for

significant intersection, we need to choose ¢ < 1/c.

We performed the above calculations assuming that both =z + 6B and y + 6B are both
completely contained in the convex body K. Suppose instead that the intersection lies
along the boundary of K as shown in Figure 4 For ease of notation, let B, = z + dB and
By = y + éB. Since the local conductance is lower bounded by I/, we have that for any
z € K, Vol(B;NK) > IVol(B;). Now, the volume of the intersection can be lower bounded

as follows.
Vol(B, N\ByNK) > Vol(ByNK) — Vol(B,\B,)
= Vol(B, N K) — Vol(B,\(B; N By))
> [-Vol(Bg) — ct - Vol(6B)
= (I —ct)Vol(6B)
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Figure 4: Volume of intersection when the intersection occurs along boundary.

We thus, have shown that P(B, N By NK) > [ —ct and similarly P,(B;NByNK) > [ — ct.
Hence, for any set S C K and points z € S,y € S, if |z —y| < t§/+/n, then Py(S)+ P,(S) >

[ — ct. This, implies the following lemma.

Lemma 2. For any measurable set S C K, define

s = {a:eS|Px(5‘)<l_20t}

Sy = {xe§|Pw(S)<l_Ct}

2

Then, d(S},Sb) > j/—%

Figure 5: Partition of K into S, S} and S3

We are now ready to prove the lower bound on the conductance ® of the ball-walk.

Theorem 3. For the ball-walk of step size § in a convex body K C R" of diameter D and

local conductance bounded below by I, we have

o5



Proof. Let S C K be the subset that attains the minimum conductance. For this S, define
S} and S5 as in Lemma 2. Also define S3 = K\S]\S5. From the isoperimetry theorem

proved earlier, we have that

d(S1, S5)

Vol(S3) > min{Vol(S1), Vol (S5) }

Since, Q(S) = Vol(S)/Vol(K), we have

d(S1, 55)

Q(S3) > min{Q(S1), Q(S5)}

From Lemma 2, we have d(S7,S}) > td//n. Hence,

to(l —ct) . 5
>~ 7
Therefore,
&> to(l — ct)
~ 4D+/n
Thus, if we choose t = [/2¢, we have the required result. O

Thus, from Theorem 3 and Theorem 1. we have that the mixing time of the ball walk is
at most O(D?n/621*). In the next lecture, we will improve this result by proving that it

suffices if average local conductance is bounded by [ instead of worst case local conductance.

The bound of O(D?n/§?) is a lower bound on the number of steps for mixing in a ball-walk
as demonstrated by the following example. Let the convex body K be a cylinder of height
D. Consider the time taken to go from the top of the cylinder to the bottom. Each step in
the ball-walk is roughly of length 6/2. But only 1/4/n fraction of the step is in the required
direction. Hence, in each step of the ball-walk, we move a distance of §/2y/n in the required
direction. We are thus in the case of random walk along a line where the step size is 6/24/n.
Hence, the mixing time is bounded below by Q((D/(6/2v/n))?) = Q(D?n/4?).



