18.419 Random Walks and Polynomial-Time Algorithms

April, 25

Lecture 18. Hit-and-run

Lecturer: Santosh Vempala Scribe: Mikhail Alekhnovitch

Assume that a convex body K is given and the goal is to sample a random point in K. This lecture is dedicated to the following random walk called "Hit-n-run":

- While at a point $u \in K$, choose a random line L through u
- Go from u to y picked uniformly from $L \cap K$
- Repeat

Analytical density.

Our first goal is to calculate the probability density $\rho(u,x)$ of making a step from u to x. To warm up consider the case when K is the unit ball with u in the center. Then the transition density is proportional to the (n-1)-dimensional volume of the sphere with radius |x-u|:

$$\rho(u,x) \propto \frac{1}{\operatorname{Vol}_{n-1}(S_n(|x-u|))} \propto \frac{1}{|x-u|^{n-1}}$$

Denote by $\pi_n = \operatorname{Vol}(B_n)$ and $n\pi_n = \operatorname{Vol}_{n-1}(S_n)$ the volume of *n*-dimensional unit ball and *n*-dimensional sphere resp. Then $\rho(u, x)$ is given by the formula

$$\rho(u,x) = \frac{1}{n\pi_n} \frac{1}{|x-u|^{n-1}} \tag{1}$$

One way to see that the constant equals $1/(n\pi_n)$ is to check that the integral of $\rho(u,x)$ over B_n equals to 1:

$$\int_{B_n} \frac{1}{n\pi_n} \frac{dx}{|x-u|^{n-1}} = \left(\begin{array}{c} |x-u| = r \\ dx = r^{n-1} dr \cdot dw \end{array} \right) = \int_{S_n} \frac{dw}{n\pi_n} \int_0^1 \frac{r^{n-1} dr}{r^{n-1}} = 1.$$

In the general case, the transition density equals to the probability density of choosing the line L_{ux} going through x multiplied by the probability of choosing x on this line. Denote by $\ell(u,x)$ the length of the intersection $L_{ux} \cap K$. In case of the unit ball $\ell=2$, thus in general the density is given by

$$\rho(u,x) = \frac{2}{n\pi_n} \frac{1}{\ell(u,x)|x-u|^{n-1}}$$

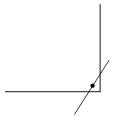


Figure 1:

Obviously, $\rho(u,x) = \rho(x,u)$ and the uniform distribution π is stationary.

Step size.

Our next consideration is the average step size. In the bad case, when u is close to a "corner" with high probability the chosen line L will intersect the "sides" of the corner and the expected step size is exponentially small (see fig. 1). However, if K contains a ball of sufficiently large radius r centered in u then the step size is big. It is convenient to define the following technical notion: let F(u) be the step size given by

$$\Pr\left(|u-x| \leq F(u)
ight) = rac{1}{8}.$$

If K contains a ball of radius r then $F(u) \ge r/8$. Note (from the previous lecture) that on average $F(u) \ge \frac{1}{\sqrt{n}}$.

Conductance.

As usual, we define the conductance as

$$\Phi = \inf_{0 < Q(S) < rac{1}{2}} rac{\Phi(S)}{Q(S)} = \inf rac{\int P_u(ar{S}) du}{Q(S)}.$$

As in the ball random walk, we need the following two components:

1. isoperimetry

$$\operatorname{Vol}(K \setminus S_1 \setminus S_2) \geq rac{d(S_1, S_2)}{D} \cdot rac{\operatorname{Vol}(S_1) \operatorname{Vol}(S_2)}{\operatorname{Vol}(K)}.$$

2. if |u-v| is small then the variation distance $|P_u-P_v|<1-c$.

As we show in the next example, the second property doesn't hold under the Euclidean distance. The points u, v and x on figure 2 are very close to each other, however the probability $\rho(u,x)$ differs drastically from $\rho(v,x)$. Thus, it is not useful to bound the

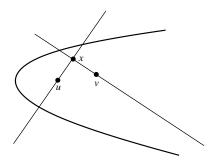


Figure 2:

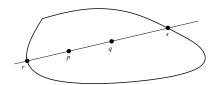


Figure 3:

Euclidean distance, we should use some more adequate metric, that takes into account the geometry of K. One example of such metric, is the following cross-ratio distance.

For two points $p, q \in K$ let r and s be the points of the intersection of line L_{pq} with K so that r is closer to p and s closer to q resp. (see figure 3). Let

$$d_K(p,q) = rac{|p-q||r-s|}{|r-p||q-s|}$$

be the new distance, which will lie in the heart of our analysis. Clearly

$$d_K(p,q) \geq rac{|p-q|}{\min(|r-p|,|s-q|)} \geq 4rac{|p-q|}{D}.$$

Does $d_K(p,q)$ have an isoperimetric inequality? As we will show in the next lecture

$$\operatorname{Vol}(K\setminus S_1\setminus S_2) \geq d_K(S_1,S_2) rac{\operatorname{Vol}(S_1)\operatorname{Vol}(S_2)}{\operatorname{Vol}(K)}.$$

Why does this distance correlate with probabilistic distance? The answer is given by the following

Lemma 1. For any $u,v\in K$ s.t. $d_K(u,v)<rac{1}{8}$ and $|u-v|\leq rac{2}{\sqrt{n}}F(u)$ holds

$$|P_u - P_v| \le 1 - \frac{1}{500}.$$

Proof. Recall, that $|P_u - P_v| = \sup_A P_v(A) - P_u(A)$. We want to identify "good" points x for which $P_v(x) \ge \Omega(P_u(x))$. Let

$$A_1 = \{x \in A | |x - u| \le F(u)\}$$

be the first set of exceptional points. By the definition of F(u), $P_u(A_1) \leq \frac{1}{8}$. Let

$$A_2 = \{x \in A | \ |(x-u)^T(x-v)| \geq rac{1}{\sqrt{n}}|x-u||u-v|\}.$$

These are points x for which the vector x - u is "far" from orthogonal to u - v (see figure 4). A straightforward integration of the spherical surface shows that $P_u(A_2) \leq \frac{1}{6}$.

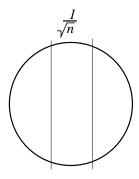


Figure 4:

Let us denote by a(u,x) and a(x,u) the points of the intersection of L_{xu} that are closer to u and x resp. (see figure 5). Define the third exceptional set as

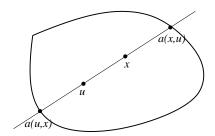


Figure 5:

$$A_3 = \{x \in A | \; |x-u| \leq rac{1}{3} |u-a(u,x)| \}.$$

Clearly $P_u(A_3) \leq \frac{1}{3}$. Thus the overall probability of the exceptional steps is bounded by $\frac{1}{8} + \frac{1}{6} + \frac{1}{3} = \frac{3}{4}$ and it is left to consider the case when none of them occurs. Otherwords we

have to show that for all points $x \in K \setminus A_1 \setminus A_2 \setminus A_3$ holds

$$|x-u| pprox |a-v|$$

 $\ell(x,u) pprox \ell(x,v).$

The first is easy:

$$\begin{aligned} |x-v|^2 &= |x-u|^2 + |u-v|^2 + 2(x-u)(u-v) \\ &\stackrel{(x \notin A_2)}{\leq} |x-u|^2 + |u-v|^2 + \frac{2}{\sqrt{n}}|x-u| \cdot |u-v| \\ &\stackrel{(x \notin A_1, |u-v| \le F(u)/\sqrt{n})}{\leq} |x-u|^2 + \frac{4}{n}|x-u|^2 + \frac{4}{n}|x-u|^2 \\ &= (1 + \frac{8}{n})|x-u|^2. \end{aligned}$$

Let's do the second. For that we will use a geometric fact from the high school, called Menelaus Theorem. We need the following geometric set-up, depicted on figure 6. Let y = a(u, v), z = a(v, u), p = a(u, x), q = a(x, u), r = a(v, x) and s = a(x, v). Let p' be the intersection of the segments [u, p] and [y, r].

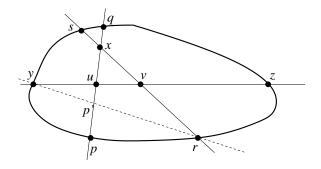


Figure 6:

By Menelaus Theorem,

$$\frac{|x-r|}{|v-r|} = \frac{|u-y|}{|v-y|} \cdot \frac{|x-p'|}{|u-p'|}.$$

We have

$$\frac{|u-y|}{|v-y|} = 1 - \frac{|v-u|}{|v-y|} > 1 - d_K(u,v),$$

which implies

$$egin{aligned} & rac{|x-v|}{|v-r|} = rac{|x-r|}{|v-r|} - 1 \geq (1 - d_K(u,v)) rac{|x-p'|}{|u-p'|} - 1 \ & = rac{|x-u|}{|u-p'|} \left(1 - d_K(u,v) rac{|x-p'|}{|x-u|}
ight) > rac{1}{2} rac{|x-u|}{|u-p'|}. \end{aligned}$$

(Here we used that |x-p'| < 4|x-u| since $x \not\in A_3$). Hence

$$|v-r| < 2rac{|x-v|}{|x-u|}|u-p'| \leq 2rac{|x-v|}{|x-u|}|u-p|.$$

Similarly,

$$|v-s|<2\frac{|x-v|}{|x-u|}|u-q|$$

 $\quad \text{and} \quad$

$$\ell(x,v)<2\frac{|x-v|}{|x-u|}\ell(x,u)\leq (1+\frac{4}{n})\ell(x,u).$$