18.419 Random Walks and Polynomial-Time Algorithms April, 25

Lecture 18. Hit-and-run

Lecturer: Santosh Vempala Scribe: Mikhail Alekhnovitch

Assume that a convex body K is given and the goal is to sample a random point in K.
This lecture is dedicated to the following random walk called “Hit-n-run”:

e While at a point u € K, choose a random line L through u

e Go from u to y picked uniformly from L N K

e Repeat

Analytical density.

Our first goal is to calculate the probability density p(u, z) of making a step from u to z. To
warm up consider the case when K is the unit ball with u in the center. Then the transition

density is propotional to the (n — 1)-dimensional volume of the sphere with radius |z — ul:
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p(u, z)

Denote by 7, = Vol(B,,) and nm, = Vol,_1(S,) the volume of n-dimensional unit ball and

n-dimensional sphere resp. Then p(u,z) is given by the formula
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One way to see that the constant equals 1/(nmy,) is to check that the integral of p(u, z) over

B, equals to 1:
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In the general case, the transition density equals to the probability density of choosing the
line L., going through x multiplied by the probability of choosing x on this line. Denote
by £(u,x) the length of the intersection L,, N K. In case of the unit ball £ = 2, thus in
general the density is given by
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Figure 1:

Obviously, p(u,x) = p(z,u) and the uniform distribution 7 is stationary.
Step size.

Our next consideration is the average step size. In the bad case, when w is close to a
“corner” with high probability the chosen line L will intersect the “sides” of the corner and
the expected step size is exponentially small (see fig. 1). However, if K contains a ball of
sufficiently large radius r centered in u then the step size is big. It is convenient to define

the following technical notion: let F'(u) be the step size given by

Pr <|u— 2| < F(u)) _ %

If K contains a ball of raduius r then F(u) > r/8. Note (from the previous lecture) that on

average F'(u) > ﬁ

Conductance.

As usual, we define the conductance as
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As in the ball random walk, we need the following two components:

1. isoperimetry

d(S1, 52) . VOl(Sl)VOI(Sz)

VOI(K \ Sl \ Sz) > D VOI(K)

2. if |u — v| is small then the variation distance |P, — P,| <1 —c.

As we show in the next example, the second property doesn’t hold under the Euclidean
distance. The points u, v and = on figure 2 are very close to each other, however the

probability p(u,z) differs drastically from p(v,z). Thus, it is not usefull to bound the



Figure 2:

Figure 3:

Euclidean distance, we shoud use some more adequate metric, that takes into account the

geometry of K. One example of such metric, is the following cross-ratio distance.

For two points p,q € K let r and s be the points of the intersection of line L,, with K so

that r is closer to p and s closer to g resp. (see figure 3). Let

_lp—dq|lr—s|

dk(p,q) =
B9 = pllg—f
be the new distance, which will lie in the heart of our analysis. Clearly

lp —q >4m—d
min(|r —p|,[s—q|) = D
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Does dk(p, q) have an isoperimetric inequality? As we will show in the next lecture

Vol(S1)Vol(S2)

VoU(K \ $1\ 82) > dxe(S1, 52) 17y

Why does this distance correlate with probabilistic distance? The answer is given by the

following

Lemma 1. For any u,v € K s.t. dx(u,v) < 3 and |u—v| < %F(u) holds

P = P <1 .
500



Proof. Recall, that |P, — P,| = sup P,(A) — P,(A). We want to identify “good” points
A
for which P,(z) > Q(P,(x)). Let

Ay ={z € A| |z —u| < F(u)}
be the first set of exceptional points. By the definition of F(u), P,(A;) < %. Let

A ={ze Al w@ o) > o —ullu—vl)

vn

These are points z for which the vector z —u is “far” from orthogonal to u—v (see figure 4).

A straightforward integration of the spherical surface shows that P,(A2) < %.
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Figure 4:

Let us denote by a(u,z) and a(z,u) the points of the intersection of L, that are closer to

u and z resp. (see figure 5). Define the third exceptional set as

a(u,xX
Figure 5:

1
As={z € Al |z —u| < §|u—a(u,m)|}.

Clearly P,(A3) < % Thus the overall probability of the exceptional steps is bounded by

é + % + % = % and it is left to consider the case when none of them occurs. Otherwords we



have to show that for all points x € K \ A; \ A2 \ A3 holds

|z — u| ~ |a — v

Lz, u) =~ U(z,v).

The first is easy:
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Let’s do the second. For that we will use a geometric fact from the high school, called
Menelaus Theorem. We need the following geometric set-up, depicted on figure 6. Let
y = a(u,v), z = a(v,u), p = a(u,z), ¢ = a(z,u), r = a(v,z) and s = a(z,v). Let p' be the

intersection of the segments [u, p] and [y, r|.

Figure 6:
By Menelaus Theorem,
z—r| _|u—y| |z-p]
v=rl -yl |u-p|
We have
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lv -yl lv—yl
which implies
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Here we used that |z — p/| < 4|z — u| since = & A3). Hence
( P

lv—r| < 2||§:Z|||u—p'| < 2:§:Z|||u—p|
Similarly,
ool <2 = u—d
and
Uz, v) < 2 :i’ = Z||€(:L',u) <@+ %)Z(m,u).



