18.419 Random Walks and Polynomial-Time Algorithms

2-12-2002

Lecture 3: Convex Optimization II

Lecturer: Santosh Vempala Scribe: Chris Peikert

Last time, we reduced convex optimization to the following problem:

- Input: convex body K (specified by a separation oracle), R (the side of an origin-centered cube containing K), r (the side of a cube contained in K, if $K \neq \emptyset$)
- Output: a point $x \in K$, or the declaration "K is empty"

We then gave an algorithm to solve the problem (note m will be defined later, during the analysis):

- 1. Let P be the origin-centered cube of side $R; z \leftarrow 0$
- 2. Ask the separation oracle if $z \in K$. If yes, return z. Otherwise, the oracle returns a, b such that $K \subseteq \{x : a^T x \leq b\}$.
- 3. Let $P \leftarrow P \cap \{x : a^T x \leq a^T z\}$
- 4. Choose random Y^1, Y^2, \dots, Y^m from P. Let $z \leftarrow \frac{1}{m} \sum_{i=1}^m Y^i$. Goto step 2.

We proved last lecture that if z is the centroid of P, then each side of the separating cut contains at least 1/e of P's volume, so $O(n \log(R/r))$ iterations are sufficient for correctness of the algorithm. For our randomized algorithm, we need to consider the probability that any cut through z leaves a constant fraction of P's volume on each side.

As an illustration, assume we are sampling a single point x from a solid ball $B_n(R)$ of dimension n and radius R, centered at the origin. Then the expected length of x from the center is computed by integrating over shells:

$$E[|x|] = rac{1}{ ext{Vol}(B_n(R))} \int_0^R g(n) r^{n-1} \, r \, dr$$

and

$$\operatorname{Vol}(B_n(R)) = \int_0^R g(n) r^{n-1} \, dr$$

which yields E[|x|] = Rn/(n+1). If we take a plane at this distance from the center, the fraction of the ball's volume on one side of the cut is exponentially small in n.

The question is now: how close must a point be to the center in order to have a constant fraction of the ball's volume on each side? If the plane is at distance T from the center, the radius of its cross-section is $\sqrt{R^2 - T^2}$, and the volume of the smaller part is:

$$\frac{\operatorname{Vol}(B_n(R))}{2} - \int_{t=0}^T g(n) \left(\sqrt{R^2 - t^2} \right)^{n-1} dt \ge \frac{R \cdot \operatorname{Vol}(B_{n-1}(R))}{2\sqrt{n}} - T \cdot \operatorname{Vol}(B_{n-1}(R))$$

$$= \operatorname{Vol}(B_{n-1}(R)) \left(\frac{R}{2\sqrt{n}} - T \right)$$

where we've used the fact that $\operatorname{Vol}(B_n(R)) = \frac{2\pi^{n/2}R^n}{n\Gamma(n/2)}$, where $\Gamma(n) = (n-1)!$ for integer n. So if $T \leq \frac{R}{4\sqrt{n}}$, then the volume of the smaller part is at least 1/4 of the total volume. If we then only sample one random point from the sphere per iteration, we expect $\Omega(n^{n/2})$ trials to reduce the volume by a constant fraction!

Now, as in the algorithm, say we choose Y^1,\ldots,Y^m and define $Y=\frac{1}{m}\sum Y^i$. Wlog, we can say $E[Y]=E[Y^i]=0$ by centering the ball at the origin. A calculation reveals that $E[|Y^i|^2]=R^2n/(n+2)$, and because the samples are independent, the variance of Y is $E[Y^2]=\frac{1}{m}E[|Y^i|^2]=\frac{nR^2}{(n+2)m}$. If we set m=32n, the variance is $\frac{R^2}{32(n+2)}$. From above, in order to cut at least a constant fraction of volume, we need $|Y|^2 \leq R^2/16n$. Then by Chebychev's inequality, we get $\Pr[|Y|^2 \geq R^2/16n] \leq \frac{16n}{R^2}E[|Y|^2] \leq 1/2$. Therefore only a constant number of iterations are necessary to cut a constant fraction of volume, with high probability.

More generally, this result holds for any ellipsoid, because an ellipsoid is just a ball under a linear transformation, and relative volumes are preserved under linear transformations (volumes are magnified by the determinant of the transformation matrix).

Now we deal with the general case when K is an arbitrary convex set. First we need a definition:

Definition 1 (Isotropic position). A body K is in isotropic position if:

- 1. Its centroid is at the origin, and
- 2. For all v with |v| = 1, and for uniformly random x from K, $E[(v^Tx)^2] = 1$.

It will be useful to re-characterize isotropic position in other terms, with the following lemma.

Lemma 2. K is in isotropic position iff $E[x_ix_j] = 1$ when i = j, and i = 0 otherwise; i.e. $E[xx^T] = I$.

Proof: Say $E[xx^T] = I$, and |v| = 1. Then $E[v^Txx^Tv] = v^TE[xx^T]v = |v|^2 = 1$ by linearity of expectation.

For the other direction, say K is in isotropic position and pick $v = e_i$ (the unit vector with 1 as its ith entry). Then $1 = E[(v^Tx)^2] = E[x_i^2]$. Next, pick $v = \frac{1}{\sqrt{2}}(e_i + e_j)$. Then $1 = E[(v^Tx)^2] = E[x_i^2/2 + x_j^2/2 + x_ix_j] = 1 + E[x_ix_j] \Rightarrow E[x_ix_j] = 0$, as desired. \square

Now assume that K is not in isotropic position. Then $E_K[xx^T]=M$, which is semidefinite, because for all y=cv with |v|=1, $y^TMy=E[(y^Tx)^2]=c^2E[(v^Tx)^2]>0$, since K is full-dimensional. Therefore $M=B^2$ for some symmetric matrix B. Let's now apply the linear transformation $x\to B^{-1}x$ to the space, and define $K'=\{B^{-1}x:x\in K\}$. Then for random $y\in K'$, $E_{K'}[yy^T]=E_K[B^{-1}xx^TB^{-1}]=B^{-1}E_K[xx^T]B^{-1}=I$. Then K' is in isotropic position, so from now on we will assume wlog that K is in isotropic position because ratios of volumes are preserved under linear transformations.

We will complete the analysis of the algorithm with the following theorem.

Theorem 3. For an isotropic convex body K, any cut at a distance t from the centroid has at least $\frac{1}{e} - t$ of its volume on each side of the cut.

We will prove this theorem a bit later. For our purposes, we will need t < 1/e. In fact, $E[t^2] = E[|Y|^2] = \frac{1}{m}E[|Y^i|^2] = n/m = 1/32$, by linearity of expectation and the definition of isotropic position. Again, by Chebychev's inequality, we conclude that the algorithm terminates in $O(n \log(R/r))$ iterations in expectation.

To prove Theorem 3, we will need the following lemma:

Lemma 4. Let y be the variable of distance along direction a, and let K be a convex body. Define f(y) to be the (n-1)-dimensional volume of the cross-section at distance y, divided by Vol(K) (so $\int f(y) dy = 1$). If $\int y^2 f(y) dy = 1$ (i.e., K's second moment is 1) and $\int y f(y) dy = 0$, then $\max_y f(y) < 1$.

We will prove the lemma after applying it. Note that an isotropic body fits the conditions of the lemma.

Proof of Theorem 3: In the language of Lemma 4, let a be normal to, and in the direction of, the plane of the cut. Then the volume ratio is at least $1/e - \int_0^t f(y) dy \ge 1/e - [\max_y f(y)] \int_0^t dy \ge 1/e - t$, as desired.

Proof of Lemma 4: we proceed in a way much like last lecture's proof of constant-ratio cuts. First assume that K is the body which has the largest $\max_{y} f(y)$. Now symmetrize around a, i.e. each cross section of K normal to a is replaced by an (n-1)-dimensional ball having the same volume as the cross-section. As we have already seen, the body remains convex, $\max_y f(y)$ remains the same, as do the first and second moments. Assume now wlog that f(y) is maximal at $y^* \geq 0$, and examine sections K_1, K_2, K_3 given by y < 0, $0 < y < y^*$, and $y^* < y$, respectively. Define the moment about the centroid \overline{y} to be $I(K) = \int (y - \overline{y})^2 f(y) dy$. Now replace K_1 by a cone of the same volume, with same crosssectional area at y=0 and base at some $y\leq 0$. Replace K_2 by a truncated cone (possibly having smaller volume), retaining cross-sectional areas at y=0 and $y=y^*$. Replace K_3 with a cone of same volume plus whatever was lost from K_2 , with same cross-sectional area at $y = y^*$. In all of these transformations, mass moves away from the centroid, so the new moment I(K') cannot be smaller. If it is larger, we can "squeeze" the body inward along a and expand it orthogonal to a (increasing its cross-sectional areas) until its moment is again 1. But this contradicts the assumption that we started with the body of largest $\max_y f(y)$. Therefore the above operations do not move any mass.

We now describe the body having the largest $\max_y f(y)$. By the above, its ends must consist of cones and its middle of a truncated cone. A cone with base area equal to the cross-sectional area at y^* has a larger moment of inertia than K'. Finally, a cone with $\int y^2 f(y) \, dy = 1$ and $\int y f(y) \, dy = 0$ has $\max_y f(y) = \frac{n}{n+1} \sqrt{\frac{n}{n+2}} < 1$, and we are done. \square