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Introduction

In this lecture, we will cover some basic parameters of discrete random walks on graphs,
as well as some basic results that will help us gain intuition. The idea behind a random
walk on a graph G = (V, E) is simple: we are at some vertex v, and we choose a vertex u
uniformly at randomly from the set of neighbors of v. If we repeat this process, we have a

random walk on the graph G.

Wuch a random walk is a Markov chain with random variables Xi, Xo,... X,,11, where
Pr[X;11 = z|X:...Xy] = Pr[Xy41 = z|X;]. That is, our random walk is such that the
probability we are at a node is only dependent on the last node we were at, rather than on
all the previous nodes. The properties of the graph G determine the type of Markov chain
that models the random walk. For example, if G is undirected, we have a time-reversible

Markov chain. If G is undirected and regular, we have a symmetric Markov chain.

Natural questions
There are many natural questions to ask about random walks on graphs. One interesting
theorem is the following, as proved by Polya.

Theorem 1 (Polya). Consider an infinite random walk on a d-dimensional grid, starting
at the origin. If d < 2, the walk comes back to the origin infinitely often. But if d = 3, the

walk comes back to the origin a finite number of times.
Other natural questions include:

e How many steps does it take to visit every node in the graph?

o How many steps does it take to arrive at node j, starting at node ¢?



e At each step, there is a probability distribution P;, where P;(7) is the probability we
are at node i on step t. As we continue walking randomly, is there a value ¢ for which
Py = Ppyqg?

Notation and basic parameters

At this point, we are ready to formalize these questions and develop some general notation
for random walks on general, finite graphs. Let G = (V, E), and let vg,v1,...v; be the
random walk, i.e. v; is the state of the random walk. Denote by P;(i) the probability that
at time ¢t we are at vertex i, i.e. P;(i) = Pr[v; = i]. Recall that a random walk on a graph
consists of choosing a neighbor uniformly at random, and walking to that node. Therefore,
we can define the matrix M, where M;; = p;; = ﬁ for (i,7) € E, where d(i) is the degree
of node i. That is, the ijth entry of the matrix encodes the probability we step from node
1 to j. Note that if we let A be the adjacency matrix of G, then we just have
a0
0 1

M: m P A

We also have the following equalities:
Pia()) = Y Pi)ps
J
P, = M'P_ =(WM")P_y=WM1)R

Definition 2 (Stationary distribution). The probability distribution P; is stationary
if Py1= B

Stationary distribution

Several natural questions arise about stationary distributions: do all graphs have stationary
distributions? Is this stationary distribution ever reached if we do a random walk from any
node? Is the stationary distribution unique? We will first show that all undirected graphs

do have a stationary distribution.

Let 7(i) = %, where m = |E|. We show that this distribution is stationary.

Lemma 3. 7 is a stationary distribution for any undirected graph G = (V, E).



Proof. Counsider the probability we are at node 7 on the next step from the distribution 7.

From above, we have that:

P(i) = ijpjz' = Z %pﬁ = Z C;(Tjn) d(lj) = (;(:n) = (i)

(i.4)eE

O

We can also answer the question whether the stationary distribution will be reached for
general, undirected graphs. The answer is no; consider a bipartite graph (V1, Vo, E). If the
random walk starts on some v € V;, on all odd k we have Py (u) = 0 for all u ¢ V;, and vice

versa for even k.

Is the stationary distribution unique for undirected graphs? We can also answer this in
the negative — consider a graph with two disconnected components: G1,Gs. Then there
are two stationary distributions: one in which the probability we are in G; is 0, and the
other where the probability we are in G9 is 0. However, if we ensure that the graph is both

undirected and connected, we can show that such a stationary distribution is unique.

Lemma 4. Let G = (V, E) be an undirected, connected graph. Then G has a unique sta-

tionary distribution .

Proof. Suppose not, i.e. G has two stationary distributions 7, mo, i.e. MTm; = 7, M 7y =
mo. Let mg = mo — mp; without loss of generality, at least one element of 73 is negative.
Consider 7 + ams, where « is chosen so that w1 + amsg > 0, and there is some index j for
which it takes 0. Then 7+ is also stationary, since M1 (m+a(mo—71)) = m1+a(me—m1).
But then the set of vertices with zero probability must be disconnected from the rest of the

graph, which contradicts the fact that G is connected. O

So, each undirected, connected graph has a unique stationary distribution. But we know
for the bipartite graph, that a random walk can never achieve such a distribution. Is this
particular for the bipartite graph, or are there other examples of undirected, connected
graphs for which a random walk will never achieve the unique stationary distribution. In

the next lecture, we answer this question in the negative:

Theorem 5. Let G = (V, E) be an undirected, connected graph that is not bipartite. Then

a random walk on G converges to a unique stationary distribution.



More parameters

One special case of a random walk is when our probability matrix M, is symmetric, i.e.
Pij = pji- In this case, the stationary distribution is defined by 7 (i) = % We verify that

this is indeed the stationary distribution:
. 1 1 1 .
P(i) =Y mpji = Ezpji = ﬁzpz‘j = =m(i)
J J J

We now define a last few parameters for random walks:

Definition 6 (Time-reversible). We call a random walk time-reversible if m;p;; =
TjiPji-
Definition 7 (Hitting time). The hitting time, H(i,j) from i to j in a random walk is

the expected number of steps to begin at verter i and walk to vertex j.

Definition 8 (Cover time). The cover time of a random walk is the mazimum over all

starting vertices of the expected number of steps needed to touch every vertex of the graph.

Next lecture, we will define the mixing time or mixing rate of a graph in more detail. For

now, we can think of it as how fast the random walk approaches the stationary distribution.

Examples

To gain some intuition about these parameters, and random walks in general, we go over a

few examples:

Line graph

Consider a line graph on n+ 1 vertices, and n edges. We would like to determine the hitting
time between any two vertices, i, k, i.e. H(i,k). We first start off with a particular, simple
case: H(k — 1,k). In this case, consider the line graph on k£ + 1 vertices and k edges. We
know that the stationary distribution is 7 (k) = %? = % Therefore, in a stationary walk,
if we are at the last node k, the expected number of times before we return to node k is 2k.
It follows that the hitting time from & — 1 to k is just 2k — 1, i.e. we do not need to take

the first step to the left.



From this, we can derive a recursive formula for H(i, k). The idea is that to walk from ¢ to
k, we will first walk from 7 to k — 1, and then from k£ — 1 to k:

H(i,k) = H(i,k—1)+H(k—1,k)
= H(i,k—1)+2k—1
= (2i+1)+(2+3)+...(2k 1)

— k2—'F

It follows that the cover time for a line graph is H(0,n) = (n — 1)%.

Complete graph

Here, we consider a complete graph on n vertices, and we would like to know the expected
time to visit every vertex. This is simply the coupon collector problem — at each step, we
visit some vertex chosen at random. How long does it take to visit each vertex in the graph?
Let 7; be a random variable that is the number of steps to visit ¢ distinct vertices for the
first time. We are interested in E[7,]. Note that 7,11 — 7; is the number of steps to visit a
new vertex, after we have visited ¢ vertices. The probability that we visit a new vertex is

just Z—j, so the expectation is simply Z—j steps. Therefore, we have:

n—1 n—1 n—1

E[r] = ZE[Tz’+1 - 7] = ZZ:; :nZ%: O(nlogn)

Lollipop graph

Here, we show a graph where the hitting time is O(n3). Consider a graph on n nodes where
n/2 are a complete subgraph, and there exists a line graph of n/2 nodes connected to a
node j in the complete subgraph. Let k be the last node on the line graph, and let ¢ be
any node in the complete subgraph. Then H (i, k) = Q(n?). Note that to get to j, we need

in expectation 5 steps. It follows that to make one step onto the line path, from any node

other than j on the subgraph, we need in expectation %2 many steps. Lastly, since on a
walk from one end to the other on a path of length n/2, we expect to return to the first

node on the path n/2 times, it follows that H (i, k) = Q(n3).

For directed graphs, the hitting time can be exponential. Consider a line graph of n nodes,
with edges oriented from left to right. Construct an edge (i,0) for 7 € V. Then to go from

0 to n takes at least 2" steps in expectation.



We show that the lollipop graph is actually the worst case for undirected graphs:

Theorem 9. The cover time for any connected, undirected graph G is O(mn) = O(n?).

Proof. First, we show that for (i,7) € E, H(i,j) + H(j,i) < 2m. We can bound this by
above by considering the expected number of steps to walk from 4 to j and then use the
edge (7,7). Recall that in a stationary walk, if we have just traversed an edge, the expected
number of steps before we traverse the same edge in the same direction is 2m. Therefore, if
we are at node ¢ with adjacent node j, the expected number of steps before the edge (7,1)

is traversed is 2m. This is the desired upper bound on H (3, 5) + H(j,1).

Now, consider a spanning tree T of G constructed by depth-first search. We show that the
cover time is bounded above by 2m(n — 1). We traverse the tree in a depth-first fashion

(v1,v2,...v2n—1 = v1), so that each edge is traversed twice. Let T" be the cover time — then

we have:
2n—1
T <Y H(w,vipa) = Y, H(,j)+ H(j,i) < 2m(n—1)
i=1 (1,5)eT
It follows that 7 is O(n?). O

Universal traversal sequences

Let G be graph on n nodes, where the degree of any node is d. Suppose at each node, the
edges are labeled 1...d. We would like to define a sequence (hi,hs...h;) C {1,...,d}
such that if we start from any node in the graph, taking the h;th edge out of the node
at step i ensures that at time ¢, we have visited all the nodes in the graph. A universal
traverse sequence (UTS) for n,d is a sequence that, for all d-regular graphs on n nodes,

and for every labelling of it, starting from any start vertex, and walking according to the



sequence and the labelling, we will have touched each node in the graph. We prove that

such sequences exist.

Theorem 10. There exists a UTS of size O(d?n3logn).

Proof. The proof relies on the probabilistic method. Consider a random sequence of length
2dn?(dn+21logn). In particular, let s1, ..., s, bet = dn+21logn subsequences of length 2dn?
each. Next, consider any d-regular graph, and any start vertex v. Note that the expected
cover time for a d-regular graph is at most dn?, using Theorem 9. So the probability that
the cover time is at most twice its expectation is at least %, and hence the probability that
a particular s; (the length of s; is twice the expected cover time) covers G for a given v is

at least % Thus, the probability that one of the s}s covers G is at least 1 — %

Define the random variable X ; to be 0 if G is covered by sequence s;, and 1 otherwise.
Then we have:
1
2t
1
E[ZXG,Z-] < # of graphs (n,d) - # of starting points - o
G,

PI‘[XG’,L']

1 1
nd
< n -n-—ndQ——n<1

Since the expectation is less than 1 and this is a positive integer-valued random variable,

there exists a sequence for which the value is 0. O



