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Lecture 5:Isoperimetric coefficients and mixing times
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In this lecture, we discuss the rate of convergence of a random walk and its relation to
eigenvalues of the random walk. There are several differenent measures of convergence that
we can consider. However, for our purposes it will not make much difference which one we

choose.

Measures of convergence

Suppose the random walk starts at state ¢ and after ¢ steps, it is at state 7 with probability
P;(j). We can measure the distance of this distribution from the stationary distribution

m(7) in the following ways:

e Pointwise distance: max; |P(j) — 7(j)|
o x’-distance: (3_; $|Pt(j) —n(4)]?)/?

e Variation distance: ) [P(j) — 7(j)|

Clearly, the pointwise distance is smaller than the variation distance.

The variation distance is always less than or equal to the y2-distance. This can be shown
using the Cauchy-Schwarz inequality: };a;b; < (3_; a?)l/ Z(Zj bjz-)l/ 2. Here, we set
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In the following, we will consider the pointwise distance.



Next, we define the mixing rate of a random walk:

p = lim max |P;(t) — W(j)ll/t
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The mixing time is defined as the time needed to halve the distance max; |P;(t) — 7 (j)|. In

this case, the mixing time would be (log, %)_1.

It seems that mixing time should be related to cover time, but in some cases these two
quantities can differ significantly. For a periodic d-dimensional lattice, with n? vertices, the
cover time is obviously at least n?. However, since the random walk proceeds independently
in different coordinates, the mixing time is roughly d times the mixing time for a cycle, i.e.

O(dn?).

Convergence and eigenvalues

Let M be the transition matrix of an irreducible random walk (which means that any state
can be reached from any other state). Then, by the Perron-Frobenius theorem, there exists
a unique vector 7 such that

MT'r =T
Moreover, all components of 7 are positive.

This implies that the stationary distribution is unique. In order to analyze the evolution
of a probability distribution under the operation of M, it is convenient to symmetrize the

matrix in the following way. Define
D = diag(v/7 (1), /7(2), - .., V/7(n)),
Q=DMD™ L.
It can be verified that () is symmetric, since
D*M = MTD? = diag(n(1),7(2),...,7(n)).

Moreover, @ and M have the same eigenvalues, and u is a (left) eigenvector of M if and

only if D~'u is an eigenvector of Q:

w'DT'Q =" (MD™") = A(u"D7Y).



In particular, the eigenvector corresponding to eigenvalue 1 is
v = D7l = (v/7(1),/7(2), . ..,/7(n)).

Since @ is symmetric, we can choose the eigenvectors so that they form an orthonormal
basis [v1,v2, . ..,v,], with corresponding eigenvalues Ay, ... A,. Then @ can be decomposed

into a sum of matrices of rank 1 like this:
n
Q = Z )\kvkvg.
k=1
Since the vectors are orthogonal,

n
t t T
Q = Z Ak’l)k’l)k ,
k=1

n
M'=D'Q'D=11+» MD 'uuw{D
k=2
where II;; = m(j). This means that M* converges to II as quickly as the remaining terms

with factors A! tend to zero. Finally, we estimate the mixing rate:

IPAG) — 7(5)| = l(esMY); — ()| = (Zxavkvz %) < Dl %
k=2 ij

where \; is the eigenvalue of second largest absolute value. Therefore the mixing rate is at
most |A2| (and this bound is tight). For non-bipartite and connected graphs, all eigenvalues
except A1 are smaller than 1 in absolute value, so the random walk always converges to the

stationary distribution.

Conductance

Conductance is a parameter defined in a combinatorial way which is closely related to the
rate of convergence. Suppose that B is a transition matrix of a time-reversible random walk

(mibsj = mjbji). For a subset of vertices S, we define

. o ibi >
B(5) = icsags Tl
min(7(S), 7(S))
The conductance is then
® = min ®(9).
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Sometimes, ®(S) is defined with 7(S)7(S) in the denominator. This can differ from our
definition by a factor of at most 2. This definition would represent the ratio between the
probability of crossing the cut between S and S when we are in the stationary distribution
and make one random step, as opposed to the probability of crossing the cut when we

choose two vertices randomly from the stationary distribution.

Next, we derive a relation between & and 2. (Here, A2 denotes the second largest positive
eigenvalue.) If u = D~!7 is the eigenvector for A\; = 1, we have
zT Qx yT'D?By
A2 = max ——— = max ———5—
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(by substitution y = D~1z).
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Ty=0 Y D?%y

y"D*I-B)y =Y yimi(8ij — bij)y; = Y _yimi(1 —bi) — Y giymibyj

id i2
1
= Zy?m Z bij — Zyiyj”ribij =3 Zm’bij(yi -y,
i Jj#e i#] i#j
and
y' D’y =) my;.
i
Therefore

1 — Ay = min Zi;éj mibij (yi — y;)°
7 Ty=0 23, my?

Now suppose S C V is such that

D ies,j¢s Tibij
min(7(S), 7r(§)).

We define a vector y orthogonal to 7 as

o yi=7(S) forie S

o yi=-—n(9)forie S



Then for i € S,j ¢ S, (yi — yj)? = (7(S) + 7(S))? = 1 and otherwise (y; — y;)? = 0. In the
denominator, we get Y, miy? = 7(S)n(S)? + n(S)?n(S) = 7(S)n(S). Thus:
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This is one part of a theorem which will be proved in the next lecture.

Theorem:

1
5<1>2g1—,\2§2<1>.



