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Shor’s Factoring Algorithm

1 Introduction

The factoring problem can be posed in the following manner:

GIVEN: A composite N.

FIND: An Ny such that Ny # 1, N and Ny|N.

This problem is widely assumed to be hard, even for the restricted case when N is the
product of 2 primes. Moreover, this problem forms the basis for the well-known RSA public-key
cryptosystem, hence finding an efficient factoring algorithm is of great practical interest. There
do exist subexponential (2 W) randomized algorithms for factoring. Today we will present
Shor’s quantum algorithm for factoring. We begin with some number theoretic preliminaries.

Throughout our discussion we will assume that N is odd.

2 Number Theoretic Preliminaries

It is well known that factoring can be reduced to the following problem:

GIVEN: A composite N.

FIND: An 2 such that 22 = 1(modN) and = # £1(modN).

Suppose we have found = as above. Then 2% — 1 = (z — 1)(z + 1) = kN for some k. Since
N|(z — 1)(z+ 1) while N f(z +1) and N J(z — 1), some nontrivial factor of N must divide
x4+ 1. To find this factor it suffices to find (N, 2 + 1) = the greatest common divisor of N and
z + 1, which can be done via Euclid’s algorithm in O(n?) time.

Example: Suppose that N = 15. Then 4% = 1(modN) while 4 # £1(modN) hence
(15,4 —1) =5 and (15,44 1) = 3 are both nontrivial factors of 15. |

To factor N, then, it suffices to find a nontrivial square root of 1 in Z%, where Z3% is the
group whose underlying set is {z|(z, N) = 1,1 <2z < N} and whose group operation is modN

multiplication.

Definition 1 The order of an element a in a group G, which we shall denote ordg(a) (or

ord(a) when the group G is clear from the context), is the least integer r such that " = 1¢.

Definition 2 ®(n) = [{z|1 < 2 < n and (z,n) = 1}|. (®(n) is commonly referred to as the
Fuler phi function.)

The following claim implies that if we can compute the order of @ € Z3 then we can find a

nontrivial square root of one in Z3; (and therefore factor N) with high probability.

Claim 3 Proepzz [r = ord(a) is even and a’l? # +1] > 1/4.
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Proof: Let pi'p5? ---pS» be the prime factorization of N. By the Chinese remainder theorem,
Iy = Z*el X Z* po XX Zren. Let ®(N) = 2'm and ®(pf') = 2%m; where m and the m; are
odd. By the followmg

Fact 4 Z]*Je. is cyclic.

7

we can fix generators ¢q,...,g, of Z;el,...,Z;en respectively. Then choosing a €r Z%; is
1 n
equivalent to choosing z; €r {1,2,...2%m,;} independently for 1 < i < n (by letting a =
(911052, -y gin) € Ty X ZFey X oo o X Z5ey).
P1 Py Pn

The following two lemmas together yield our claim:

Lemma 5 Prye,zz [r = ord(a) is even | > 1/2.

Proof: The order of a in Z%; is the LCM of the set {zl;ml , 2/2my s 2 ma }. Notice that since
1 T2 Tn

N is odd, each p; is an odd prime and thus ®(p;’) is even and [; > 0. Thus if any of the z,

is odd then this LCM must be even. Since each z,, is chosen at random this probability is at

least % []

Lemma 6 Pr,c, 7, [a"/? # 1|r = ord(a) is even ] > I

Proof: Fix a and r = ord(a). a’/? is the element [] g} /2,

roots of 1, namely £1, in each Z* ; (this follows easily from Z* b cyclic), and thus the only square
roots of 1 in Z3 are of the form (:I:l +1,...,41), with 1 = (1 1,..1)and -1 = (—1,-1,...—1).
We know that the g;*" "2 are not 1dentlcally 1 since then r would not be the order of a.

Thus we need merely to bound the probability that the gfir/z

Note that there are only two square

are all —1. The only way this
can happen is if for each ¢ the highest power of 2 dividing a;r is ;. Suppose we have chosen
x1. Let k be the highest power of 2 dividing z;. In order for gflr/z to be —1 the highest power
of two dividing r must be [y — k£ > 0. The probability of choosing x5 so that the highest power

wor /2

of 2 dividing it is exactly Iy — ({1 — k)(and thus g, = —1) is less than or equal to 1/2, as

desired. [] []

3 Simplified Quantum Algorithm for determining the order
of a € Z}

Suppose we are given N and a random modN residue a. We wish to find r = ordzy (a).
Suppose further that we have been given an integer ¢ such that r|¢. (Our quantum algorithm
will involve a Fourier transform over Z,. The assumption that r|¢ allows us to see the idea of
the algorithm clearly-later we will show how to drop this assumption in exchange for a more

complicated algorithm).
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Algorithm 7 Qur initial superposition is:

IN > |a > |0modq > |0modN >

Performing a fourier transform over Z, we obtain:

1
— [N > |a> Y [zmodg > |0modN >
\/a TE€EZy

By a classical computation we get:

1
—IN > |a > Z |zmodq > |a*modN >
\/a TE€EZy

Now we measure the value a®modN without disturbing the other bits on the tape. Let a* be
the observed value of a*modN. Our superposition will then collapse to the following:

1
——|N > |a > |a"modN > Z |zmodq >

Vv q/T‘ r€Zqx=Ilr+k

In other words, we obtain a uniform superposition over some coset of < r > (the subgroup of

Zy generated by r). Applying another fourier transform over Z, we will then obtain a uniform

superposition over Zq_.
<r>c

1 lg
—|N > |a > |a*modN > Y= >
\/F {=1tor

When we observe at this point we will see lq/r for a random | between 1 and r. With
significant probability (I,q) = 1 in which case (q, l7q) =1
We can compute (q, 17‘1), divide q by it, then check to see if this is truly the order of a. If so

we are done, if not we can repeat the algorithm.



