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How sensitive is a quantum computer
to small perturbations?

While building quantum circuits for the different problems we have seen so far, we often
assumed that we have access to arbitrary rotation and/or phase change gates. This seems to
call for infinite precision in the implementation of such gates, which is clearly an unrealistic
demand. (From the computational perspective, however, arbitrary precision would be very
useful—we could smuggle in more computational power through it. For example, Adleman
shows how we can factor in deterministic polynomial time if we could do infinite precision real
arithmetic in a single step of computation.) The question that arises then is whether we can
approximate the gates used in our quantum circuits with finite precision ones, and yet expect
them to work almost as well. Fortunately, as we will see in this lecture, quantum circuits are
quite robust against such approximation. In fact, we will show that a computation that runs
for T' steps needs no more than O(logT’) bits of precision in the gates involved.

This robustness against small errors, however, also seems to limit the power of quantum
computers. Consider the following problem. We are given a black-box subroutine to compute
a function f:{0,1}" — {0,1}, and the goal is to find an input z such that f(z) = 1. We could
think of f as a formula over n variables, in which case the problem becomes just a reformulation
of the satisfiability problem. A natural question to ask is whether we can exploit the exponential
“parallelism” that a quantum computer affords to search for a solution z efficiently, given access
to the function f. It turns out that any quantum algorithm must take at least 9(2”/2) steps in
the worst case in order to solve this problem. The reason, as we shall see, is essentially the one
mentioned above: the inability of a quantum machine to “detect” small perturbations. This
result is a clear indication that quantum parallelism alone cannot yield an efficient solution to
an NP-hard problem; one would necessarily have to exploit additional structure inherent in
the problem to be able to beat the lower bound.

Remark: The lower bound of 2"/2 also happens to be tight up to a constant factor. This
surprising result is due to Grover, who discovered an algorithm for the case when there is
exactly one z such that f(z) = 1 (which happens to be the hardest case). We will see this

algorithm in a later lecture.

1 Perturbed computations

Suppose we wish to set up a superposition [¢) € C?", but the quantum circuit we have only
produces a superposition |¢)") which is e-close to |1), i.e., is at distance at most € from [¢) in
the Ly norm. Could the circuit still be of any use? It could, if the distribution D (|+)’)) resulting
from measuring |¢') is sufficiently close to D(|¢)). For example, if || D(|2")) — D(|4)) ||; < 6,

then the chances of noticing the difference in much less than 1/§ runs of the circuit are very
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small. The distributions are indeed close if 1) and |4} are close as vectors in C?". More

precisely, we can show the following:

Lemma 1 If || [¢) — [} Il, < ¢ then || D(¢/) ~D(¥) ||, < VZe.

The proof of this lemma is left as an exercise.

Now consider a computation consisting of 1" steps, involving the application of the (uni-
tary) transformations Uy, Us, -+, Ur to a superposition |¢g). Suppose, instead, that we use
“perturbed” unitary transformations U] to carry out the computation. Can we expect the cir-
cuit constructed out of these to still work reasonably well? It turns out that due to the unitary
nature of the transformations involved, the errors generated by the perturbations are not mag-
nified as the computation proceeds; they accumulate only additively! To see this, consider the
following 7'+ 1 transformations obtained by composing, for the ¢th transformation (0 < ¢ <7,
U; at the jth step for j <4, and then U]‘ for the time steps j > ¢. Let [¢;) be the result of
action of these T'4 1 transormations on the superposition |¢g). (The different computations

are shown below.)

Step
1 U{ U1 U1 U1 Ul Ul Ul
2 U, U, U, v, --- U, U, U,
3 U; U; U; Us Us Us Us
4 Uj Uj Uj Uj U, U, U,
T-2 U%_Q U%_Q U%_Q U%_Q Ur_, Ur_o Ur_s
-1 Uroy Uroy Uy Upy -0 Uply Ur-1 Ura
T Ur Ur Ur Ur Ur Ur Ur
Result [Yo) 1) ) Is) - [Wro2) [Yr-1) Y1)

Notice that since all the operations involved in the computation are unitary,

[ [ip1) = [0 Il = || Up-- Ul qUigrUs - - -Utlgo) = Up - - - Ul Ul U - - - Uyl o) ||
= || U/T z'/+2(Ui+1 - z'/+1)Ui“‘U1|¢0> ||
= +1 — Vit 7 )
| Uity = Ulp1)l94) ||

where |¢;) = U, ---Uy|¢g) is the superposition we expect to get if the correct transformations

are applied. This implies that (going via the triangle inequality)

Hr) = oy I < >l [dhign) — [w0a) ||

0<i<T
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= i+1 = Uia)16i) || (1)
2w,
0<i<T
In other words, at each stage, if we employ a perturbed tranformation in the place of another
transformation, we can assume that we are working with intended tranformation for it, and

just add a correction term (the corresponding error) to our result.

2 Errors in defective circuits

Define the norm of a linear operator A as

def
Al = max [[Av]l.
villvli=1

We can specialize the result summarized by (1) to the case when the transformations U] are
close to the U;’s in the sense that || U/ — U; || < é. In this case, the net error in the computation
amounts to at most 6 7', since each correct superposition |¢;) has norm 1.

Suppose each transformation U; is a basic rotation by 6 gate (or a conditional phase change
gate with the same parameter), as is the case in a circuit that we may like to implement,
and suppose that U; is approximated by a rotation by # + 66 gate U/. For any unit length
vector v € C?", we then have || Ulv — Ujv|| < 6. So the T steps of computation lead to
an error of at most 67 in the final superposition, i.e., an error of at most v/2380 7 in the
corresponding distributions. To make this smaller than a given ¢, we need 66 < ¢/\/27T. This
means that we need the only O(logT') bits of accuracy in the specification of the angle for any

gate in the circuit.

3 A lower bound for the search problem

As mentioned earlier, the robustness of quantum circuits against small perturbations (reflected
in (1)) also seems to limit their computational power. Recall the search problem introduced
earlier: given a boolean function f of n bits, find an z such that f(z) = 1. We can show
that, in the worst case, any algorithm must take 9(2”/2) steps to locate a solution string with
probability at least a constant p > 0.

Suppose algorithm A solves this problem in T steps. l.e., with probability at least p, it finds
a solution for every n variable function in 7" steps (if such a solution exists). We will test A on
the function fu = 0 and construct a function f such that f is non-zero on a unique string o,
and the algorithm A performs badly on input f. The string x¢ is in fact the one at which A
probes f the least during its run on input fy.

Let oy, be the amplitude with which A evaluates fy at y at time step ¢. Let xo be such that
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ay =3 vy |? is minimized. We know that >, @y < T, and therefore, a,, = min, a, < T/2".

Now consider the function f which is non-zero only at zg. We will show that the algo-
rithm A takes at least 9(2”/2) steps to locate zg when it is given f as input. Consider the
run of the algorithm on input f. We can view the T actions U/ of A as perturbations of its
actions U; on input fo. The distance between the superpositions |1g) and |¢1) resulting from

the runs on f and fy respectively is then given by (1). Now, for each 0 < i < T, notice that
|| (Ui+1 - Uz'/—|—1)|¢i> || < \/§|ai7l’0|7 so that

[ 1or) = [} I < V23l

Since ay, = Yilaim,? < T/27, the sum Y, |aiz,| can be at most T/2%/% (when all the
amplitudes are equal to 1/2”/2). So we get

T

Ilér) = o) | < Vg7

But A must (or can be modified to) distinguish between the two distributions D (1pg) and D (¢7)
by at least p. This implies, by lemma 1 above, that

5 T
on/2

p < [[Do) =Dr) Il <

which translates into an exponential lower bound of (p/2) 2"/2 for T.



