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I[I. Quantum Gates and Circuits

1 Quantum gates

Changes occurring to a quantum state vector can be modeled using a quantum circuit, composed
of wires and elementary gates, much as normal electronic circuits are used to describe electrical
and mechanical systems. We describe a basic set of quantum gates which are useful, and present
several examples illustrating their application, including a circuit which attempts to copy, and
a circuit which teleports qubits.

1.1 Single bit gates

Consider the class of single bit gates. Classically, the only non-trivial member of this class is
the NOT gate, whose operation is defined by its truth table, in which 0 — 1 and 1 — 0.
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Figure 1: Single bit and qubit logic gates.
There is also a qubit NOT gate. It is defined by its unitary operator

0y 1)

— 0 1|10
Unot - [ 1 0 ] (1)

where — much like a classical truth table — the two columns refer to the inputs (|0) and [1))
and the two rows the outputs. The transform must be unitary to preserve the norm of the
state. The interesting thing is that there are many additional non-trivial single qubit gates.

Two important ones which we shall use later are the phase shift

1 0
Us=<0 _1>, @)
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which leaves |0) alone, and only flips the phase of |1) to give —|1), and the Hadamard gate

1 1 1
H:ﬁ<14>. ®)

This gate is also known as the “square-root of NOT” gate, and its action can be visualized as
being similar to rotating the qubit sphere about the ¢ axis by 90° (Fig. 2)' . This shows how
a definite state like |1) can be transformed by H into the superposition state [|O> - |1>] /V2,

which gives 0 or 1 with equal probability when measured along the computational basis.

1)

Figure 2: Visualization of “4/NOT” logic gate on the qubit sphere.

In general, there are infinitely many single qubit gates, all of which can be generated from

rotations,

(4)

cosf —sinf
UR(O) = ( ) )

sin @ cos 6

and phase shifts,

et 0
Up(¢1,p2) = < 0 ot > : (5)
Mathematically, single qubit transformations are described by SU(2) matrices. It is important
to note that although a continuous range of rotations is possible in principle, for quantum
computation, only finitely many rotation angles are necessary. It has been shown that a single
rotation of nearly any angle is sufficient to allow efficient generation of an arbitrary qubit

rotation angle to a precision good enough for the known quantum algorithms to work.

!Mathematically, this looks like a 45° rotation; however, in the Bloch sphere picture we use here, the conven-
tion is that R(A, ) = exp(if i - 7/2).
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Bloch’s Theorem
According to Bloch’s theorem for solid body rotations in three dimensions,
any arbitrary 2x2 unitary matrix may be written as

1o} S iB
_ vl e 0 cosf isinf e” 0
v ¢ l 0 e @ l l 1sinf  cosf 0 e P (6)
_ eiveioz(rz ei90m eiﬂaz , (7)

where v, a, 0, and 3 are real-valued, and o; are the Pauli matrices,

0 1
0y = (2 ‘é) 9)
1 0

All single qubit operations may conveniently be expressed in terms of spinor
rotations. For example, Ur = exp(mio,/4). This will later be useful in
connecting such transforms with physical Hamiltonians.

1.2 Multiple bit gates

What can we do with multiple bits? Of the class of multiple bit classical gates, two notable
ones are the AND and XOR (exclusive-OR) gates (Fig. 3). An important result of the theory
of Boolean algebra is that any Boolean function can be realized from the composition of AND
and NOT gates alone, and they are thus said to form a universal set of gates. It is interesting,
however, that the XOR alone is not universal (it leaves the parity invariant).

The quantum-mechanical analog of the XOR gate is known as the controlled-NOT or CNOT
gate. This gate is particularly different from the classical two bit gate, however, in that it
has two outputs. This is necessary because all quantum logic gates must be reversible logic
gates[FT82, Ben82, Per85] \We shall return to the subject of reversible logic later when we discuss

functions. The key observation here is the following:

Theorem 1.1: Any multiple qubit logic gate may be composed from CNOT and single
qubit gates.

Proof: See [BBC195].0

This is one of the most striking results about quantum logic gates, since there exists no universal

two-bit reversible classical logic gate.
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Figure 3: Multiple bit and qubit gates. The basis elements for Uqcy are |00), |01), |10), and
|11), from left to right and top to bottom.

2  Quantum Circuits

We shall find it useful to use quantum circuits as natural extensions of classical circuits. These
consist of quantum gates interconnected without fanout? or feedback[BBc+95], by quantum
wires. Each wire represents the path of a single qubit (in time or space, forward from left to
right), and is described by a state in a two-dimensional Hilbert space with basis |0) and |1).

Aside from the single and multiple qubit gates already introduced, another useful class
of gates is shown in Fig. 4. These controlled-operation gates are natural extensions of the
controlled-NOT, in which one qubit (labeled by a black dot) serves as the control and the
remaining qubits are the targets. Only when the control qubit is 1 will the operation be
performed on the target. We will return to such circuits later when we study Kitaev’s quantum
algorithm.

We shall find quantum circuits useful as models of all quantum processes, including but not

limited to computation and decoherence. Several simple examples illustrate this below.

2.1 Qubit Copying Circuit?

The CcNOT gate is useful for demonstrating one particularly unique and fundamental property

of quantum information. Consider the task of copying a classical bit. This may be done using

2Fanin and fanout are electrical engineering terms which refer to the joining and branching of wires. Sometimes
n wires are joined together; this provides a “wired-or” and is known as a fanin of n. Also, often logic device
outputs drive n wires with the same signal; this provides broadcasting, and is known as a fanout of n.

4
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Figure 4: Controlled quantum operations. The gate on the left is a controlled rotation operation,
and is denoted as A(R). Similarly, the controlled (multiple-bit) unitary operation on the right
is A(U).

an XOR gate, which takes in the bit to copy (in some unknown state z) and a “scratchpad” bit
initialized to logical zero (Fig. 5). The output is two bits, both of which are in the same state

Z.
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Figure 5: Classical and quantum circuits to copy an unknown bit.

Suppose we try to copy a qubit in the unknown state ) = a|0) + b |1) in the same manner

by using a OCNOT gate. The input state of the two qubits may be written as
[410) + b[1)] ® [0) = a]00) + b]10), (11)

where ® is the usual direct (Kronecker) product. The function of CNOT is to negate the second
qubit only when the first is one, and thus the output is simply |out) = @ |00) + b|11). The two
qubits are now in the same state! However, consider what happens when we measure one of
the qubits. As previously described, we obtain either 0 or 1 with probabilities |a|? and |b|?.
However, once one qubit is measured, the state of the other one is completely determined, and
no additional information is gained about ¢ and b. In this sense, the extra hidden information
carried in the original qubit |1)) was lost in the first measurement, and cannot be accessed twice.
This means that in fact, the hidden information has not been copied! Fundamentally, this

property, that qubits cannot be copied, is known as the no-cloning theorem[WZ82, Die82, Per93]
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No-Cloning Theorem

Theorem 2.2: There does not exist a unitary transform U such
that

UL)|0) = [9)]4) (12)

for arbitrary [1).
Proof: Suppose there exists U such that

Ulp)l0) = [9)[4) (13)
Ulp)l0) = 9)l¢) (14)

for arbitrary ¢, ¢. U would represent a quantum cloning machine
if this were possible. However, unitarity implies that

(¥16)(0[0) = (¥|d)(Pl¢) (15)

but this may be violated by choosing

0< (Plg) <1. (16)

Thus, such a U may not exist.

This result can be extended to include non-unitary transforms
(arbitrary quantum operations) as well; see [BCFT96].

Although the two qubits in |out) appear to be identical, they are not independent copies
of [¢). Rather, they are two entangled qubits, which together carry only one qubit of quantum
information. There is no classical analog to entangled states; in the extreme limit, they are
non-separable states which have observable properties that violate predictions of theories of
local classical physics (Bell’s inequality). Entanglement is a fundamental property of quantum

systems, and is essential to the operation of a quantum computer?.

2.2 Example: EPR Pairs

Let us now consider a slightly more complicated circuit, shown in Fig. 6, which has a Hadamard
gate followed by a ¢NOT. This circuit transforms the four classical basis states as given in Ta-
ble 1. Note how this works: first, the Hadamard transform puts the top qubit in a superposition;
this then acts as a control input to the cNOT, and the target gets inverted only when the control

is 1. The states |¥*), |®*) are known as the Bell states, and will later be important as we

3To be precise, it can be shown that no exponential speedup can be achieved by a quantum algorithm without
using entangled states. An important open question is exactly why entanglement is important, and how it should
be used for computation and communication.
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In ‘ Out

00 | |00) + |11) = |TT)
01 | |01) —|10) = |P )
10 | |00) — |11) = |¥ ™)
11 | |01) + [10) = |®T)

Table 1: Quantum “truth table” for EPR circuit. The v/2 normalization in the output states
is supressed for clarity.

study entanglement of qubits.

a{at e

B &— B’

Figure 6: Quantum circuit to create EPR pairs

2.3 Example: Teleportation

In 1993, Bennett, Brassard, Crepau, Jozsa, Peres, and W. Wootters reported a new discoveryBBC93];
a theoretical technique by which an unknown quantum state can be transmitted using only a

few bits of classical information. This ability to perform “quantum teleportation” comes about
because of the properties of entanglement between quantum states. The following scenario
describes how it works. Alice and Bob met once long ago, but now live far apart. While they
were together, they generated an EPR pair, and each took one qubit away. Now, many years
later, Bob is in hiding, and Alice needs to deliver a certain qubit |1) to him. She does not know

its state, and moreover, is allowed to send only two classical bits of information to Bob. How

can she do this?

Here is the solution in brief: Alice will interact |¢)) with her half of the EPR pair, and then
measure the two qubits. She will obtain one of four possible classical results, 00, 01, 10, and
11, and send this information to Bob. Depending on Alice’s result, Bob will perform one of
four operations on his half of the EPR pair, and thus obtain |¢)). This happens because of the
entanglement provided by the EPR pair.

The quantum circuit shown in Fig. 7 implements this teleportation scheme. The input state

|4o) is

o) = (a]0) +pB(1))|27) (17)
7
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Figure 7: Quantum circuit for teleporting a qubit

::%hwmwmwwwmwmw. (18)

Note how the least-significant bit (the rightmost one) belongs to Bob, and the two others to
Alice. Alice sends her bits through a CNOT gate, obtaining

wnzgﬁhmmmwwn»+mnmw+mnﬂ. (19)
She then sends the first qubit through a Hadamard trasnform, to get
[92) = 5 [(10) + [1))(100) +[11)) + B(10) — |1))([10) + Jo1))] (20)

This state may be re-written in the following way, simply by regrouping terms:

[100)(2]0) + BI1)) +[01)(@]1) + BJ0)) + [10)(@|0) = BI1)) + [11)(e]1) — BlOY)] . (21)

DN =

|12} =

Alice then measures her two qubits, obtaining four possible results, and their corresponding

post-measurement states,

00— [5(00)) = —= [al0) + 5I1)] (22)
01— 1s(01)) = == [al1) + 510 (23)
10— [9s(10)) = —= [al0) — A1) (24)
o (1) = == [al1) = 4] (25)

Bob’s qubit thus collapses into four possible states — and when he receives the two classical bits

Alice sends him, Bob will know what has happened, and can apply the appropriate transform
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om,n, to fix his qubit, and obtain the final output state

|4) = |0) + B[1) (26)

which, as desired, is the unknown qubit that Alice wanted to send.

3 Summary

We have learned that qubits admit many more interesting logic gates than do classical bits.
In particular, because of the richness of possible single qubit transforms, the quantum analog
of the XOR gate, the controlled-NOT gate, together with arbitrary single qubit operawtions
forms a universal set of gates. That is, any transformation on a quantum state vector can be
accomplished by cascading these gates. Furthermore, although any classical function can be
implemented with quantum bits, a much wider variety of transforms is also possible. That will

be explored next time.
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4 Problems

1. Fun with controlled-NOT gates: What does the following circuit do?

/4 A
A\

How about this one?

2. Controlled-rotation gates: This gate,

rotates the target (lower) qubit by R, (6) (angle § about the Z axis, if the control (upper)

qubit is |1), otherwise it does nothing. The unitary transform can be written in matrix

form as
10 0 0
0 1 0 0
A1 (R (0)) = P (27)
0 0 «cos 5 ising
0 O ¢zsin g cos g

Show how this gate can be implemented using two controlled-NOT gates and two single

qubit rotations.

3. Hadamard gates: How can one construct a Hadamard gate, Eq.(3), from rotation gates
Ur(0), Eq.(4), and phase shift gates, Up(¢1, p2), Eq.(5)?

4. Basis transformations: Unlike ideal classical gates, ideal quantum gates do not have
high-impedance inputs. In fact, the role of “control” and “target” are arbitrary — they
depend on what basis you think of a device as operating in. We have given the truth
table for a cNOT and shown how the control qubit does not get changed in the classical
00, 01, 10, 11 basis. However, in reality, the control qubit does change: its phase is flipped
depending on the state of the “target” qubit! Show that

10
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5. Pauli Matrices: The Pauli matrices o, o,, and o, are very important in the mathe-
matics of quantum computation, because they are generators for the group of single-qubit
transformations. Mathematically, this is the SU(2) group, of 2x2 complex unitary ma-

trices (those for which (MT)* = Mt = M~!) with determinant +1, which describe solid

body rotations in three dimensions.

a. Using

0 1
ax=<10> 29
W= {(07) 29

and recalling that

iIAM (iA)* k
e — Xk: M (31)
show that
. 0 isinf
Ry(20) = %= = | 7 T (32)
i8inf  cosf
. 0 sinf
R,(20) = ¢f7r = cosv S (33)
—sinf cosf
) 0+ isinf 0
R.(20) = pilos  _ cost + 1 s1n N (34)
0 cosf — isinf

It is useful to note that o2 = I, the identity matrix.

b. Suppose you want R.(f), but only have gates which perform R,(7/2) and R,(6).

Show how to compose these gates to accomplish the desired rotation.

c. The Pauli matrices have wonderful commutation properties which are important in
their role as the generators of SU(2). Show that

O30y — Oyogy = 210, (35)

11
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Oyo, — 0,0y = 2i0, (36)
0,04 — 0,0, = 2i0y. (37)

Also show that
0;05 + 0;0; =0, (38)

for 7 # j. These commutation and anti-commutation relations are fundamental to

the Lie Algebra for SU(2). They are often written concisely as

[0i,05] = 2i€,0% (39)
{oi,0;} = 28I, (40)

where €;;;, is a totally antisymmetric pseudovector known as the Levi-Civita symbol.

6. The Bloch sphere: The state of a qubit can be visualized as being a point on the unit

sphere in three dimensions. Specifically, any qubit can be expressed as
0 - 0
cos 5 |0) +e“¢’sin§ 1), (41)

where 0 and ¢ are the angle subtended from the Z axis and the angle in the Z — ¢ plane
from the # axis — the usual spherical coordinate system. The reason this identification is
useful is because it provides an isomorphism between single qubit operations, U(2) and

solid body rotations, O(3). This can be understood from the following exercise.

a. Calculate the eigenvectors of 0., 0y, and o,. These represent qubit states; what
points do they correspond to on the unit sphere?

b. What does R, (6) do to the state (|0) + |1))/v/2?

c. Show that ¢9/2 where 7 is a real three-dimensional vector, and & = OpT+oyy+0,2,

is a rotation about the vector n = 7i/|7i|, by the angle |7|.

7. Odd Angles: Suppose you wish to perform a rotation R, («), where « is a given arbitrary
angle, but you have only the single gate R, (6), where
27

k

Show that by cascading O(n) of these gates, you can construct a rotation gate whose

angle comes to within O(1/poly(n)) of c.
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