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IV. Reversible Computation

1 Reversible Computation

It is interesting to note that all the Quantum gates we have studied are reversible. Indeed, the
Hadamard gate and the controlled NOT gates are their own inverses; the rotation gate Rg has
the inverse R_g, while the phase shift gate P(¢1, ¢2) can be inverted by the gate P(—¢1, —¢2).
This is not by chance, but because the laws of quantum mechanics require the evolution of the
state vector to be unitary and therefore time reversible.

Now, suppose we restrict our quantum circuits so that the state of each wire is either |0) or
|1), but never a non-trivial superposition, then the circuit reduces to a classical circuit — with
the additional constraint that it is time reversible. So, a priori, it is not even clear that quantum
circuits are as powerful as classical circuits. Fortunately, the power of reversible computation
had already been studied in the context of inherent bounds on the amount of heat dissipated
in a circuit. In an early paper, von Neumann had made the comment that it was clear from
thermodynamic considerations that each step of computation requires the dissipation of £T
units of energy. Bennett analyzed this assertion more rigorously and concluded that energy is
dissipated only while erasing information, not while computing with it. Furthermore, he showed
how any classical circuit or Turing Machine could be simulated efficiently by a reversible circuit

or Turing Machine. These constructions are the topic of this lecture.

2 Reversible Classical Logic Circuits

Reversible logic circuits can be built using Fredkin gates (see figure 1). This gate has 3 inputs:
the third input ¢ is the control and ¢’ = ¢. When ¢ is set to 1, then the first two bits # and
y are swapped, else they are left untouched. Clearly this is a reversible gate. To see that this
gate is universal, note that if the z is set to 1, then 2’ = y A z, thus simulating the AND gate.
If # =0 and y = 1, then 3’ gives us —¢, while 2’ gives us another copy of ¢, hence giving us
both the NOT and FANOUT gates.

Clearly, any classical circuit C' can be simulated by a reversible circuit C). of Fredkin gates,
albeit with the added presence of some clean 0 and 1 inputs. Further, if the size of a circuit
is measured by the number of wires in it, then C, is larger by no more than a constant factor.
However, along with the required function output, we get some extra outputs (which we shall
call “the junk”).

But is the junk necessary 7 Clearly, We will have some number of extra output bits if the
number of (real) output bits is less than the number of input bits. To circumvent this problem,

we instead try to implement the circuit for the function « — (2, f(2)), and re-ask the question.
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And it turns out that we can indeed avoid the junk in the output, and this is done as in figure
3.

We compute C, as before, getting y = f(z) and the junk. Then we make a safe copy
of the output y, and then feed one copy of this along with the junk into the inverse circuit
C71. This gives us back some clean bits along with . Thus we have managed to perform the
transformation

(clean bits, z) — (clean bits, z, f(z)).

Henceforth, we shall ignore the presence of the input clean bits which are again output as clean
bits (even if they are transmuted within the circuit).

It turns out that we can do better in certain cases. If f is a bijection, we can compute
f~!. This allows us to do away with the artificial device of going to the auxiliary function
z +— (z, f(z)). Instead, we just consider the two circuits: first C'y, which performs the map f,
i.e.

(clean bits, z) — (z, f(2)),

and the circuit C'y—1 for 1
(clean bits, f(z)) — (f(z), z).
It is a simple task to piece together C'; and ij_ll (the inverse of C'y—1) to get the map
(clean bits, ) — (clean bits , f(z)),

or with our assumption of ignoring clean bits, z — f(z).

3 Reversible Turing Machines

A k-tape deterministic Turing machine is given by an alphabet 3, a set of states ¢, and a
transition function & : Q x ¥ — Q x ¥* x {L, R}*, which is a map from the curent state and
the symbols being read on the tapes to the new states, the new symbols to be written on the
tapes and the direction of motion for each of the k£ heads.

The fact that § is a function implies that each configuration has a unique successor and that
the machine is deterministic. For a reversible machine, we require that each state should have
a unique predecessor, or in other words, any previous state of the computation can always be
reconstructed given a description of the current state.

To get a reversible computation of z — (z, f(z)), we add another tape to our TM which
we refer to as the history tape. Now whenever we want to make a move on state ¢ and tape
symbols (a1, az, ..., ax), we do two steps: we first write down this information onto the history

tape (we shall assume that our alphabet is expanded to allow this to be written down as a single
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symbol). Then we read this symbol from the history tape and perform the action according to
it. Thus the history tape is a record of all the actions performed by the TM and can be used
to undo the changes.

It is easy to see that the above process is reversible, and that we can safely talk about the
reverse computation. Thus the actual computation (without any junk being produced) involves
performing the steps described above, making a copy of the output f(z) and then performing
the reverse computation to get rid of the junk.

Note that the entire computation can be performed in O(7T') time, if the original irreversible
computation was done in T time. However, we are losing a lot in terms of space, with the

requirement going up from S to O(S + T') space.

3.1 Reducing the Space Overhead

We can actually do better using a very elegant simulation technique, which requires O(7T17¢)
time but only O(SlogT) space. Noting that any non-looping computation takes time 7" < 25
we can always simulate any TM by a reversible one in O(S5?) space.

The idea is this: suppose we simulate only the first half of the computation, save the
configuration C' (which consists of all the information on the tapes, the positions of the heads
and the state of the machine) and clean up. Then starting from this saved half-way configuration
C', we complete the run, save the result and undo everything back to C'.

At this point, however, we do not have the information to roll back to the start. Thus we
start the computation from the beginning again, reach C, erase the previous version of C' (which
is same as making a copy), and roll back to the beginning. Note that the space requirement has
been almost halved (since we could re-use space) at the cost of doing 1.5 times as much work.

We can now recurse on each of the halves, which gives us even better results. In fact, the
space requirement satisfies Space(n) = Space(n/2) 4+ 5, giving us Space(T) = O(SlogT).
However, the recurrence for the time required is Time(n) < 6Time(n/2) + O(n), which gives
Time(T) = T8,

To get running times which are arbitrarily close to 7', we have to modify our procedure
slightly, breaking up into k parts intsead of 2. This would give us Time(n) < 4kTime(n/k) +
O(n) and thus Time(T) < T'8: 4 with a space requirement of kSlog, T. We can now pick

suitable values of k& depending on the space-time tradeofl desired.
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T — x
c d=c
Figure 1: The Fredkin gate
—— = Oyt
T = Cr ——
Clean=—] — Junk
Bits — — Bits
Figure 2: A reversible circuit
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L — —
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Clean— Y —— Clean
Bits —— —— Bits
Clean Output
0’s > y
Figure 3: Computing z — (z, f(z))
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Figure 4: Computing a bijective function f



