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Vazirani class
Lecture #7 (Tuesday, September 16)

1 The problem

We use the finite field Z2. For x,y € 72

n?
and x -y denotes the inner product (3 ,y;mod2).
Input for Simon’s algorithm is a reversible circuit C'y computing f : Z2 —

Z2% such that

x + y denotes the bitwise addition

(a) f is one-to-one or

(b) f is two-to-one and there exists u such that f(z) = f(x + u) for all
T € Z.

Simon’s algorithm determines whether f satisfies (a) or (b) and, in the second
case, finds u.

2 Efficient quantum algorithm

Simon’s algorithm uses a following quantum circuit.
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Figure 1: Simon’s circuit



Claim. If f is two-to-one and there is u such that f(x) = f(x + u), then
the output of the circuit is y such that y - u = 0. Moreover, y is uniformly
distributed over all such y.

Simon’s algorithm runs this circuit n — 1 times and obtains n — 1 vectors
yM, y@ gD If all n — 1 vectors are linearly independent, they give
a system of linear equations y) - u = 0 that can be resolved, obtaining w.
After that, algorithm checks that f(z) = f(x 4+ u) for some x. If yes, f is
two-to-one with this u. If no, f is one-to-one. If some of vectors are linearly
dependent, it just runs the circuit once again, until n — 1 independent vectors
are obtained.

Proof of the claim. We start by calculating the quantum state. After

Hadamard transform H,, the state is

1
o7z 2 |7):

After the circuit (Y, the state is
1
o7z 2 ) ().

Bits | f(x)) are not used after that. Hence, we can apply the principle of safe
storage:
The principle of safe storage. If some bits in a quantum circuit are not
changed after some moment, then the outcome of the circuit is the same as
in the case if these bits are measured immediately.

Let |f(z)) be the result of measuring |f(xz)). There are exactly two x
such that f(a) = f(z): one is z and another is z 4+ u. Hence, the quantum
state after measuring |f(x)) is
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If we now measure |z), we get z or z 4+ w, but not both. This would not
give much information (just a random value x € Z? and f(x)). Instead of
measuring |2}, we do Hadamard transform. After it, the state is
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Hence, if u -y = 1, the amplitude of |y) is 0. All |y) such that u -y = 0
have the same amplitude (with different signs). Hence, the output of the
measurement is a random y such that y -« =0. O

If f is one-to-one, a similar argument shows that the output of the mea-
surement is just a random y.

Next, we show that sufficiently many such vectors y give us enough infor-
mation to recover u. If n — 1 vectors y are linearly independent, the corre-
sponding system of n — 1 equations has two solutions: 0 and w. It suffices to
show that n — 1 vectors are linearly independent with a constant probability
because we can run the algorithm several times, making the probability of
success arbitrarily high.

Claim. With a probability at least i, n—1 random vectors such that y-u =0
are linearly independent.
Proof. Let y, y® ...y be the vectors. There are at most 2~! vectors

D

that are linear combinations of y), y®, ... y=1. Hence, the probability

that y® is linearly independent from y, y, ... y(=Y is

2n—1 o 2i—1 1
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The probability that y™"), @, ..., y*=Y all are linearly independent is just
the product of these probabilities:
1 1 1
1— 1— o (T=2).
( 2n_1 )( 2n_2 ) ( 2)

We evaluate the probability that some of ™), ¥, ... y(=2) are linearly
dependent. It is at most
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Hence, y', y®, ..., y©=?) are linearly independent with probability at least %
and y~Y is linearly indepedent from them with probability % This implies
that the probability that all vectors are linearly independent is at least i. a

By running the algorithm several times, the probability that we do not
find u can be made polynomially small.

If f is one-to-one, we will get n — 1 independent random vectors y but y
will be uniformly distributed over all Z2. Similarly to previous case, we will
get n — 1 independent y with high probability. Again, the system of linear
equations will have two solutions: 0 and some u. However, there will be no
such x that f(x) # f(x + u). By checking f(x) # f(x + u) we discover that
u is wrong. This implies that f is one-to-one because all other possible u are
ruled out by conditions y - u = 0.

3 Lower bound for probabilistic algorithms

We prove that any probabilistic algorithm needs an exponential time to solve
this problem. Further, we assume that f is two-to-one and prove a lower
bound on the time needed for finding u. This proof can be easily modified,
proving a lower bound for the original problem.

We first give an informal argument and then make it precise. To find u,
we need to guess y and y + u, to compute f(y) and f(y 4+ u) and to check
that they are equal. The search space consisting of possible y and u is very
large and, hence, this search requires lots of time.

More formally, we apply Yao’s lemma:

Yao’s lemma. Assume there is a probability distribution D on all possible
inputs such that no deterministic algorithm running in time 7" gives a correct
answer with probability at least p when the input is drawn from D. Then,
there is no probabilistic algorithm running in time 7" with a probability of
correct answer at least p.

The hard probability distribution is very natural. w is chosen uniformly
at random from all nonzero elements of Z2. This divides elements into pairs
(2,2 +u). Pairs are mapped randomly to elements of Z? so that no two pairs
are mapped to the same element.

After m steps, a deterministic algorithm has computed at most m values
of f. Let these values be f(z(")), f(z@), ..., f(z)). These values give

algorithm two types of information:
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The probability that f(z®) + f(z*+V) =« for some i € {1,...,k} is at
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because there are at least 2" — 1 — (5) possible values of u. Taking the sum
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(W), (@), ..., f(z®) are all different. Then u is none of
N+ f(29)). Tt can be proved that all other values are equally
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over all k € {1,...,m}, we get
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Hence, under this distribution, any deterministic algorithm running in ex-
ponential time m = 20/2797 has exponentially low probability of correct
answer. By Yao’s lemma, this implies the same bound for probabilistic algo-
rithms.



