1 Fourier Transformations and Simon’s Algorithm

1.1 Definitions

We are going to give a fairly general overview on Fourier-Transforms applied
to quantum computations.

To do this, we start out with an abelian Group G which for our purposes
is finite. Let g denote the group operation of G. Then we obtain a complex
vector-space V in the following way: Take the elements of G as a basis for
V and let v € V be the formal complex linear combinations of these basis
elements, which we denote

v= Y aglg)ac C).

geG

Clearly the dimension of V' is the group order of G (dimV = |G]).

We can turn V into an algebra (called the group algebra of G and denoted
C@) by defining a multiplication among elements of V:

Multiplication by an element of the basis:

(Z aylg)) * |gl> = Z ylg *a gl>

9eG geG

extending this linearly in the obvious way.

Let’s assume that V' has an inner product so that {|g) : ¢ € G} is an or-
thonormal basis. Then we want to define the Fourier Transform (FT) of
V' as a linear transformation having the following property:

o FT maps {|g)} to an orthonormal basis {|W¥,)}

e the new basis is G-invariant, i.e. if

FT o) = [0) = 3 By|W)
geG

FT o) ¢ |g) = [Woug) = Zﬁmj
gedG
then |3,] = |B8;| Vg € G i.e. the probability-distribution on the new

basis is invariant under the group-action of .

Thus we have the following properties of the Fourier-basis {|U,)}:

(1) Multiplication of |[v) € V' by |g) changes the components of |v) by a
factor of magnitude 1 (G-invariance).

(2) A basis-element |g) of V has components of equal magnitude in the
Fourier-basis.

(3) We can chose an element of the Fourier-basis - |Uy) - such that every |g)
has component exactl = —L (i.e. via possibly multiplication b
P Y Po \/@ (possibly P y
a dir

a constant phase we can have
basis).

ection with phase 1 in the Fourier-

(4) The uniform superposition (ﬁ > gec |g)) is mapped to [Wy), i.e. the

other components cancel out.

(5) The identitiy in G, |e) is mapped to ﬁ Y ogec [¥y)-

(6) Behaviour on Cosets Let H < G be a subgroup of GG. Let ¢'H =
{¢’*h : h € H} be a coset of H. Then the Fourier-Tansformation
treats all cosets of H similarly in the sens that the images of FT
of uniform superpositions on the coset ¢’H for all cosets of H have
components differing only by a phase-factor, i.e. the magnitudes of
the components do not depend on the specific coset of H chosen:

ﬁ ST lg k)= S aglwy)

heH gedG

and |oy,]| is independent of the choice of ¢'.

1.2 Example

Let’s study the Fourier-Transform in the vector-space of the group G = 72 =
Zo @ -+ ® Zy. The group-operation *¢q is componentwise addition mod 2,
which we will denote + here. Let V' be the group-vectorspace C'G of GG, i.e.
all complex linear combinations of elements of G. Define an “inner-product”
on V in the following way on basis elements |z), |y) of V:

n

2) - ly) =Dz - yi (mod 2)

=1

and extending it linearly. (This is not a “real” inner-product since z -z = 0
does not necessarily imply that 2 = 0.) Now define our Fourier-Transform

to be the following map of V' into V (we have encountered it earlier as the
Hadamard-Transformation):

) =) = 5 3 (1)
ueG

Claim: This transformation is G-invariant.
Proof: Let’s compute it:

0= (3 acled) =+ 505 5 (=07 an) fo) ()

rz€G welG zeG

|v)x|y) = (Z aglz))*|y) = Z azlety) — 2n/2 Z Z x-l—y).uax) |u)

rz€G z€G welG zeG
— o Y ()T)) = s 3 (- (X (1)))
uweG zeG ueG rel@

The last expression is equal to the r.h.s. of (x) except for a y-dependent
phase. O

1.3 Revisiting Simon’s Algorithm

Let’s review Simon’s algorithm under the aspect of Fourier-Transformations.
We look at a slightly modified version where we only have on case, namely
where we have as input for Simon’s algorithm a reversible circuit C'y com-
puting f : Zy — Z3 such that

e f is two-to-one and there exists u such that f(z) = f(z + u) for all
NSVAS

Simon’s algorithm finds u. Our group G here is Z7, the subgroup H = {0, u}
of order |H| = 2. The function f is constant on cosets of H.

Now, when we perform the first FT (i.e. in this case the Hadamard-
Transformation) we get a uniform superposition on the whole group G.
Inputting this to the circuit C'y we get a uniform superposition on all the
cosets of H, together with our initial uniform superposition on G, namely
the total output of C'y will be:

W > [y @f()

€LY

To continue in our analysis we need to define Fourier-Transformations
on tensor products:
Let G = H x K be the direct product of two groups H and K. Let
{lon) : h € H} be the Fourier-basis for H and {|mx) : k& € K} be the
Fourier-basis for K.
Claim: {|o) @ |7%) : h € H, k € K} is a Fourier-basis for G.
Proof: We only have to show G-invariance: But multiplication of an ele-
ment of H x K by an element (h’, k') amounts to first multiplying by (#/,€)
(ex being the identity in K), which changes the components in the Fourier-
basis by a factor of magnitude 1 and after that multiplying by (ex, k') which
again changes the components by a factor of magnitude one. O

Let’s apply this to Fourier-transform a uniform H-superposition tensored
with an element of K (without loss of generality let this be ey, the identity
in K):

1

ﬁZ(/@,e) —

heh

> loo) @ |m).

K keK

Identifying the basis elements |7) with elements in K, which is possible in
the case of the group G' = Z7, we see, that the FT maps a uniform super-
position on a subgroup H to a uniform superposition on the other subgroup
K.

More specifically let H be a normal subgroup and K be the quotient-group
G/H. Then we have ¢ = H x G/H and the FT maps a uniform H-
superposition to a uniform G/H-superposition!

Returning to Simon’s algorithm this means that the last FT (Hadamard-
Transformation) - after safe-storage of | f(z)) - gives us a uniform superposi-
tion on the subgroup K = G/H = Z5 /{0, u}. But all elements |y) of K then
have the property that y -« = 0 which we use to determine u, performing
the algorithm several times.

1.4 Generalisation of Simon’s Algorithm - Fourier-Transformations
on 7,

We can generalise Simon’s algorithm to the group Z, and problems where we

are given as input for Simon’s algorithm a reversible circuit €'y computing
f 7, — Z, such that

e [is k-to-one and there exists a cyclic subgroup H < GG of order |H| = k
generated by an element u € GG such that f is constant on cosets of H.

We want Simon’s algorithm to find a generator u of H.

To study this problem we need to find out what the Fourier-basis of & = Z,
looks like.

The group operation on our cyclic group &G = Z, is addition modulo ¢,
denoted by + here. Let {|a) : @ = 0...¢ — 1} be the basis for the group-
vectorspace C'G. Define w = €2™/% to be the ¢ — th primitive root of unity.
Then we have the following identities for w:

l+wtw?+ 4wl =0
Ltw +wi 4o p0lt™i=0 if j#£0 (mod q)
4w +w 440V =g if j=0 (modq)

stemming from the fact that w is a root of))((q__ll =Xl X924 X 1.

Claim: A Fourier-basis for (¢ = Z, is given by

1 =t

{|¥r) = %;wk*ﬂa} tk=0...q—1}

and the Fourier-Transformation maps |k) — |¥y).
Proof: We only have to show G-invariance, it is sufficient to see this on the
basis elements and then to extend linearly.

1 =t ,
kY % [K'y = [k + k) — [y = —= 3 wFH)=a)q)
\/aaZO
q—1
— L wk’*awk*a|a>‘

\/a a=0

But |w**¢| = 1 so this has the same amplitudes as |¥}). O

The basis element |0) then gets mapped by FT to |¥g) = %Zg;é ay, i.e.

to the uniform superposition over all basis elements of our vector-space C'G.
To implement the generalised Simon’s algorithm now we use the same

circuit as before replacing the Hadamard parts of the circuit by Fourier-

Transformation circuits. (We assume that the basis elements |a) are repre-

sented in binary.)

Thus the input to C'; is a uniform superposition of all elements of . After

measuring |f(z)) (or - equivalently - safe-storing it) the input to the last

FT circuit is a uniform superposition of the k elements of a coset v + H

of H={1,u,2u,...,(k— 1)u} (all the |z) which got mapped to this actual
f(z)), ie.:

1 k—1 1 k—1 -
— laxu+v) — — wlmutv)xal

Z vka kz:l m*u*a)|a>‘
m=0

Now the inner sum is (an;lo wmruxay — (YR rmeay where W = w is a
L —th primitive root of unity. Using the second of our identities established
above this sum is 0 whenever a # 0 (mod %) and is equal to X whenever
a = 2. So the output of FT becomes:

f2—| fz

Measuring now gives |r *) for a random r between 0 and { — 1. Repeating
the whole process of the generahsed Simon’s algorithm and taklng g.c.d.s of
the results gives £ with very high probability and thus u can be determined
efficiently.

10)

rr

rr

Figure 1: Generalised Simon’s circuit

