Homework 1

51 Show that $\Sigma_{2}^{p}=\mathrm{NP}^{\text {SAT }}$
52 Show that $\operatorname{SPACE}(n) \neq \mathrm{NP}$. (Hint: Use padding, mentioned in the notes for Lecture 1.)

53 Can you give a definition of NEXPTIME in terms of certificates as we did for NP? If not, report your best attempt.

54 Say that a class C_{1} is superior to a class C_{2} if there is a machine M_{1} in class C_{1} such that for every machine M_{2} in class C_{2} and every large enough n, there is an input of size between n and n^{2} on which M_{1} and M_{2} answer differently.
(a) Is DTIME $\left(n^{1.1}\right)$ superior to DTIME (n) ?
(b) Is NTIME $\left(n^{1.1}\right)$ superior to NTIME(n)?

55 Suppose we define the logspace hierarchy in analogy with the polynomial hierarchy using logspace machines that can use alternation. Does this hierarchy collapse by Immerman's theorem ($\mathrm{NL}=\mathrm{coNL}$)?

