Homework 2

§1 Show that for each $k>0$ there there is a language in PH that is not decidable by circuits of size n^{k}. (Hint: Diagonalization.)
$\$ 2$ Let \mathcal{H} be a family of 2-universal hash functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{m}$ where $n>m$. Let $S \subseteq\{0,1\}^{n}$ have size at least 2^{m}. Show that

$$
\underset{h \in \mathscr{H}}{\operatorname{Pr}}\left[h(S) \neq\{0,1\}^{m}\right] \leq \frac{2^{2 m+1}}{|S|} .
$$

$\S 3$ Let $f, g:\{0,1\}^{*} \rightarrow \mathbf{N}$ be functions and $c>1$. We say that f approximates g within a factor c if for every string $x, g(x) \leq f(x) \leq c \cdot g(x)$. Show that for every $g \in \# \mathbf{P}$ and every $\epsilon>0$, there is a function in FBPP ${ }^{\text {SAT }}$ that approximates g within a factor $1+\epsilon$. (Hint: Use the previous Problem.)
§4 The XOR casino offers the following game. A sequence of k cards all labelled with 0 or 1 is laid on the table face-down. The cards are chosen by the casino, with just one restriction (under state gambling laws): with probability at least p, all k cards must be 1. Now a card is picked uniformly at random and all the other cards are turned face up. You are asked to guess the number on the hidden card; if you guess correctly you receive a payoff of 81 .
This question explores what your expected payoff can be.
(a) Suppose the casino's strategy is the following: with probability p make all cards 1 and otherwise make each card 1 with probability $1 / 2$ and 0 with probability $1 / 2$. Show that your expected payoff then is at most $1 / 2+p / 2$, and that you have a strategy that achieves this payoff.
(b) Now suppose the casino strategy is unknown to you (except you know that it obeys state laws). Suppose you use the following guessing strategy: if all $k-1$ cards you saw had a 1 , you guess that the k 'th one is 1 , otherwise you guess 0 or 1 with equal probability.
Show that then the casino has a strategy to make your expected payoff at most

$$
\frac{1}{2}+\frac{p}{2}-\frac{1-p}{2 k}
$$

(c) Now suppose you adopt the following strategy: if among the $k-1$ cards revealed to you, t cards have a 0 on them, then you guess with probability $\left(1+2^{-t}\right) / 2$ that the k th card has a 1 and with probability $\left(1-2^{-t}\right) / 2$ that it has a 0 .
Show that with this strategy your expected payoff is at least $1 / 2+p / 2-2^{-k / 3}$, irrespective of the casino's strategy (so long as it obeys state laws).
§5 Use the previous question to prove the following version of the Yao XOR Lemma. Suppose $f:\{0,1\}^{n} \rightarrow 0,1$ is a function such that no circuit of size $S(n)$ can, given a random x, predict $f(x)$ with probability $3 / 4$. Let $f^{\oplus k}:\{0,1\}^{(n+1) k} \rightarrow 0,1$ be the function that breaks its input into k parts $y_{1}, y_{2}, \ldots, y_{k}$ of n bits each and one part r of k bits. It computes the k-tuple $\left(f\left(y_{1}\right), f\left(y_{2}\right), \ldots, f\left(y_{k}\right)\right)$ and outputs its inner product $(\bmod 2)$ with r.
Then no circuit of size $t(n k)$ can predict $f^{\oplus i k}$ for more than $1 / 2+s(n k)$ fraction of inputs, where poly $(s(n k) t(n k)) \leq T(n)$. (Hint: The circuit could have hardwired answers to quite a few random inputs; think of these as the $k-1$ cards of the casino game.)

