Homework 3

$\S 1$ (a) Show that $\mathbf{A M}[2] \subseteq \mathbf{N P} /$ poly. (b) Show that if $\overline{S A T} \in \mathbf{N P} /$ poly then $\mathbf{P H}=$ $\boldsymbol{\Sigma}_{3}^{p}$. (c) Conclude that if Graph Isomorphism is NP-complete under polynomial time reductions, then $\mathbf{P H}=\mathbf{\Sigma}_{3}^{p}$
§2 A program checker for a computational problem π is a probabilistic algorithm C. Given any program P that supposedly computes π and an input x, the checker calls P at most poly $(|x|)$ times, and runs in poly $(|x|)$ time (this does not include the time required by P).
(a) If P correctly computes π on every input, then with probability at least $0.99, C$ outputs "CORRECT" on x.
(b) If $P(x) \neq \pi(x)$, then with probability at least $0.99, C$ outputs "BUGGY" on x.

Show that Graph Isomorphism and Discrete Log (for a specific prime p) have program checkers. What about SAT?
§3 A degree d polynomial is one whose degree in each variable is at most d. Let the distance between two functions f, g (denoted $\Delta(f, g))$ be the fraction of points on which f, g disagree. Show that if f, g are degree d polynomials in m variables, then $\Delta(f, g) \geq 1-m d /|F|$. (Hint: Use induction on m.)
$\S 4$ Let $\Delta_{d}(f)$ denote the distance of f to the nearest degree d polynomial.
Suppose we are given the table of values of a function $f: F^{m} \rightarrow F$. Supposedly this function is a degree d polynomial in m variables over field $F=Z_{q}$, but this needs to be checked. Let $q=\Omega\left(m^{3} d^{3}\right)$. Consider the following tester:
Pick $i \in_{R}\{1, \ldots, m\}$ and $a_{1}, a_{2}, \ldots, a_{m} \in_{R} F$ randomly. For $s=0,1, \ldots, d$, read $f\left(a_{1}, \ldots, a_{i-1}, s, a_{i+1}, \ldots, a_{m n}\right)$ from the table. Let these values be b_{0}, \ldots, b_{d} respectively. Let $g(x)$ be a degree d univariate polynomial such that $g(i)=b_{1}$. ACCEPT iff $f\left(a_{1}, a_{2}, \ldots, a_{m}\right)=g\left(a_{i}\right)$.
Show that there is a constant $c>0$ such that the probability this test accepts is at most $1+\sqrt{\frac{m d}{q}}-\min \left\{c \Delta_{d}(f), \frac{1}{10 m d}\right\}$. Report partial progress on this problem too, but keep it brief. (Hint: Use some kind of induction on m and also use Problem 3. Note that the test is implicitly defining m functions, one for each value of i. The i th function has the property that fixing all but the ith coordinate gives a polynomial of degree d in that variable. The induction should use properties of such functions.)

