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Abstract

Several projects involving high-level thermal manage-

ment — such as eliminating “hot spots” or reducing cool-

ing costs through intelligent workload placement — re-

quire ambient air temperature readings at a fine gran-

ularity. Unfortunately, current thermal instrumentation

methods involve installing a set of expensive hardware

sensors. Modern motherboards include multiple on-board

sensors, but the values reported by these sensors are dom-

inated by the thermal effects of the server’s workload.

We propose using machine learning methods to model

the effects of server workload on on-board sensors. Our

models combine on-board sensor readings with workload

instrumentation and “mask out” the thermal effects due

to workload, leaving us with the ambient air temperature

at that server’s inlet. We present a formal problem state-

ment, outline the properties of our model, describe the

machine learning approach we use to construct our mod-

els, and present ConSil, a prototype implementation.

1 Introduction

As the number of servers and power requirements
of servers increase, data center designers and man-
agers must account for factors beyond standard per-
formance issues. Yet instrumentation of these factors
that is available to management agents lags far be-
hind that for performance and IT considerations.

The first prerequisite of integrating power and ther-
mal concerns into a management agent is accurate
and complete information to drive the management
policy. A crucial component is a detailed thermal

map of the data center, containing temperature and
airflow information at a fine-grained resolution. For
example, recent work in data center thermal man-
agement reveals that maintaining a low inlet temper-
ature leads to lower cooling costs [12, 7]. Implement-
ing this policy requires an accurate reading of the
inlet temperature at every server.

Yet the amount and type of thermal data we can
monitor is less fine-grained than that available for ap-

plication and system performance. A management
agent attempting to optimize system performance
can utilize raw data from processors, memory sub-
systems, network devices, and storage devices, as well
as application-level metadata from batch queues, web
servers, and other data center applications. A man-
agement agent attempting to control thermal condi-
tions must draw from sparse or ineffective sensors.
Useful data, such as ambient air temperatures, are
generally collected using a separate network of tem-
perature sensors. These sensors, placed on rack en-
closures and A/C units [9, 5], can be expensive to ob-
tain, time-consuming to deploy, and difficult to read;
it is not uncommon to have only two or three such
sensors placed on a standard rack enclosure.

Other temperature sensors we can monitor, such as
those on most modern motherboards, report the tem-
perature at selected points within a server. However,
these sensors do not provide a good proxy for ambient
temperature since their values are influenced heavily
by local thermal conditions, such as heat from the
processor(s). While some servers contain a tempera-
ture sensor near the front inlet, a data center owner
should not be forced to limit their purchasing options
based on this single factor.

We propose constructing a thermal map that in-
cludes per-server inlet temperatures by modeling and
then “masking out” local thermal conditions in each
server. While a single sensor — such as those on
top of each processor — may be dominated by the
local thermal effects of that server’s workload, the
readings from multiple sensors over time allow us to
model the effects of a given workload on those sensors.
We leverage machine learning techniques to combine
existing workload data with multiple internal temper-
ature readings to infer the current server inlet tem-
perature. We demonstrate the effectiveness of this
approach by building thermal models for an existing
line of servers. With a few hundred data points per
server, our models are capable of infer inlet temper-
atures within 1◦C over 80% of the time, and within
2◦C over 98% of the time. This degree of accuracy is
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similar to that of off-the-shelf temperature sensors.

2 Motivation

Current-generation 1U servers consume over 350
Watts at peak utilization, releasing much of this en-
ergy as heat; a standard 42U rack of such servers con-
sumes over 8 kW. As data centers migrate to bladed
servers over the next few years, these numbers could
potentially increase to 55 kW per rack [8].

A thermal management policy that considers facil-
ities components – such as A/C units and the lay-
out of the data center – and temperature-aware IT
components can decrease cooling costs [9], increase
hardware reliability [2], and decrease response times
to transients and emergencies [6]. Significant recent
work in data center management focuses on formu-
lating effective thermal management policies; Multi-
ple projects reduce data center cooling costs, such as
optimizing cooling [9], minimizing global power con-
sumptions [10, 4], and efficient heat distribution [7, 3].
These projects depend on an underlying instrumenta-
tion layer to provide the thermal map. In the absence
of fine-grained thermal instrumentation, these poli-
cies must rely on simplistic heuristics, such as mini-
mizing server power consumption, A/C return tem-
perature, or generating a uniform exhaust profile.

We are not aware of any other work looking at soft-
ware models for thermal mapping of data centers.
Related work has primarily used ad-hoc collections
of external sensors to monitor server inlet tempera-
ture at a few selected locations [12]. As discussed
earlier, in addition to the large costs with wiring and
maintenance, these approaches also suffer from in-
accuracies from inadequate coverage. In lieu of ac-
tual deployments, other studies have used simulation
to determine thermal maps [9, 11]. However, these
simulations use complex fluid dynamics, each taking
several hours of run time.

Common thermal management practices involve
placing two or three sensors on the front and back
of each rack. This results in less than 150 sensors
providing data for up to 1000 servers. Furthermore,
the total cost of deploying these or additional sensors
can be prohibitive, up to $100 per sensor.

Modern motherboards, on the other hand, pro-
vide the status of multiple relevant on-board compo-
nents, including fans and internal temperature sen-
sors. These sensors improve coverage, but present
other challenges; namely, that the readings provided
by these sensors are heavily influenced by local heat
sources such as processors and disks. A temperature
sensor on a 3 GHz Pentium IV processor — using

Figure 1: ConSil combines readings from internal sen-
sors in each server platform with other instrumenta-
tion data to produce detailed thermal maps.

Symbol Meaning

Q Measure of heat (Watts)
W Set of workload metrics
X Number of workload metrics
M Set of motherboard sensor readings
Y Number of motherboard sensors
D Complete set of metrics (W and M)
Dk kth most recent data set
Z Number of recent data sets

Table 1: Parameters for problem formalization.

over 115 Watts at maximum utilization — can regis-
ter temperatures in excess of 25◦C above that of the
air coming into the server.

3 Formalizing the Problem

Figure 1 depicts how ConSil fits in to a modern data
center operations infrastructure. The role of ConSil
is to analyze data from internal and external ther-
mal sensors and produce an accurate map of current
thermal conditions in the data center, for input to
the control policy. To extract this information, Con-
Sil builds and applies models of heat flow in the data
center and the servers it contains. It uses these mod-
els to infer the thermal map from the internal sensors
in each server platform.

3.1 Problem Statement

The heat measured within our server as being the
combination of the heat at the inlet of the server and
the heat generated by the server’s workload. Table 1
outlines the terminology and definitions we use.

Qmeasured = f(Qinlet, Qworkload)
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However, this equation omits several details. For
example, most servers have multiple internal sensors.
The amount of heat generated by the workload and
measured by these sensors varies significantly within
the server. For example, the values reported by a
sensor near a processor are influenced heavily by the
recent activity of that processor.

Given that workload and airflow are dynamic, it
is difficult to infer the thermal effects of workload on
each sensor individually. Instead, we leverage the fact
that the heat measured at each sensor is the combina-
tion of heat generated by the workload and the heat
from the ambient air at the server’s inlet. By infer-
ring and subtracting the common element – ambient
air temperature – from measured values, we reduce
the number of outputs from X to one.

While processor utilization may be the primary
contributor to heat production by a server, it is not
the only one. Thermodynamics tells us that all com-
ponents that consume non-trivial amounts of power –
including RAM, storage devices, and graphics cards –
convert some of this power into heat. Our model
must be able to account for these sources. In order to
leverage the relationship between system utilization
metrics – processor usage, memory access rates, disk
read/write throughput, etc – we update our model
to include workload information as a proxy for the
amount of heat injected into the system.

Finally, we address the time-dependence of heat
flow. While server utilization can change instanta-
neously, it will take time for the temperature distri-
bution to adjust. For example, a server that has been
100% utilized will heat up; however, when that server
goes idle it will take seconds or minutes for the server
to eject the excess heat. Given that the current work-
load is constant (idle) but the internal temperature
varies during this period, depending solely on current
workload readings as a proxy for local thermal con-
ditions would be unreliable. We must include recent
data in order to make accurate inferences of a work-
load’s effect on internal measurements. If we include
the Z most recent data sets at time t, we can provide
a formal description of our model.

Qinlet = f
(

Dt, Dt−1, . . . , Dt−Z

)

4 ConSil

At a high level, we are dealing with a model that has
Z · (X + Y ) inputs — our workload and instrumen-
tation data for each epoch — and one output — the
inferred ambient air temperature at the server inlet.

The first step in implementing ConSil is to collect
the data necessary to construct our model. Since the
model is constructed off-line, it is not necessary to
aggregate the data as readings are taken; it is suffi-
cient to timestamp the reading as it is taken for later
correlation. Our input data is available through a
variety of standard monitoring infrastructures.

The output data — sensors that measure ambient
air temperature outside the front inlets of servers —
can be collected through any number of available
hardware and software infrastructures. While com-
plete coverage of the data center using these sensors
alone is cost-prohibitive and complex, our method
does not suffer from this limitation; we require only
10 or 15 sensors per type of server.

4.1 Machine Learning

The method we select to model heat flow and in-
fer ambient air temperature must produce an output
that falls within a continuous range of values, repre-
sent complex relationships, construct the model using
a large input set, and make “live” inferences using
the most recent instrumentation data. Approximate
solutions that run on the order of 1 second are su-
perior to more accurate solutions that take minutes.
This class of problem benefits from the application
of machine learning techniques. However, machine
learning covers a broad class of methods, not all of
which meet the criteria we set forth. Our criteria rule
out techniques such as decision trees, tree induction
algorithms, and propositional learning systems.

Neural nets, on the other hand, meet our criteria
and present a reasonable analogy to the scenario at
hand. Just as the strength of the relationship be-
tween particular input and output values of a neural
net depends on the internal structure of the net, the
correlation between workload and observed tempera-
ture depends on the physical flow of heat from server
components to internal sensors. The strength of this
approach is that it allows us to add observations to
our model during normal operation of our servers.

For a model using the Z most recent epochs, with
X internal temperature sensors and Y metrics used
to characterize current system workload, there will be
Z · (X + Y ) inputs to our system. The output of our
model is the inferred ambient air temperature; from
there we can deduce the amount of additional heat
present within the server.

It is important to note that we are not claiming

neural nets are the best modeling method. Instead we
show that, as an instance of a machine-learning-based
approach, they have the properties we desire.

3



4.2 Implementation

There are several off-the-shelf neural net development
libraries, enabling us to leverage these techniques
rapidly. We selected the Fast Artificial Neural Net
(FANN) development library [1]. FANN implements
standard neural net training and execution functions,
allowing us to focus on exploring effective methods of
constructing our models.

We selected the sigmoid function as our neuron ac-
tivation function. Next, we must determine an ap-
propriate exponent, which controls the shape of the
output distribution. A “steep” sigmoid function re-
quires precise inputs at all layers to produce accurate
outputs; small errors grow as they pass through the
network. A “flat” sigmoid function may result in an
overly-trained network. In other words, it can make
accurate inferences for inputs similar to previously-
seen data, but is not general enough to provide accu-
rate answers for new input sets.

Before constructing our model we process our input
and output data. Given that output values from the
sigmoid function will be in the range [0, 1] we scale all
input and output values to fall within this range. This
provides consistency between input and output data.
We evaluate the accuracy of the models using five-
fold cross-validation (FFCV) and measing the mean
squared error (MSE) over the test data.

5 Results

For each type of server we collect data from external
temperature sensors, and internal temperature and
workload data from those servers whose inlets are
adjacent to the external sensors. Our prototype im-
plementation abstracts away certain details and com-
plexity for the sake of speed and simplicity. For exam-
ple, we use CPU utilization as a proxy for workload.
We felt this to be a reasonable simplification given
that our CPUs are responsible for nearly over 80% of
the server’s power consumption.

The raw data for each server type comes from three
sources: CPU utilization data, internal temperature
data from kernel interfaces, and external tempera-
ture sensor networks. Once the raw data was col-
lected from all three sources, we synchronized internal
and external data. Internal data for which the corre-
sponding external data was “stale” (over 60 seconds
old) was discarded. Finally, we selected a random
subset of 10 servers for five-fold cross-validation.

In addition to varying the number of recent epochs
we use as input, we vary the number of workload
epochs and internal sensor epochs independently.
This separation allows us to examine whether work-

ID Parameter % of Variation
A Epoch Length (s) 0.34
B Workload Epochs 0.14
C Sensor Epochs 0.05
D Target MSE 1.55
E Sigmoid Slope 0.00
F FFCV Index 74.49

Table 2: Percent of variance in accuracy attributable
to first-order effects. Other than variance among
FFCV experiments, only the target MSE accounts
for any measurable variation.

load or internal sensors play a more significant role
in constructing accurate models. While not exhaus-
tive, this parameter space exploration comprises 810
unique models. Using general full factorial design
analysis, we can identify which parameters have a
significant effect, and for which parameters we can
simply select a “reasonable” value.

Certain FANN implementation parameters were
constant for all experiments, including the maximum
number of training iterations (105), the number of
hidden layers (two), and the size of the hidden layers
(twice the number of neurons as the input layer).

5.1 Preliminary Experiments

Our data set comes from a corporate data center con-
taining several hundred DL360 servers. We identified
a dozen servers with external temperature sensors sit-
uated directly in front of their front air inlet panels.
For a period of 45 hours, we collected CPU data at 1
second granularities, internal temperature data at 5
second granularities, and external temperature data
when provided by the external sensor infrastructure.

At the time of observation the data center was in
heavy use running large computational batch jobs.
This provided for moderate variation in both proces-
sor utilization and ambient air temperature. Server
inlet temperatures varied between 20◦C and 28◦C.

Table 2 charts the average sum-of-squared error
(SSE) between the inferences made by our models
and the actual ambient air temperatures, and quanti-
fies the first-order effects of each parameter on model
accuracy. Again, while first-order effects do not cap-
ture any interactions between parameters they de-
scribe over three-quarters of the variance regarding
inference accuracy.

Variance in inference accuracy is dominated by one
factor: the FFCV sub-experiment. All other first-
order factors combined account for approximately 2%
of the variance in inference accuracy. However, this
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Figure 2: The CDF of inference error for five differ-
ent models on the HP DL360; the epoch time is 30
seconds. In each case over 80% of the inferences are
within 1◦C of the actual server inlet temperature.

may indicate that the range of values we selected
were not sufficiently varied to reveal significant dif-
ferences between them. It is worth noting, though,
that combining the effects of certain parameter selec-
tions could have more significant implications on the
accuracy of our inferences.

Finally, we graph the accuracy of our inferences.
Figure 2 shows the CDF of our model’s inference ac-
curacy for 5 combinations of our parameters. The
x-axis is the absolute value of the difference between
the inferred value of ambient air temperature and the
actual temperature. In each case, over 80% of the
inferences are within 1◦C, and over 95% of the infer-
ences are within 1.5◦C of the correct value.

6 Conclusion

Our approach leverages ongoing standardization in
on-chip and on-board internal sensors and the rich set
of tools available for workload instrumentation. We
develop a model that uses internal sensor readings
and workload utilization metrics to infer the external
ambient air temperature at every server inlet in the
data center, based on a one-time calibration on a few
machines. In addition to the increased coverage, our
results also has fairly high accuracy. Our analysis
shows that the model is capable of inferring ambient
air temperature within 1◦C over 80% of the time.

Furthermore, our approach just needs us to deploy
the model on the server and can easily be ported to
any data center in a fairly small amount of time.
Additionally, our approach addresses another key
challenge with external sensors, namely the problem
of synchronizing and correlating ambient tempera-
ture readings with the equivalent workload utilization
metrics. This enables better integration into higher-

level thermal control loops such as for reduced cooling
costs and greater reliability.
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