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Abstract

Manual optimization of a CUDA kernel can be an arduous task, even for the simplest of
kernels. The CUDA programming model is such that a high performance may only be achieved if
memory accesses in the kernel follow certain patterns; further, fine-tuning of the kernel execution
and loop configuration may result in a dramatic increase in performance. The number of possible
such configurations make it particularly difficult to obtain a truly fast implementation of a given
kernel.

To that end, the AutoGPU program was developed: A tool that can measure the performance
of a kernel for a defined set of configurations in order to decide on the optimal one. Moreover,
the AutoGPU program can operate on a serial version of a desired kernel, and apply a series of
transformations to change the memory access pattern of the kernel, besides deducing the optimal
configuration for it.

Hence, a CUDA kernel is automatically generated that may achieve a very high performance,
without requiring that the user has knowledge of the CUDA programming model. Of course,
tweaking of the generated kernel may still be applicable, but it is expected that it will be minor.

The AutoGPU program was developed in the Standard ML language, and this report presents
its structure and capabilities.



Chapter 1

Representing the kernel

In order to effectively manipulate the kernel program, an appropriate representation of it must be
found that facilitates its analysis and alteration. For this reason, an Abstract Syntax Tree (AST)
representation of the inspected kernel is adopted. The AST representation is briefly presented in
section 1.1.

This AST representation is exposed to the AutoGPU program through several Standard ML
datatypes. These datatypes are shown in section 1.2.

1.1 Abstract Syntax Trees

It is a common technique for compilers to maintain different representations of the source program
through different compilation phases. Such a representation is that of the Syntax Tree, which is an
intermediate representation of the source code one, derived after completion of the parsing phase,
in order to separate issues of parsing from issues of semantics. Syntax trees come in two varieties:

Concrete Syntax Trees consist of exactly one leaf per input token and one internal node per
grammar rule reduced during the parsing phase. Syntax trees of this kind contain a significant
amount of redundant information, as they are largely dependent on the grammar of the source
language. As such, they are not ideally suited for semantic analysis.

Abstract Syntax Trees, on the other hand, constitute a representation free of syntactic details:
it is an intermediate step after all parsing issues have been dealt with, but before any semantic
interpretation takes place.

Further, the AST representation is generally independent of the programming language in
which the source code is written (at least for languages pertaining to the same programming
paradigm). Since the AutoGPU implementation of the AST representation has been developed
to map directly to the CUDA language syntax, the AutoGPU program can easily be extended to
handle any imperative source code as input with the use of an appropriate parser.

A graphical example of an AST representation of a code fragment is shown in figure 1.1. The
presented AST follows the AutoGPU implementation, which is described in the next section.
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Figure 1.1: A C source code segment and its AST representation, as implemented by the AutoGPU
program

1.2 AST implementation in AutoGPU

An imperative program is made up of several constructs, such as statements which alter the
machine state, expressions which are eventually reduced to a value, variable types and qualifiers,
etc. For this information to be made available to the AutoGPU program, a datatype has to be
coded for every corresponding construct. All supported datatypes are discussed in this section.

It should be mentioned that due to the current structure of the AutoGPU program (which
requires that the constructors of each datatype be exposed to most of its modules) the defined
datatypes are loaded in the Standard ML top-level environment.

1.2.1 The expr, cond and lhs datatypes

Any expression that can be evaluated (that is, reduced to a value) is represented by the expr
datatype. Naturally, an expression is defined recursively, and it may be any of the following:

• An integer number.

• A floating-point number (internally represented as a string, in order for arguments of type
expr in Standard ML functions to maintain the equality property).

• The width of the CUDA block, as specified in the kernel’s execution configuration.

• An arithmetic operation on one or two expressions. The supported operations and corre-
sponding C (and by extension, CUDA) operators are binary addition (+), subtraction (-),
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multiplication (*), division (/), modulo (%), left shift (<<), right shift (>>) and unary negation
(-).

• A conditional expression. This is represented by the cond datatype and can be:

– A conditional operation (=, 6=, >,≥, <,≤) on two expressions.

– A logical operation (NOT, AND, OR) on one or two expressions.

• A reference, represented by the lhs datatype. The datatype contains at least a string to
represent the name of the reference, which can be:

– A reference to a variable, addressed as var.

– A reference to an array element, addressed as array[i] (where i is an expression).

– A reference to a pitched 2D-array element, addressed by the macro array at(i,j)

(where i and j are expressions), which is automatically generated to correspond to
the following expression, as the CUDA programming model dictates (arrays are pre-
supposed to be stored in column-major fashion):

(*( (arraytype *)( (char*)array + j*pitch array ) + i ))

Because of the C syntax that is used by the CUDA language, a conditional expression is
nothing more than one that evaluates to either 0 or 1; this is the only essential difference of the
cond datatype operations and the expr ones. On the other hand, the lhs datatype is distinct
in that an expression cannot be used in the left-hand-side of an assignment operation (this also
means that assignments to memory addresses referenced by pointer expressions are not supported
by the AutoGPU program).

1.2.2 The vartype and fltprec datatypes

The type of a variable is necessary for any declaration statement, and representing it is done
throught the vartype datatype. Also, the vartype datatype helps provide a way to inspect the
type of a variable that appears inside the body of the kernel, for instance one of its formal
arguments. The following types are suppported:

• The int type. This expresses integer numbers.

• The real type. This expresses floating-point numbers in general, not taking precision into
account.

• The size t type. This is the same as unsigned int, but is best used to express memory
sizes, as is the case with the CUDA 2D array pitches.

• The pointer to vartype type. This type’s definition is recursive, therefore pointers to point-
ers (and so forth) can be defined.

Real (i.e. floating-point) number types differ in their precision, and are supported through the
fltprec datatype. It is presupposed that all real variables in a kernel will be of the same precision,
hence this datatype works like a “global switch” for all real variables in the kernel. The following
floating-point number types are supported:

• The float type.

• The double type.

• The long double type.
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1.2.3 The assignmode datatype

As the C or CUDA syntax allows, the assignment operator = can be augmented with any other
binary operator, meaning that the value that is assigned to the left-hand-side reference is the
result of applying the operator to it and the value the right-hand-side evaluates to. Specifying
such an operator is done through the assignmode datatype, which is used solely for that purpose.
This datatype can take any of the following values:

• EQU. Signifies absence of a binary operator.

• ADD. The addition operator +.

• SUB. The subtraction operator -.

• MUL. The multiplication operator *.

• DIV. The division operator /.

• MOD. The modulo operator %.

• SHL. The “left shift” operator <<.

• SHR. The “right shift” operator >>.

1.2.4 The statement datatype

A program represented by an AST is essentially a single recursive statement. Each statement is
constructed by information which varies according to the corresponding source statement. This
information is referred to as the statement’s children, in accordance with the AST structure. The
defined statements are outlined in table 1.1.

Apparently, the input AST is expected to be constructed by a subset of these statements, it
being a representation of a serial kernel. The DeclareShr and Sync statements are automatically
generated during the AST optimization process; and a ParFor statement in serial code may simply
be a for loop preceeded by an appropriate directive (e.g. #pragma simd or //SIMD).
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ParFor

A parallel for loop. Assigns an index to each thread, according to its
position within the grid and block, as well as some other parameters
(i.e. the loop’s unroll factor), and “kills” redundant threads.

Children:
string The name of the index variable.
expr The index of the first element of the loop.
expr The stride of the loop.
expr The index of the last element of the loop.
bool True/false indicates a sparse/dense indexing scheme

for this loop (see subsection 2.3.1).
statement The body of the loop.

For

A for loop.
Children:

string The name of the index variable.
expr The index of the first element of the loop.
expr The stride of the loop.
expr The index of the last element of the loop.
statement The body of the loop.

If

An if-then-else conditional statement. Existence of an else part is
mandatory.

Children:
expr The predicate expression.
statement The body of the then part.
statement The body of the else part.

While
&
DoWhile

A while / do-while loop.
Children:

expr The predicate expression.
statement The body of the loop.

Sequence

Two successive statements.
Children:

statement The first statement.
statement The second statement.

Assignment

An assignment of the form lhs [op]= expr, where op is an optional
binary operator (see subsection 1.2.3).

Children:
lhs The left-hand-side of the assignment.
assignmode An optional binary operator which specifies the way

that the left-hand-side reference’s initial value affects
the assigned value.

expr The right-hand-side of the assignment.

Declare
&
DeclareShr

An automatic / shared variable or array declaration.
Children:

lhs The declared variable or array. In the case of array
declaration, the index field of the Array is interpreted
as the size of the array.

vartype The type of the declared variable or array.

Sync
The syncthreads() CUDA intrinsic function.

No children.

Blank

An empty statement. Can be used to express absence of the else part
in an if-then-else conditional statement.

No children.

Table 1.1: statement datatype constructors
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Chapter 2

Optimizing the kernel

The process of performing semantic analysis and applying transformations to the AST represen-
tation of the kernel in order to optimize it can be roughly divided in 6 areas, which are not
independent of one another:

i. Identifying certain syntactic parameters of the kernel, such as its name, its formal arguments,
the constant values it manipulates, and which arrays should be accessed specially.

ii. Having a set of tools to traverse the AST, mine data from it, access the expressions therein,
etc., as well as being able to access the kernel’s parameters (i.e. domain dimension, kernel
block width, and thread unrolling factors).

iii. Perforfming transformations on the AST, in order to yield a faster (and equivalent) version
of it.

iv. Obtaining the kernel’s CUDA source code from its AST representation and its parameters.

v. Interacting with the underlying OS to create the source code file, compile it and run it.

vi. Evaluating the performance of each successive version of the AST and conducting the opti-
mization process.

The functions that implement all these procedures are grouped in structures which correspond
to each of the aforementioned areas. The structure relations schema is shown in figure 2.1; an
arrow means that the structure at its end is the output of a Standard ML functor that receives
the structure at its start a parameter. Also, as was explained before, the Standard ML top-level
environment is enhanced with the datatypes presented in Chapter 1. This is done so as to expose
the datatype constructors’ representation to the structures, to ease the AST manipulation process.
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Figure 2.1: Structure relations in the AutoGPU program
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2.1 The Arguments of the Kernel

Apart from the AST of the serial kernel, we expect, naturally, to be supplied also with the
arguments that are passed to it, along with their types. These are kept in a mutable list as
pairs of (argname, argtype). Another two such lists exist; one which contains the variables that
are stored in constant memory space, and one which contains the 2D-pitched arrays, for
which the access macros must be defined; both of these lists have their members assigned by the
AutoGPU program after inspecting the AST. Further, a mutable list is provided where the user
may specify the bounds of arrays referenced to in the AST, as a pair of (array name, array bound
variables list). This list is used to generate conditional statements to prevent “out-of-bounds”
references (see subsection 2.3.5).

Having an argument reside in constant memory space instead of passing it directly to
the kernel can be advantageous in most cases: If all active threads attempt to access the same
address in constant memory space, this is as fast as accessing a register, therefore there is
no loss with respect to performance; on the other hand, having less arguments in a kernel call
means that fewer registers are allocated for each block, which means that a microprocessor might
execute more blocks concurrently than it otherwise would, or that more automatic variables will
reside in registers rather than in local memory, which exhibits a high access latency. Moreover,
the kernel may fail to launch if a microprocessor does not have enough registers to process at least
one block; hence, moving arguments to the constant memory spaces allows for more unrolling
of the parallel loops (since unrolling a SIMD loop may result in more automatic variables being
handled by each thread).

A set of functions allow checking whether a given variable (represented by a string) belongs
to the arguments of the kernel (either formal ones or ones residing in constant memory space),
getting the type of a given variable, or getting the bounds of a given array (if any are specified).

A function is also provided that traverses the AST in order to mark the 2D-pitched array
variables that need macro definitions by adding them to the appropriate aforementioned list. Also,
for every 2D-pitched array X that is marked, a constant argument pitch X is generated in
the relevant list.

Lastly, a reference to the kernel’s name is also kept, in order to produce relevant source code
file names, and to properly declare the kernel function.

2.2 Miscellaneous Tools

Certain parameters of the AST and functions on it are independent of a specific optimizing trans-
formation, and may be found useful even outside the scope of any such transformation. These
tools will be considered a given throughout the rest of this report.

There are four important parameters of the AST which are stored in three mutable values:

• The problem’s dimension domain. This is equivalent to the dimension domain of the arrays
which are processed according to the AST, and also comprises the upper bound for the
number of ParFors that can be present in the parallel version of the AST. For example,
this is 2 in the case of 2D-matrix multiplication. Currently, 3-dimensional domains are not
supported.

• The width of the CUDA block, i.e. the number of threads in each kernel execution block.
Only 1-dimensional blocks are defined.

• A 2-tuple containing the unroll factors of the ParFor loops, in such order so that the first
component corresponds to the outermost ParFor loop and so on.

• A list containing the variable counters (represented as strings) of every for loop of the
kernel, coupled with an unroll factor for the corresponding loop. Similarly to marking 2D-
arrays, this list is automatically derived by a function that inspects the AST.

Apart from the above parameters, a set of simple functions is also provided. These allow the
following:
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• Checking whether a given variable (expressed as a string) is referenced in an expression.

• Replacing all references to an ‘old’ variable in an expression with references to a ‘new’
variable (both expressed as references).

• Attempting to evaluate the numerical (integer) value of an expression, and returning it if
the expression contains no references nor real numbers.

• Checking an expression for occurrences of a set of variables (expressed as a list of strings)
and returning all such occurrences as a list of references.

• Returning all references that occur within an expression.

• Checking whether two lists have any common elements.

• Applying a string suffix to a variable reference.

• Replacing all occurrences of the width expression in a statement (i.e. subAST) with its
numeric value.

• Traversing the AST of the kernel in search of for loops and marking their counter variables
in the relevant list, defaulting the unroll factor with a value of 1.

• Returning all possible permutations on the elements of a list as a list of lists.

• Constructing a series of elements, described by the initial element, the total number of
elements, and a function to be recursively applied to an element of the series to calculate
the succeeding element.

• Constructing all possible double combinations of elements of a set described in the same way
as the aforementioned lists.

2.3 Transformations on the AST

The set of transformations that can be applied to any input AST constitute the core of the
AutoGPU program, as it is through those transformations that an equivalent but faster version of
the AST can be obtained. Some transformations aim at producing an equivalent AST that makes
better use of the CUDA programming model (see subsections 2.3.1 to 2.3.3), whereas others alter
it as indicated by certain parameters (see subsections 2.3.4 to 2.3.5).

Should a transformation of the former kind be of no use with regard to a specific AST, then
applying it to this AST will have no effect; therefore these can be safely applied to any input AST.

All supported transformations are discussed in detail in the following subsections.

2.3.1 Sparse vs. dense indexing scheme

A ParFor loop is by default interpreted as a sparsely indexed one. This means that if the loop’s
index is configured to span values first through last with a stride of stride, then only the threads
whose index tid satisfies the equation [(tid− first) mod stride] = 0 will execute.

A densely indexed ParFor -loop, on the other hand, means that only the first
⌊
last−first+1

stride

⌋
threads will execute. Of course, for this change to occur, their index must be redifined according
to the formula:

tid′ = tid · stride + first

This transformation is applied if the stride of the ParFor loop is greater than a threshold
value, dependent on the resident GPU of the system. The threshold value is currently defined
empirically as twice the warp size, in order to achieve a speedup in the execution of the kernel.
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2.3.2 Accumulating partial results

Accesses in the global memory space exhibit a very high latency, therefore it is desirable to
minimize such accesses as much as possible. A common case where this can be done is the case
where a variable or array element accumulates a partial result in the body of a for loop: Instead
of accumulating the result straight into the variable or array, which resides in global memory,
a “staging” variable can be used. In this way, only 2 accesses in the slow global memory
occur, one while initializing the accumulation variable before entering the relevant for loop and 1
while assigning the full result in the proper array element after it; otherwise there would be one
such access for each for -loop cycle.

This “staging” is performed in the fashion explained below:
The AST is traversed from its root. After the last ParFor statement is encountered, the staging

function searches for for loops. If one is encountered, its counter variable is kept track of (by being
pushed into a list), and the search now occurs within its body, only with different objectives.
Should a nested for loop be encountered, it is treated in the same way as the previous one; hence,
the counter variable of the outermost for loop can be found in the tail of the aforementioned list.

Inside the body of a for loop, the search is for Assignment statements whose left-hand-sides
are arrays (or variables residing in global memory). If such an assignment is found, the type
of the array or variable is found through the kernel arguments list, and a 4-tuple is obtained,
containing:
• the left-hand-side of the argument,
• the type of the array or variable referenced in it,
• a serial number that records how many such assignments have been found, and
• the counter variable of the outermost for loop which the Assignment statement is dependent

on.
This is then is pushed into a list which serves to keep track of all staged assignments. The last
element of this 4-tuple can be found if the list with the loop counter variables is reversed and
then searched for the first one which appears in the right-hand-side of the assignment. Also, the
left-hand-side of the assignment becomes a reference to an automatic variable accX, where X is
the aforementioned serial number.

Every 4-tuple of the above nature contains all the necessary information to completely carry
out the staging of the corresponding partial accumulation. Thus, after the body of a for loop
is searched (and perhaps altered), ascertaining if this is the outermost loop which “influences”
a now staged assignment becomes possible. In this case, the corresponding accumulation are
initialized just before this for loop, so that they hold the initial values of their respective variables
or array elements; their (accumulated) values are assigned back to their respective references on
termination of the for loop.

Finally, the accumulation variables are declared in the beginning of the kernel. For that reason,
the whole 4-tuple list is kept until the function is fully applied. After the part which corresponds to
the body of the innermost ParFor statement returns, the appropriate declarations are generated
in its beginning.

2.3.3 Caching through the shared memory space

The CUDA programming model is such that fetching from the global memory space is opti-
mized when all threads access consecutive elements. Hence, non-consecutive element access should
be avoided, if possible. One very common such case is when all threads in a block access the same
element; this is especially problematic when there are successive accesses to the same element, e.g.
when such an access occurs within the body of a for loop.

This problem can be overcome by fetching the element that all threads (in a block) access si-
multaneously into shared memory. Moreover, in the case of consecutive unoptimized accesses,
as mentioned above, this can be done best by having each thread in the warp fetch one of the
elements in question, so that one memory access is performed instead of warp size ones. After
fetching the elements into shared memory, simultaneous access to one of these elements by all
threads is as fast as accessing a register, thanks to the CUDA “broadcasting” model.

This transformation on the AST is implemented as follows:
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The AST is traversed from the root until a ParFor statement is found, and its index is stored
as the independent one. The traversal goes deeper until a second ParFor statement is found,
whose index is stored as the dependent one.

From now on, the traversal continues in search of a For statement. Should one be found, its
index variable (idx ) and stride (str) are stored, and its “body” (subAST) is checked for Assignment
statements with a right-hand-side in which an array access occurs, described by an index (or
indices) independent of the independent index, but dependent of the dependent one. If no such
access is found, the body of the For statement remains unaltered, otherwise the arrays which fulfil
the criteria are cached via shared memory:

The matching assignment statements are replaced by a For statement, with idx as the index
variable, spanning values idx s to idx s + Width with a stride of 1; the body of the new For
statement is the matching assignment, in which any references to the “cachable” arrays are replaced
by references to 1D arrays of the same name suffixed with “ c” and indexed by idx− idx s .

The outer For statement (i.e. the one in whose body the matching assignment statements
were found) is also replaced by a new For statement, with idx s as the index variable, spanning
the same value range as before, but with stride str ·Width, and the following statements serially
comprising its body:

• A Sync statement.

• Assignment of values to the arrays residing in shared memory space. These assignments
are of the form array c[tx] = array newref , where array is the name of the array that
is being cached, tx is the thread’s serial number within the block (not the global one), and
array newref is the reference to this array that was found to match earlier on, in which
references to the idx variable are replaced by references to idx s + tx .

• A Sync statement.

• The rest of the statements in the body of the For statement (including the replacements of
the matching assignments).

The assignment/initialization of the caching arrays in shared memory must be enclosed
within Sync statements to ensure that all threads have access to the properly updated value of
these arrays, according to the CUDA programming model.

Lastly, some declarations are generated in the top of the body of the innermost ParFor
statmenent: These are the declaration of tx as the block serial number of the thread (int tx

= threadIdx.x), and the declarations of all the shared arrays with the appropriate type,
which is found by matching the array name against the kernel arguments. An example of such
a declaration is shared float Arr c[WIDTH]. It should be noted that the declaration of the
thread’s index within the block does not occur in the case that no global references were cached
as described in this subsection.

2.3.4 Unrolling the loops

Loop unrolling is a well-known technique used in the pursuit of higher performance. Its goal is
to decrease the loop’s overhead by hiding memory fetching latencies or reducing the number of
instructions that control the loop, in order to obtain a faster version of it.

Of course, it is possible that unrolling a loop will have a negative rather than positive effect on
it, for instance because of increased registered usage in a single iteration (or, in the case of parallel
for loops, increased register allocation for each thread). Hence, it is desirable to determine the
best possible unroll factor for each loop.

ParFor loop unrolling

With regard to the CUDA programming model, there is the additional overhead of loading the
kernel blocks into the multiprocessors, which is reduced by unrolling the ParFor loops, since in
that way a block will compute values that “belong” to other blocks, hence fewer blocks are required
to execute. This means that the unrolling “policy” will differ between different-level ParFor loops:
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A loop counter dependent on the thread index within the block will have to be incremented by
a value of width to point to the next element for this thread, whereas a loop counter dependent
only on the block index within the CUDA grid will have to be incremented by 1.

The factor by which each ParFor loop is unrolled has to be set in the relevant parameter before
applying the unrolling function on the AST, which will unroll all ParFor loops (except the ones
set to be unrolled by a factor of 1). This function works as follows:

Firstly, the variables that will have to be reproduced because of the unrolling (as many times
as the unrolling factor indicates) have to be found. This is done by checking for assignments
whose right-hand-sides are dependent on the unrolled variable (loop counter); the variable on
the left-hand-side of the assignment will have to be reproduced. This is done recursively, since
the reproduction of a variable may impose that another one need to be reproduced as well, and
so forth until no more variable names are appended in the list of “to-be-reproduced” variables.
Afterwards, using this list of names (i.e. strings), the AST is traversed again and a list of
references is returned; this lists every reference to the variables in question within the AST.

The ParFor loop is now ready to be unrolled. Statements in its body are checked to determine
if they contain references to the loop counter or to any affected variable, in which case they will
have to be reproduced. Any such statement is replaced by a sequence of statements which are the
same as it, with the exception that instances of the loop counter or any affected variable will be
altered: The loop variable must be incremented n times the offset that corresponds to the loop’s
level, where n is the order of the copy of the statement, and affected variables must be properly
reproduced.

The reproduced variables are suffixed with an integer indicating the order of the variable’s
copy. Should a variable be reproduced as a result of the unrolling of more than one ParFor loop,
then it will have the appropriate number of suffixes, with the leftmost one being a result of the
outermost affecting loop.

For loop unrolling

The way that “regular” for loops are unrolled is essentially the same as with ParFor loops. The
only difference is that within the body of the unrolled for loop, any instance of the loop counter
reference in a reproduced statement has to be incremented by the value of the counter’s stride
times the statement’s copy order.

The unroll factor for each loop can be found by searching the relevant mutable list, using the
name of the loop counter as the search key.

2.3.5 Staying within array bounds

This transformation is different from the ones discussed throughout this section, as it is not an
optimizing transformation on the AST. Quite the contrary, it affects the kernel’s performance
negatively, since conditional statementes may cause threads in a warp to diverge: The threads
that will not execute a code segment because of the conditional predicate have to be idle while
the rest execute it. It is, however, included in the AutoGPU program as a facility to the user,
as a means of automatically producing a kernel that works correctly regardless of the array sizes
being multiples of the CUDA block sizes.

Should the user specify the bounds of any array that is referenced within the AST of the kernel,
application of this transformation will result in placing any assignment which contains references
to the array within a conditional statement (one for each array dimension), which requires that
the relevant index is within the specified bounds. The generation of one conditional statement
per array dimension rather than just one which combines all dimensions was chosen so that the
unrolling of a variable which is referenced only in one dimension of the array will only reproduce
the conditional expression which refers to it.

The user can specify whether these conditionals before array references should be generated
during the optimization process through a flag in the AutoGPU program (see section 2.6). This
is because the optimal parameters of the AST may change after augmenting it with conditional
statements.
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2.4 Translation to CUDA source code

In order for the performance of a version of the program, expressed in AST representation, to be
measured, the program must be translated to source code, compiled, and run. The CUDA source
code that must be yielded contains the AST information, as well as some other parameters (kernel
and formal arguments declaration, macro definitions, constant variable declarations).

Variable types are expressed via the vartype datatype, hence whenever the type of a variable is
mentioned as part of a string, the application of a function that returns the string representation
of a given vartype is implied and will not be further commented upon.

2.4.1 Translating the AST

Translation of the AST to CUDA source code is carried out by function translateKernel, which
returns the resulting source code as a string. The translation is done step-by-step following the
traversal of the AST from the root, and it is rather straightforward, therefore only a couple of
details will be discussed, instead of the way each statement.

Expressions are processed recursively and a set of parentheses is generated around any ex-
pression before the translation process proceeds to its sub-expressions. This ensures that every
expression will be evaluated in a valid order; and any minor optimization concerning values known
at compile time or changing the succession of operations in an expression can be expected to be
taken care of by the nvcc compiler. As far as references are concerned, these are addressed as
shown in subsection 1.2.1.

A parameter (prec) of the structure which contains the translation function indicates the
precision to be used for floating-point numbers. This affects the string representation of the type
of real variables, and the suffix of the floating-point literals (nothing for double, f for float and L

for long double). Also, regarding numeric literals, care must be taken to express negative numbers
with the - (minus sign) instead of the ~ (tilde) notation used in Standard ML, as well as ensuring
that the e in exponential real number notation is lower case.

The only other point of interest is the translation of the ParFor statements. First of all, it
should be noted that the translation function receives as input not only the AST, but also the
dimension of the problem domain. This is maintained throughout the translation process, along
with a value indicating the “current” dimension (which is initialized to have the same value as
the domain dimension). Every time a ParFor statement is processed, the “current” dimension
indicator is decremented by one. This combination of “total” and “current” dimensions/levels
provides the means to decide the value that should be assigned to the loop counter variable, as
can be seen in table 2.1.(

current
dimension ,

total
dimensions

)
Value assigned to loop counter

(2,2) blockIdx.x * blockDim.x*UNROLL1 + threadIdx.x

(1,2) blockIdx.y*UNROLL2

(1,1) blockIdx.x * blockDim.x*UNROLL1 + threadIdx.x

Table 2.1: ParFor loop counter value assignment

Of course, after assigning index values for each thread, the redundant ones (as described by
the first, stride and last parameters of the ParFor loop) need to be deactivated. The threads that
are so “killed” are the ones for which the set index i satisfies any of the following:

• For dense indexing:

· i < first

· i > last

· (i− first) mod stride 6= 0
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• For sparse indexing:

· i > last−first
stride + 1

2.4.2 Translating syntactic parameters of the AST

The output produced by translating the AST cannot be of any use without the proper “envi-
ronment”. This includes the declaration of the kernel’s formal arguments, as well as defining or
declaring any needed macros or constant variables, respectively.

The formal arguments of the kernel are converted to a string of all the arguments (type and
name), separated with commas. Placed between parentheses, this constitutes the formal argument
list of the kernel. (However, the kernel declaration is still incomplete, since the kernel function’s
name and return type must be specified; this is done during the creation of the .cu file, described
in section 2.5.)

The macro definitions and constant declarations are straightforward: The necessary macros
are #defined as outlined in subsection 1.2.1, separated by a newline character, and the constants
are declared as device constant type constant name ;, separated by a newline charac-
ter.

2.5 Interaction with the Operating System

Interaction between the AutoGPU program and the OS of the system where it executes involves
creating the .cu source file which contains the CUDA kernel (along with necessary definitions,
declarations, etc.), compiling the program’s source code (in which the kernel code is #included),
and executing the compiled program to measure its execution time. Also a couple of auxiliary
functions are provided in this level, which may be used to inject code segments in the program’s
source code that are essential for the optimization process to work correctly.

In order to create the .cu file containg the kernel code and all other necessary parameters, a
plethora of information is required. This information occurs in the kernel .cu file in the following
fashion:

• The program’s name is used to create an output stream to the file kernel-program name.cu.

• The width of the CUDA blocks is defined as a macro WIDTH.

• The ParFor unroll factors are defined as two macros, UNROLL1 and UNROLL2.

• The 2D-pitched array access macros are defined (see subsection 1.2.1).

• The constant variables are declared, as mentioned in subsection 2.4.2.

• The kernel function is declared as global void program name , followed by the formal
argument list, as described in subsection 2.4.2.

• The CUDA code of the kernel is obtained from the AST, as described in subsection 2.4.1,
and comprises the body of the kernel function.

It is assumed that the user, apart from the main program or “testing platform” which invokes
the kernel has prepared a Makefile for compiling it, thus the compiling process is nothing more than
the issuing of a make -B command to the OS. (The -B option is necessary, because no changes
are detected in the target .cu file after simply altering the kernel source code, as the latter is
#included in the former.) Also, the location of the compiled program (relative or absolute) must
be specified, as well as any execution arguments to be passed to the program by command line.
This information is expressed by two variables in the OS interaction structure (variables execLoc
and execArgs, respectively).

Compilation automatically occurs whenever the program is called to run: After the execution
command has been “assembled” using the aforementioned information, the compilation command
is issued before executing the program. Finally, the execution time of the kernel is returned.
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From the scope of the AutoGPU program, it is impossible to measure the execution time of
any part of the invoked program. Due to this reason, the execution time of the kernel must be
measured by the “testing platform” and saved somewhere where it can be inspected externally. The
AutoGPU program expects the elapsed time to be output as a single line string representation
of a floating-point number in the “comptime.agpu” file in the current folder (i.e. the active one
during the optimization process).

The program’s return value is used to indicate whether the kernel executed correctly or its
execution failed. This might happen if the multiprocessors are unable to handle the kernel in a
certain execution configuration, for instance because the number of threads per block exceeds the
target GPU’s limit, or due to lack of the necessary number of registers as a result of unrolling
a parallel for loop too much. In this case, a time representation of MaxInt seconds is returned,
effectively discarding the faulty kernel configuration from the set of possibly optimal ones.

Programming style may differ greatly between people, and the rather standard setting that
the AutoGPU program relies upon with regard to measuring the kernel’s execution time could be
the cause of unnecessary frustration during coding of the “testing platform” program. The two
auxiliary functions mentioned in the beginning of the section aim to overcome this.

Both work in a similar fashion, and the user may trigger their application through the corre-
sponding flags (see section 2.6).

One is provided to generate and inject code to carry out the process of measuring the execution
time and saving it as required. The code is injected just before (starting the timer) and after
(stopping the timer, and converting and saving its measurement) the invovation of the kernel.
The kernel invocation is recognized in the source code as consecutive lines that start with the
strings kernel-name and <<< and end with a semicolon (;). Also, the libraries fstream and
sstream are loaded, since they are used to convert the time to a string and save it in a file.

The other one may be used to generate and inject code to check whether the kernel launched
correctly or failed and to return a non-zero value on failure. The kernel invocation is recognized
in the way described above and the error checking code is injected just after it. Also, the source
code is scanned for a return 0; statement after that, which becomes replaced by a conditional
that controls returning either 0 (success) or 1 (failure), depending on the error checking outcome.

For an example of a “testing platform” program and the discussed necessary code segments,
see Appendix A.

2.6 AST Optimization

All necessary tools for altering and optimizing an AST have been described in the previos sections
of this chapter. These need to be combined in a single automatic procedure that will apply the
optimizing transformations on the AST with a set of parameter combinations, comparing the
results each version yields, in order to obtain the best one.

This is the highest-level operation provided by the AutoGPU program, and as such it has
access to each of the defined mutable parameters of the AST, and may inspect them at any time
to get the their current instances. Furthemore, the AST is input in a mutable variable field of the
Optimization structure, which is updated as transformations are applied to it. Whenever a kernel
file is generated by the AutoGPU program it is implied that it is done so using the current set of
parameters.

It has been mentioned in the previous section that it is possible to specify whether the AutoGPU
program should insert code segments that perform the timing and kernel fail checking processes
in the main program. If the relevant flags have been set before the optimization function is
called, then the code segments are generated in the main program’s source code before the actual
optimization commences.

Also, the set of possible values for each parameter has to be specified before invoking the
optimization functions. This is explained in detail in chapter ??.

The optimization function follows the brute force paradigm: All possible parameter combina-
tions (over defined search spaces) are tried and the performance of their corresponding ASTs is
compared before returning the optimal kernel implementation.
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First, the 2D-pitched arrays are marked and the corresponding array access macros are defined.
Then, the optimizing transformations are successively applied to the AST in the following order:

1. The thread indexing scheme for each ParFor loop is checked and changed from dense to
sparse if needed.

2. Any partial accumulation in the global memory space is staged through an automatic
variable.

3. Arrays are cached through the shared memory spaces if possible.

4. If the flag that controls generation of conditionals to ensure that array indices stay within
bounds is set, the relevant conditional statements are generated.

After the application of the above transformations, the AST is traversed and the counter
variable of any serial for loop is marked. Then, the .cu file with the source code of the kernel
is generated, compiled along with the main program source code, run, and its execution time is
returned. The initial AST parameters and execution time are set as the current best kernel data.

What is left to do now is measure the effect in performance of every AST parameter combina-
tion to find the optimal one. The algorithm of going through all possible parameter combinations
over the specified sets of values is as follows:

1. Generate a list of all valid double combinations of unroll factors for the parallel for loops.
For each one, apply the parallel for loop unrolling transformation on the AST1 , and go to
step 2.

2. Generate a list of all valid values for serial for loops for one serial loop counter. For each
one, set it as that loop’s unroll for, apply the serial for loop unrolling transformation on the
AST, and go to step 3.

3. If there are still marked loop counters that have not been processed, go to step 2; otherwise,
go to step 4.

4. Generate a list of all valid values for the CUDA block width. For each one, set it as the
current width, and go to step 5.

5. Generate the kernel source code file, compile and run it. If its performance is better than
that of the current best kernel, then the current combination of parameters and execution
time is set as the new best one.

After determining the parameters which result in the most efficient kernel, these are restored
and the corresponding .cu source code file is generated.

Naturally, minor tweaking and optimizing may still be applicable to the kernel (a common one
might be removing the possibly unnecessary thread deactivating conditionals), but these should
be very easy to handle manually.

1The ASTs referred to in steps 1 & 2 are the ones in effect when “entering” the corresponing step.
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Chapter 3

AutoGPU running instructions

In this chapter, the steps that a user must take to optimize a kernel via the AutoGPU program are
explained. Execution of the AutoGPU program requires a UNIX environment with a Standard
ML compiler, a CUDA compiler and a C compiler (required by the CUDA compiler). The program
itself was developed and tested on on the Standard ML of New Jersey (SML/NJ) Standard ML
compiler and NVIDIA’s nvcc CUDA compiler coupled with the GNU gcc C compiler.

The AutoGPU source code files are listed in section 3.1.
How to specify the input and various parameters of the AutoGPU program, as well as how

the optimization process is invoked, is explained in section 3.2.
The appropriate execution configuration for the inspected kernel is presented in section 3.3,

along with guidelines for developing the necessary “testing platform program”.

3.1 Source code files & compilation

The following files constitute the AutoGPU source code package:

dtypes.sml : Datatype definitions.
sigs.sml : Signature specifications for each of the defined structures and functors.
kernelargs.sml : The structure KernelArgs. Contains the tools described in section 2.1.
misc-tools.sml : The structure MiscTools. Contains the tools described in section 2.2.
alterAST.sml : The functor AlterAST. Contains the tools described in section 2.3.
translate.sml : The structure ToCUDA. Contains the tools described in section 2.4.
cmdline.sml : The functor Cmdline. Contains the tools described in section 2.5.
optim.sml : The functor Optimizer. Contains the tools described in section 2.6.
functorapp.sml : Constructs the structures associated with each defined functor, as outlined

in figure 2.1. The constructed structures are AltAST, Terminal and Opt.
uses.sml : A series of use ‘‘...’’ statements, which serves to load and compile

the above source code files in the correct order.

To compile the AutoGPU program, the user must commence a session with a Standard ML
compiler, and issue the command: use ‘‘uses.sml’’;. The Standard ML environment is then
enriched with the AutoGPU program, and the user may access its various structures.

3.2 Input, parameters and execution

It has been mentioned in chapter 2 that the various parameters that the AutoGPU program needs
to optimize a kernel are stored in mutable variables. Therefore, there are two ways to assign the
desired value to each parameter (including the input AST):

1. Modifying the source code of the AutoGPU program. The user must edit the relevant file
so that the desired assignment is realized. (All parameters are defined in the beginning of a
structure body declaration.)
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2. Assigning the desired value to the parameter through a Standard ML compiler environment.

With respect to the second option, the following example may be considered: The user has
written the AST of a serial function he or she wishes to optimize, and stored it in file myast.sml

as val ast = ParFor (...). Then, the interaction with a Standard ML compiler (in this exam-
ple, the SML/NJ compiler) shown in figure 3.1 will assign the user-defined AST to the relevant
AutoGPU variable (of course, the AutoGPU program must be loaded for the following to work):

Figure 3.1: Example of specifying a user-defined AST as the AutoGPU input program. User input
is at lines preceeded with a dash (-).

Of course, it is possible to write the assignment statement Opt.ast := ast; in the prepared
file; thus, loading the file will also assign the desired value to the relevant AutoGPU parameter.
Furthermore, the prepared file need not contain only one value declaration and/or assignment:
The user may prepare a file that takes care of all AutoGPU parameters.

The parameter declarations are divided among the source code files, however all can be accessed
through the highest-order structure, Opt. Hence, any parameter x may be accessed as Opt.x.

Kernel arguments

The kernel parameter variables are declared in file kernelargs.sml and are the following:

• progname is the string of the desired kernel name.

• kargs is the list of the formal kernel arguments.

• constants is the list of constants available to the kernel.

• macroarrays is a list of all the 2D-pitched arrays referenced in the kernel body.

• arraybounds is a list containing the bounds variables of specified references (normally arrays,
but the user may define any variable to be “bounded”.

To clarify, an example of a kernel declaration along with the constants it operates upon, and
the corresponding AutoGPU parameter assignments is presented in figure 3.2.

There are three points that should be noted, regarding the example of figure 3.2:

• The macroarrays list need not be defined by the user, as this is done automatically before
the optimization process commences.

• As has been mentioned in section 2.1, the array pitches for any 2D arrays are also automat-
ically appended in the constants lists.

• The arraybounds list needs to be defined only if the user intends to have the AutoGPU
program generate conditionals to control accesses to the variables this list contains.
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Figure 3.2: Example of specifying a kernel’s arguments and constants in the AutoGPU program

Loop parameters

The parameters that control the parallel loop block sizes and counter declarations, as well as the
unrolling of all loops are declared in file misc-tools. These are the following:

• ndims is the kernel program domain dimension, or the number of dimensions of the arrays
that the kernel operates on.

• width is the CUDA block width, or the number of threads per CUDA block.

• unrlPar is a 2-tuple that contains the unroll factors of the parallel loops. (If ndims has a
value of 1, then only the first element of unrlPar is referenced, but it still needs to be a
2-tuple.)

• unrl is a list of the serial loop counters and their respective unroll factors.

All of the above parameters are assigned values by the AutoGPU program as part of the
optimization process. However, if the user wishes that the AutoGPU program simply generate
a specific version of a kernel (see section 2.6), he or she may assign the desired values to these
parameters and call function getCurrKernel (see also Kernel generation).

An example of specifying a set of loop parameters in the AutoGPU program is presented in
figure 3.3.

Block
width

Domain
dimension

Loop unroll factors
Parallel loops Serial loops
i loop j loop k loop l loop

128 2 2 4 5 10

Figure 3.3: Example of specifying a desired loop configuration in the AutoGPU program

Floating-point number precision

Floating-point number precision is controlled by variable prec, declared in file translate.sml.
As stated in subsection 1.2.2, it may be assigned any of the following values:
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• FLOAT

• DOUBLE

• LONGDOUBLE

The default precision is that of the float type, and it controls the precision of all floating-point
variables or literals referenced in the kernel.

Compiled program configuration

The AutoGPU optimization process requires that the compiled program be executed, so that
its execution time may be measured. As a result, the following parameters, declared in file
cmdline.sml, must be defined:

• execArgs, which is a list that contains all command-line arguments that must be passed to
the compiled program.

• execLoc, which is a string representation of the directory where the makefile target (i.e. the
compiled program) is created. This may either be a relative or an absolute UNIX path.

For a program that is compiled by a makefile which follows the CUDA SDK model and which
receives two command-line arguments, the appropriate parameter assignments are shown in fig-
ure 3.4.

Figure 3.4: Example of specifying the execution configuration for a program with 2 command-line
arguments, compiled in the CUDA SDK environment.

Kernel generation

If the user wishes to obtain a kernel described by a set of parameters he or she has already specified
in the AutoGPU program, then the relevant function has to be invoked. This is achieved by the
command:

Opt.getCurrKernel ();

The kernel source code is generated in file kernel-progname.cu, stored in the current directory.

If, on the other hand, the user wishes to obtain the optimal kernel as it results by the AutoGPU
optimization process, certain parameters have to be defined first. All of those are declared in file
optim.sml.

Three boolean flag parameters are declared:

• genConds controls whether the conditional-generating transformation described in subsec-
tion 2.3.5 will be applied.

• genTimer controls whether the code segments which carry out the necessary timing process
in the main program will be generated in the main program source code (see appendix A
for the relevant source code).

• genErrChk controls whether the code segments which perform checking if the kernel failed to
launch will be generated in the main program source code (see appendix A for the relevant
source code).
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The rest of the parameters are used to create the sets of possible values for the width, unrlPar
and unrl parameters. Generation of the set for each parameter element is controlled by three
parameters, and the resulting set of size N for each one is the following:

possible values set = {l, f(l, b), f(f(l, b), b), . . . , f(f(. . . f(l, b), . . .), b)}

The N, l, f and b values are defined in the following parameters:

• xxxxL is the lowest value l that the parameter xxxx may take.

• xxxxN is the number of different values N that will be tried for parameter xxxx during the
optimization process.

• xxxxS is a 2-tuple containg a function f on two integers and an integer value, that is used
as the second operand b of function f.

Two examples of how the above parameters may be used to generate a desired set are presented
in figures 3.5 and 3.6.

target set = {1, 2, 4, 8, 16}

Figure 3.5: Example of how to specify generation of a set of powers of 2 in the AutoGPU program

target set = {1, 2, 3, 4, 6, 12}

Figure 3.6: Example of how to specify generation of a set of divisors of 12 in the AutoGPU
program

If all necessary parameters of the AutoGPU program have been set, the optimization process
is invoked with the command:

Opt.optimize ();

Naturally, the optimization process execution time will vary, depending on the computational
load of the kernel, the size of the testing input data, and the number of loop parameter com-
binations. As a reference, the optimization of the kernels presented in chapter ?? required the
AutoGPU program to run for approximately 2 hours.
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3.3 Testing platform development

Each version of a kernel that is generated by the AutoGPU program must be run, in order to
measure the execution time of each successive kernel version, which provides the mechanism to
deduce which version is the optimal one. Nonetheless, a CUDA kernel cannot execute on its own:
A main program is needed.

This main program must read the kernel’s input data, allocate space in GPU memory, copy
data to it, set the CUDA kernel execution configuration, and free allocated memory. All these,
plus copying the kernel’s result back to host memory, comprise a typical main program of a CUDA
kernel. However, a main program developed to invoke a kernel being optimized by the AutoGPU
program must follow a specific model. Such a main program is referred to as the “testing platform”
of the kernel.

Two examples of a testing platform’s source code can be found in appendix A. The presented
testing platforms are the ones used for the optimization of the kernels discussed in chapter 4.

Including the kernel file

The kernel source code is generated in a separate file than the testing platform source code, and
the file of the generated kernel contains certain macro definitions that must be loaded in the scope
of the testing platform as well. As a result, the kernel source code must be #included in the
testing platform source code, with the following directive to the CUDA preprocessor:

#include ‘‘kernel-progname.cu’’

The #include directive must specify the kernel source code file with double quotes rather than
angled brackets, because the kernel file is generated in the same directory as the testing platform
file, instead of the library directory maintained by the compiler preprocessor.

Main program input

The AutoGPU program was developed to be able to optimize (or at least operate on) any kernel.
Consequently, automatic generation of input data for a kernel is not possible; the user must supply
the data the kernel will operate on. Naturally, the supplied input should be a set of data that is
repesentative of the input that the optimal kernel is expected to receive. Care must be taken when
considering the input’s volume: As the input becomes larger in size, the optimization process will
need to execute for a longer period of time; on the other hand, too small an input may result in
kernel that is not optimal for a specific input size and beyond. Hence, a golden mean must be
found, as far as the size of the input is concerned.

Furthermore, since the kernel optimization process is automatic, the main program may not
receive input via the terminal during execution. Instead, the program’s input must be stored in
files and passed to it as command-line arguments.

CUDA execution configuration

The CUDA block and grid dimensions depend on the parallel loop parameters of the kernel. These
are defined in macros during generation of the kernel’s source code, and should be used to specify
the CUDA execution configuration of the kernel.

Any 2-dimensional matrix is presupposed to be stored in column-major fashion, hence the
appropriate CUDA grid and block dimensions are as shown in table 3.1. Variables in capital
letters correspond to the automatically generated macros.

Output size Grid size Block size

m
⌈

m
WIDTH·UNROLL1

⌉
WIDTH

m× n
⌈

m
WIDTH·UNROLL1

⌉
×
⌈

n
UNROLL2

⌉
WIDTH

Table 3.1: Appropriate CUDA execution configuration for 1D & 2D kernels
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GPU memory data

Memory allocation and assignment for all data that must reside in GPU memory must be per-
formed by the testing platform before the kernel’s invocation. The only exception is the case
of constant variables which are defined in the corresponding AutoGPU parameter (see sec-
tion 3.2), including pitches for 2D arrays; these constants need only have their value assigned by
the testing platform, since their declarations are generated in the kernel source code file.

Kernel execution time measurement

It is impossible to properly measure the execution time of a CUDA kernel from the scope of the Au-
toGPU program; this must be realized by the testing platform. In accordance with the AutoGPU
model, the testing platform must stored the measured execution time in a file comptime.agpu, in
the same directory where the testing platform, kernel, and input data are stored.

Kernel launch failure checking

A kernel generated during the optimization process may fail to launch. This might happen because
the size of the CUDA blocks exceeds the maximum size allowed by the resident GPU, or because
the number of registers that have to be allocated to each block exceeds the number of registers
available to a multiprocessor, and so forth.

In this case, the main program will execute normally, yet the measured execution time will be
no more that several microseconds. This measurement must be discarded, otherwise the faulty
kernel will be set as the optimal one, due to its seemingly low execution time. Therefore, the testing
platform should check for CUDA runtime errors after the kernel function has returned, and return
an integer value other than 0 at its termination. This will be interpreted by the AutoGPU program
as an execution time of MaxInt seconds, effectively discarding the faulty kernel.
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Chapter 4

Examples

In this chapter, the AutoGPU program is applied to the AST representations of the serial imple-
mentations of two basic computanional operations, in order to demonstrate the results that can be
yielded by it. Application of the program will automatically produce the final optimized kernel,
but here also intermediate versions will be shown along with performance statistics, so that the
optimizational steps may be outlined clearly. In each example, the kernel suffixed with autogpu
is the one that is automatically produced by application of the AutoGPU program.

All reported execution statistics refer only to the execution of the kernel in the GPU, and not
that of the whole (i.e. host-to-host) execution.

All matrices that are supplied to the kernel as input throughout this chapter refer to square ma-
trices with random floating-point (single precision) elements in the interval [−1.0,+1.0], generated
with the use of the C standard library function rand().

Reported kernel execution statistics refer only to the execution of the kernel in the GPU,
and not that of the whole (i.e. host-to-host) execution. These statistics were measured on the
quatro server of the Electrical & Computer Engineering Department at the Aristotle University
of Thessaloniki, School of Engineering. The server’s computation units are shown in table 4.1.

GPU
NVIDIA Tesla C1060
Clock rate @ 1.3GHz
240 cores, 30 multiprocessors

CPU Intel ...something...

Table 4.1: The computation units of AUTh’ quatro server

The output of every reported kernel has been checked for correctness against the output of
its serial version. Of course, some error is expected, due to differences between the GPU & CPU
computation models (e.g. rounding policy). The maximum absolute error of the optimized parallel
version will be reported for certain input sizes as a point of reference. It should be mentioned that
different parallel versions of the same original (serial) AST produce identical output.

As explained in section 2.6, different widths for the CUDA blocks are tried along with the
various loop unrolling factors. As a result, the AutoGPU program does not provide any infor-
mation as to the optimal CUDA block width of the intermediate kernels that will be presented
throughout this chapter: These kernels are arbitrarily defined to execute in CUDA blocks of 128
threads each.

4.1 Matrix Multiplication: MATMUL

Matrix multiplication is a typical example of a computational process that can be easily imple-
mented by a CUDA kernel. The algorithm is characteristically simple and operation-intensive thus
allowing a clearly displayed exploitation of the CUDA programming model. The methodology for
manually performing the following optimizations is explained in detail in [3]. Here, the same
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(or corresponding) successive versions of the kernel are produced automatically by the AutoGPU
program. The performance of the final optimized kernels will then be compared.

The computed product is that of the expression A = B · C. Matrices are stored in column-
major fashion and their dimension variables are as follows:

A : m× n , B : m× p , C : p× n

Two cases of matrix multiplication will be studied: One where the input matrix sizes are
expected to be multiples of the of the size that each CUDA block operates upon; and one where
the input matrices may be of any (valid) size. The latter requires the generation of the conditional
statements described in subsection 2.3.5, whereas the former does not.

The code for the simple serial implementation of matrix multiplication is shown in figure 4.1.

Figure 4.1: mm s: Serial MATMUL kernel

4.1.1 Without conditionals

In this subsection, five parallel implementations of matrix multiplication will be compared:

mm 0 : The “vanilla” parallel kernel—a direct translation of the input AST to
CUDA source code.

mm 1 : The parallel kernel, after staging of partial accumulations.
mm 2 : The parallel kernel, after caching of array references.
mm autogpu : The optimized parallel kernel, after unrolling of both parallel and serial

loops.
mm wolfe : Michael Wolfe’s k4-128y2x4x4.cu kernel.

Successive versions of the kernel

First, the AST must be scanned for 2D-pitched array references, in order to deduce the appropriate
macros and constant pitches. Afterwards, the vanilla parallel version of the MATMUL kernel
can be obtained, whose CUDA code is shown in figure 4.2.

Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 128 UNROLL1 ≡ 1 UNROLL2 ≡ 1

Figure 4.2: mm 0: Vanilla parallel MATMUL kernel
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Naturally, 3 array macros are generated, one for each 2D-array. Also, the if statements which
deal with deactivating redundant threads are redundant in this (and all subsequent) kernel. This
is because the ParFor statement which generated them is parametrized with first = 0, last = m
(or n), stride = 1, so that no threads need to be deactivated. These statements will be omitted
from now on.

The first optimizing transformation can now be applied. The code in figure 4.3 results from
staging the partial accumulation of A at(i,j).

Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 128 UNROLL1 ≡ 1 UNROLL2 ≡ 1

Figure 4.3: mm 1: Staged accumulation parallel MATMUL kernel

In version mm 1, all threads of the same block access the same element of matrix C, a behavior
which can be optimized by caching the C array through shared memory. The resulting code
is shown in figure 4.4

Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 128 UNROLL1 ≡ 1 UNROLL2 ≡ 1

Figure 4.4: mm 2: Staged & cached parallel MATMUL kernel

The kernel can be further optimized by unrolling the i, j and k loops. All combinations of
loop unroll factors in the set {1, 2, 4, 8, 16} are tried and the kernel with the best performance is
returned. Its code is shown in figure 4.5.
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Unrolling of the loops causes an increase in the source code’s volume, which may heavily
affect readability. The code presented in figure 4.5 is the automatically generated one, after some
“tidying up” has been done, including issuing the #pragma unroll directive before the k loop
instead of unrolling it explicitly.
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Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 256 UNROLL1 ≡ 2 UNROLL2 ≡ 8
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Figure 4.5: mm autogpu: Optimal MATMUL kernel

The kernel execution time (figure 4.6) and performance in GFLOPS (figure 4.7) are shown
for the serial and all parallel implementations of matrix multiplication, tested on a series of
input matrices of increasing sizes. Hence, the benefit of each optimizing transformation can be
graphically displayed. The serial kernel’s performance is shown only for a subset of the input
matrices, as it is dramatically lower than that of the parallel kernels.

Reference kernel: mm wolfe

To help appreciate the result that can be achieved by the AutoGPU program, its output is com-
pared to the mm wolfe reference kernel. The reference kernel’s source code is shown in figure 4.8.

As can be seen, the mm autogpu and mm wolfe kernels are very similar, since the same opti-
mizations have been applied to each. The difference lies in the defined loop configurations and
unroll factors, which may be seen at table 4.2. This is expected, since the loop parameters set by
the AutoGPU program is decided upon as the optimal one (for the GPU it was tried on) between
625 different sets—needless to say, it is realistically impossible for all these combinations to be
tried manually.
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Figure 4.6: Execution times of the input, intermediate and final MATMUL kernels

Figure 4.7: Performance of the input, intermediate and final MATMUL kernels
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Figure 4.8: mm wolfe: Michael Wolfe’s kernel

The optimizations that have been applied to the optimal generated kernel and the reference
one, as well as the loop parameters for each, are summarized in table 4.2.

Kernel
Block

Staging
shared Loop unroll factors

width caching i loop j loop k loop
mm autogpu 256 Yes Yes 2 8 16

mm wolfe 128 Yes Yes 2 4 4

Table 4.2: Optimal and reference MATMUL kernels specifications

The performance statistics obtained by each of the two kernels, for input matrices of sizes
512× 512 to 16896× 16896, are shown in figures 4.9 and 4.10.

The advantage of being able to determine the best set of unroll factors (within a defined
search space) is apparent: The mm autogpu kernel reaches a performance of 220 GFLOPS, while
the mm wolfe kernel stops at 175 GFLOPS.

Kernel precision

Table 4.3 lists the maximum absolute error in the product matrix computed in the GPU (as
compared to that of the CPU), for different input matrix sizes.

Matrix size Maximum absolute error
512× 512 1.14441 · 10−5

1024× 1024 2.28882 · 10−5

2048× 2048 5.34058 · 10−5

4096× 4096 7.62939 · 10−5

Table 4.3: MATMUL kernel (no conditionals) output’s maximum absolute error

It should be kept in mind that the kernels discussed in this subsection can only operate on
matrices whose sizes are in accordance with the CUDA execution configuration for each one. For
example, in the case of the mm autogpu kernel, this means that input matrices should adhere to the
following specification: B : (512 ·a)×(16 ·b), C : (16 ·b)×(8 ·c), where 512 = WIDTH ·unroll i loop,
16 = unroll k loop and 8 = unroll j loop.

Conclusions

In tables 4.4 and 4.5 a quantitative comparison of the discussed kernels is presented for input
matrices of size 2048× 2048, regarding execution time and floating-point operations, respectively.

These statistics (both graphical and numerical) indicate the importance of each optimization.
First of all, staging the accumulation of every element of the product matrix A (a very simple
process for the MATMUL kernel) results in an almost twice as fast kernel as the direct translation
of the serial one. The same happens when stripes of of input matrix C are cached through the
shared memory space. This is because warp size elements of the C matrix are processed in a
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Figure 4.9: Execution times of the reference and optimal MATMUL kernels

Figure 4.10: Performance of the reference and optimal MATMUL kernels
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Kernel
Execution

time
Approximate speed-up

to mm 0 to mm 1 to mm 2 to mm wolfe
mm 0 1248 msec – – – –
mm 1 727 msec 42% – – –
mm 2 392 msec 69% 46% – –

mm wolfe 98 msec 92% 87% 75% –
mm autogpu 72 msec 94% 90% 81% 27%

Table 4.4: MATMUL kernel execution times and relative speed-up for 2048× 2048 matrices

Kernel Perfomance
Approximate speed-up

to mm 0 to mm 1 to mm 2 to mm wolfe
mm 0 14 GFLOPS – – – –
mm 1 24 GFLOPS 71% – – –
mm 2 44 GFLOPS 214% 83% – –

mm wolfe 175 GFLOPS 1150% 629% 298% –
mm autogpu 235 GFLOPS 1579% 879% 434% 34%

Table 4.5: MATMUL kernel FLOPS and relative speed-up for 2048× 2048 matrices

single memory operation in the body of the k s loop (instead of warp size memory operations),
and in the body of the k loop, each element of matrix C is accessed simultaneously by all threads
of the warp, as fast as a register would be.

However, this is not enough: GPUs are able to perform calculations and memory transfers
concurrently, therefore the memory latency may be hidden by a massive computation load. This
may be realized by having each thread compute the value of more than 1 product matrix element,
i.e. by unrolling the parallel loops. Of course, there are limits as to how much the parallel loops
can be unrolled, as explained in subsection 2.3.4.

Owing to this reason, as well as because it generally decreases the overhead for each loop, loop
unrolling results in a dramatic performance boost, especially with respect to the FLOPS achieved
by the kernel. Also, it is apparent by the gain achieved by the mm autogpu kernel, with regard to
the otherwise very similar mm wolfe kernel, that determining the loop parameters (unroll factors
as well as block size) is rather important for exploiting the capabilities of a GPU.

4.1.2 With conditionals

In this subsection, five parallel implementations of matrix multiplication, analogous to the ones
discussed in subsection 4.1.1, will be compared:

mm cond 0 : A direct translation of the input AST to CUDA source code, enhanced
with conditionals to ensure that no out-of-bounds array accesses will oc-
cur.

mm cond 1 : The parallel kernel after staging of partial accumulations.
mm cond 2 : The parallel kernel, after caching of array references.
mm cond autogpu : The optimized parallel kernel, after unrolling of both parallel and serial

loops.
mm cond wolfe : Michael Wolfe’s k4safe-128x4x4.cu kernel.

It should be noted that during the kernel optimization process –as implemented in the Auto-
GPU program– the AST transformation to add conditionals to stay within array bounds is applied
only before the loops are unrolled. This is because nodes where array references occur may differ
between the input AST and the one resulting from the staging or caching transformations. Here,
the conditionals are inserted in the kernel all intermediate transformations have been applied, for
each kernel.
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Successive versions of the kernel

Because in the following versions of the MATMUL kernel the matrix dimensions will be frequently
referenced, these variables will be defined as the constants M, N and P.

Apart from the generation of conditional statements to control matrix element access, the
optimizing transformations have exactly the same effect on the kernel’s AST, hence the effect of
the applied transformations will not be further commented upon.

Figure 4.11 shows the straightforward implementation of the MATMUL kernel, with conditionals
added.

Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 128 UNROLL1 ≡ 1 UNROLL2 ≡ 1

Figure 4.11: mm cond 0: Vanilla parallel MATMUL kernel (any matrix size)

The generation of if statements without an else part, allowed by the Blank statement as men-
tioned in subsection 1.2.4 can be seen in figure 4.11. These do not affect performance negatively,
as they are taken care of by the nvcc compiler. Since they are redundant and make the kernels
more difficult to read, they will be omitted from now on.

Figures 4.12 and 4.13 show the kernels obtained after the staging and caching transformations
have been applied, respectively.

The kernel that is ultimately produced by the AutoGPU program is shown in figure 4.14.
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Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 128 UNROLL1 ≡ 1 UNROLL2 ≡ 1

Figure 4.12: mm cond 1: Staged accumulation parallel MATMUL kernel (any matrix size)
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Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 128 UNROLL1 ≡ 1 UNROLL2 ≡ 1

Figure 4.13: mm cond 2: Staged & cached accumulation parallel MATMUL kernel (any matrix size)
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Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 64 UNROLL1 ≡ 1 UNROLL2 ≡ 8
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Figure 4.14: mm cond autogpu: Optimal MATMUL kernel (any matrix size)
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It can easily be understood by the kernels produced so far that not all conditional statements
are optimally placed or even necessary to maintain the kernel’s computational correctness. The
matrix bounds-checking transformation is provided to the user solely as a facility to produce
a more general kernel. To obtain the optimal general kernel, the user should either alter the
resulting source code (e.g. by removing unnecessary if statements, or otherwise changing them),
or provide the AutoGPU program with an input that checks for out-of-bounds references and skip
the relevant transformation.

Another interesting (although expected) observation is that the kernel’s optimal loop param-
eters are different between the mm autogpu and mm cond autogpu kernels, especially the CUDA
block width, which resulted in the low value of 64 threads per block. Bearing that in mind, it
is possible that yet another parameter set may be decided upon, should the user supply the Au-
toGPU program with an input AST already enhanced with the necessaty conditionals, as was
proposed above.

Again, the execution time and performance of the discussed kernels are presented in figures 4.15
and 4.15, respectively. Logically enough, the performance of these kernels is rather lower than
that of their non-bounds-checking counterparts.

Reference kernel: mm cond wolfe

The source code for the reference kernel which the optimal kernel, resulting from the AutoGPU
program, is compared against can be seen in figure 4.17.
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Figure 4.15: Execution times of the input, intermediate and final MATMUL kernels with conditionals

Figure 4.16: Performance of the input, intermediate and final MATMUL kernels with conditionals
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Figure 4.17: mm cond wolfe: Michael Wolfe’s kernel (any matrix size)

The optimizations that have been applied to the optimal generated kernel and the reference
one, as well as the loop parameters for each, are summarized in table 4.6.

Kernel
Block

Staging
shared Loop unroll factors

width caching i loop j loop k loop
mm cond autogpu 64 Yes Yes 1 8 16

mm cond wolfe 128 Yes Yes 1 4 4

Table 4.6: Optimal and reference MATMUL kernels (any matrix size) specifications

The performances of the optimal and the reference kernels are graphically presented in fig-
ures 4.18 and 4.19, for input matrices of sizes 200 × 200 to 16800 × 16800, with a size stride of
200.

The mm cond wolfe kernel’s performance seems to be vary greatly depending on the input
matrix sizes, whereas the performance of kernel mm cond autogpu is stable. This should be a result
of the method used in unrolling the inner k loop in mm cond wolfe, as this is the major difference
between the two kernels. Despite this defficiency of the mm cond autogpu kernels, however, its
performance (constant, around 155 GFLOPS) is still better than the average performance achieved
by the reference kernel, whose performance varies from less than 120 GFLOPS to about 170
GFLOPS.

Kernel Precision

Table 4.7 lists the maximum absolute error in the product matrix computed in the GPU (as
compared to that of the CPU), for different input matrix sizes.

Conclusions

The quantitative relative performance of the kernels discussed in this subsection are presented
for input matrices of size 3000 × 3000, regarding execution time (table 4.8) and floating-point
operations (table 4.9). The reference kernel is omitted in these tables, since no one input matrix
size is representative of its performance.

As with the optimal kernel discussed in the previous subsection, a decrease of over 90% in
execution time and increase of over 10x in floating-point operations is achieved by the kernel
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Figure 4.18: Execution times of the reference and optimal MATMUL kernels with conditionals

Figure 4.19: Performance of the reference and optimal MATMUL kernels with cinditionals
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Matrix size Maximum absolute error
400× 400 9.53674 · 10−6

800× 800 2.09808 · 10−5

1600× 1600 3.05176 · 10−5

3000× 3000 5.34058 · 10−5

Table 4.7: MATMUL kernel (with conditionals) output’s maximum absolute error

Kernel
Execution

time
Approximate speed-up

to mm cond 0 to mm cond 1 to mm cond 2
mm cond 0 4925 msec – – –
mm cond 1 2338 msec 53% – –
mm cond 2 1681 msec 66% 28% –

mm cond autogpu 389 msec 92% 84% 77%

Table 4.8: MATMUL kernel execution times and relative speed-up for 3000× 3000 matrices

Kernel Perfomance
Approximate speed-up

to mm cond 0 to mm cond 1 to mm cond 2
mm cond 0 11 GFLOPS – – –
mm cond 1 23 GFLOPS 109% – –
mm cond 2 32 GFLOPS 191% 39% –

mm cond autogpu 139 GFLOPS 1164% 504% 334%

Table 4.9: MATMUL kernel FLOPS and relative speed-up for 3000× 3000 matrices

generated by the AutoGPU program. Also, the resulting statistics suggest that the presence of
the conditional statements limits the gain achieved by caching the C matrix references through
the shared memory space.

In conclusion, the simple conditional statement generation method employed by the AutoGPU
program does not automatically result to an optimal kernel; notwithstanding, the optimized one
that is produced still demonstrates a high performance.

4.2 Direct 2D Convolution: CONV

In this section, the process of optimizing a kernel that computes convolution of a 2D image with
a template will be presented, as it is performed by the AutoGPU program.

The direct convolution algorithm is another example of a computation-intensive procedure
that be mapped to the CUDA programming model. As with the MATMUL kernel (section 4.1),
each thread will be calculating the value of 1 element of the resulting matrix, multiplying its
neighboring elements with corresponding elements of the convolution template.

Calculating a convolution directly is only advantageous for small template matrices, of size up
to 11× 11; beyond that, it is faster to transform the matrices in the Fourier domain (using a Fast
Fourier Transform method) and calculate is the transformes matrices’ product. Hence, only small
template matrices will be discussed in this section.

Due to the small size of the template matrix, as well as the fact that the template element
access pattern is the same for each computed element of the convolution matrix, the template
matrix is set to reside in constant memory: This way, since all threads will be accessing the
same template value at the same time, this will result in single memory transfer, as fast as a
register access. Since the template matrix will not exceed a certain size, it is safe to declare the
constant template matrix with a size of, say, 225 (i.e. 15 · 15).

The computed comvolution will be that of the expression O = I ∗ ∗T . Matrices are stored in
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column-major fashion and their dimension variables are as follows:

I : IH × IW , T : TH × TW , O : SH × SW = (IH + TH − 1)× (IW + TW − 1)

In order to calculate the convolution without any conditional statements to ensure that matrix
references stay within bounds (even for the serial version), the input image can be stored in an
(SH+TH−1)×(IW +TW−1) = BH×BW matrix, with an offset of (TH−1, TW−1) (assuming
0-indexed arrays). This means that the image matrix will be zero-padded by TH − 1 elements
along the start of the vertical axis, and by TW − 1 elements along the start of the horizontal axis.
If that condition is satisfied, a simple serial implementation of 2D convolution is that shown in
figure 4.20.

Figure 4.20: conv s: Serial CONV kernel

The number of floating-point operations per convolution element calculation is not very big
(specifically, it is 2 · TH · TW ), as is the width of the CUDA blocks worked out by the AutoGPU
–as will be shown in the following subsections–, therefore zero-padding the matrices and allowing a
(small) number of redundant threads to execute will be preferred to issuing conditional statements
to control matrix access.

The appropriate zero-padding for a CUDA block which calculates the values of an A × B
segment of the output matrix is as follows: First, the dimensions of the output matrix have to be
rounded up to the nearest multiple of the corresponding block dimension1. Then, the extended
dimensions of the input image, BH × BW are calculated as before, only with the new values
of the SH, SW variables, and the image matrix is again copied to GPU memory with an offset
of (TH − 1, TW − 1). As a result, the convolution can be computed without employing any
conditional statements, for input of any size.

Since the set of valid unroll factors for the two inner for loops is dependent on the size of the
template matrix (as these should be divisors of the template matrix dimensions), two cases of the
direct 2D convolution will be studied: One where the convolution template is a 5× 5 matrix, and
one where it is a 11× 11 matrix.

4.2.1 5× 5 convolution template

In this subsection, four parallel implementations of matrix multiplication will be compared:

1Here, “block dimension” does not refer to the dimension of the actual CUDA block configuration, but rather to
the dimension of the block times the corresponding parallel loop unroll factor, since an unrolled block will compute
more output elements than it has threads.
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conv5 0 : The “vanilla” parallel kernel—a direct translation of the input AST to
CUDA source code.

conv5 1 : The parallel kernel, after staging of partial accumulations.
conv5 autogpu : The optimized parallel kernel, after unrolling of both parallel and serial

loops.
conv5 flcc : The direct convolution implementation performed by the FLCC library,

developed by Georgios Papamakarios and Georgios Rizos.

Successive versions of the kernel

First, the AST is traversed in order to mark all 2D-pitched array references. The template matrix
will not be so marked, since it has been set to reside in constant memory, along with all
matrix dimension variables. Thus, the source code for the vanilla parallel version of the CONV

kernel is obtained, shown in figure 4.21.

Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 128 UNROLL1 ≡ 1 UNROLL2 ≡ 1

Figure 4.21: conv5 0: Vanilla parallel CONV kernel (5× 5 template)

The accumulation of the convolution result straight in the O matrix, which resides in global

memory, can be staged through an automatic variable. This results in the kernel shown in fig-
ure 4.22.

Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 128 UNROLL1 ≡ 1 UNROLL2 ≡ 1

Figure 4.22: conv5 1: Staged accumulation parallel CONV kernel (5× 5 template)

Application of the array caching transformation has no effect, since the I matrix reference
depends on both the i and j loops, therefore the CUDA coalescing condition is met for that access:
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Consecutive threads access consecutive array elements, resulting in a single memory transfer per
warp size threads.

Lastly, the loops of the kernel are unrolled. With regard to the ti and tj loops, the maximal
valid set of unroll factors is {1, 5}. The unroll factors’ set considered for the parallel (i and j loops)
is {1, 2, 4, 8, 16}. The code finally generated by the AutoGPU program is shown in figure 4.23.

Here, the unrolling of the serial for loops is shown without use of the #pragma unroll direc-
tive. Furthermore, to demonstrate a case of minor optimizations that may be applied after the
kernel’s generation, the accumulation variables are explicitly set to reside in registers and they
are initialized with a floating-point literal, instead of accessing matrix I; also, the i and j loop
counters are set as const values.
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Macros:
X at(i,j) ≡ (*( (float*)( (char*)X + j*pitch X ) + i ))

WIDTH ≡ 32 UNROLL1 ≡ 1 UNROLL2 ≡ 8
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Figure 4.23: conv5 autogpu: Optimal CONV kernel (5× 5 template)

Figures 4.24 and 4.25 show the execution time and FLOPS achieved by the serial and each
parallel implementation of direct 2D convolution algorithm, for square input images of increasing
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size.

Reference kernel: conv5 flcc

The FLCC library defines (among others) a set of direct 2D convolution kernels for square tem-
plates of sizes 1×1 up to 32×32. According to the FLCC model, the template matrix is not stored
in constant memory, but rather in global memory and is transferred in the shared

memory space at the kernel’s onset.
This is not the only difference between the optimal generated kernel and the FLCC imple-

mentation: The FLCC library kernel operates on 2-dimensional CUDA blocks, caches the image
matrix through shared memory, and the parallel loops are not unrolled. The source code of
the FLCC implementation of the direct 2D convolution is shown in figure 4.26.

The optimizations that have been applied to the optimal generated kernel and the reference
one, as well as the loop parameters for each, are summarized in table 4.10.

Kernel
Block

Staging
shared Loop unroll factors

size caching i loop j loop ti loop tj loop
conv5 autogpu 32× 1 Yes No 1 8 5 5

conv5 flcc 16× 16 Yes Yes 1 1 5 5

Table 4.10: Optimal and reference CONV kernels specifications (5× 5 template)

Graphical performance statistics for each of the two kernels are presented in figures 4.27
and 4.28. These were obtained for input image matrices of sizes 128× 128 to 17280× 17280.

Kernel precision

Table 4.11 lists the maximum absolute error in the convolution matrix computed in the GPU (as
compared to that of the CPU), for different input sizes sizes.

Image size Maximum absolute error
1024× 1024 1.90735 · 10−6

2048× 2048 1.90735 · 10−6

4096× 4096 2.38419 · 10−6

8192× 8192 2.38419 · 10−6

16384× 16384 2.38419 · 10−6

Table 4.11: CONV kernel output’s maximum absolute error (5× 5 template)

Conclusions

A quantitative comparison of the kernels discussed in this subsection, for an input image matrix of
size 8192× 8192, is presented in tables 4.12 and 4.13, regarding execution time and floating-point
operations, respectively.

It can be seen that the various optimizations –even though these are different for the conv5 flcc
conv5 autogpu kernels– again result in a considerable performance boost, up to almost 5x in the
GFLOPS performed.

Interestingly enough, the optimal generated kernel’s usage of the GPU multiprocessores seems
to be getting better as the input image size increases, while the opposite is observed for the
reference kernel, as figure 4.28 suggests.

4.2.2 11× 11 convolution template

In this subsection, the direct 2D convolution kernel is again optimized, but with an 11×11 template
matrix as input. This difference in the template size affects the values that the unroll factors of
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Figure 4.24: Execution times of the input, intermediate and final CONV kernels (5× 5 template)

Figure 4.25: Performance of the input, intermediate and final CONV kernels (5× 5 template)
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Kernel
Execution

time
Approximate speed-up

to conv5 0 to conv5 1 to conv5 flcc
conv5 0 239 msec – – –
conv5 1 138 msec 42% – –

conv5 flcc 49 msec 79% 64% –
conv5 autogpu 42 msec 82% 70% 14%

Table 4.12: CONV kernel (5 × 5 template) execution times and relative speed-up for 8192 × 8192
matrices

Kernel Performance
Approximate speed-up

to conv5 0 to conv5 1 to conv5 flcc
conv5 0 14 GFLOPS – – –
conv5 1 24 GFLOPS 71% – –

conv5 flcc 68 GFLOPS 386% 183% –
conv5 autogpu 80 GFLOPS 471% 234% 18%

Table 4.13: CONV kernel (5 × 5 template) execution times and relative speed-up for 8192 × 8192
matrices

the two serial for loops may take; also, it is possible that the loop optimization parameters may
result in different values than those for the 5× 5 template matrix.

The intermediate, optimal and reference kernels that perform the direct convolution of an
image with an 11× 11 template follow an identical logic as their counterparts that were outlined
for convolution of an image with a 5× 5 template. Consequently, the source code of these kernels
will not be presented herel rather, the relevant measurements and parameters will be presented
directly.

The following parallel kernels are discussed:

conv11 0 : The “vanilla” parallel kernel—a direct translation of the input AST to
CUDA source code.

conv11 1 : The parallel kernel, after staging of partial accumulations.
conv11 autogpu : The optimized parallel kernel, after unrolling of both parallel and serial

loops.
conv11 flcc : The direct convolution implementation performed by the FLCC library,

developed by Georgios Papamakarios and Georgios Rizos.

Optimal and reference kernels’ parameters

The optimal and reference kernels are described by the transformations and parameters summa-
rized in table 4.14.

Kernel
Block

Staging
shared Loop unroll factors

size caching i loop j loop ti loop tj loop
conv11 autogpu 64× 1 Yes No 1 16 1 11

conv11 flcc 16× 16 Yes Yes 1 1 11 11

Table 4.14: Optimal and reference CONV kernels specifications (11× 11 template)

Kernel performance

Figures 4.29 and 4.30 show the execution time of and floating-point operations performed by the
serial, intermediate and optimal generated direct 2D convolution kernels.
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The execution time and performance of the reference and optimal generated kernel can be seen
in figures 4.31 and 4.32, for input images of sizes 128× 128 to 17280× 17280.

Kernel precision

Table 4.15 lists the maximum absolute error in the convolution matrix computed in the GPU (as
compared to that of the GPU), for different input image sizes.

Image size Maximum absolute error
1024× 1024 4.76836 · 10−6

2048× 2048 5.72205 · 10−6

4096× 4096 5.72205 · 10−6

8192× 8192 5.72205 · 10−6

16384× 16384 7.62939 · 10−6

Table 4.15: CONV kernel output’s maximum absolute error (11× 11 template)

Conclusions

A quantitave comparison of the kernels discussed in this subsection, for an input image matrix of
size 8192× 8192, is presented in tables 4.16 and 4.17, regarding execution time and floating-point
operations, respectively.

Kernel
Execution

time
Approximate speed-up

to conv11 0 to conv11 1 to conv11 autogpu
conv5 0 1128 msec – – –
conv5 1 662 msec 41% – –

conv5 autogpu 106 msec 91% 84% –
conv5 flcc 81 msec 93% 88% 24%

Table 4.16: CONV kernel (11× 11 template) execution times and relative speed-up for 8192× 8192
matrices

Kernel Performance
Approximate speed-up

to conv11 0 to conv11 1 to conv11 autogpu
conv11 0 14 GFLOPS – – –
conv11 1 25 GFLOPS 79% – –

conv11 autogpu 153 GFLOPS 993% 512% –
conv11 flcc 200 GFLOPS 1328% 700% 31%

Table 4.17: CONV kernel (11× 11 template) execution times and relative speed-up for 8192× 8192
matrices

For an 11× 11 template matrix, the optimal kernel generated by the AutoGPU program fails
to perform better than the FLCC library kernel. The kernels’ major differences (see table 4.14
are the specified CUDA blocks and the caching of the image matrix; hence, the inability of the
AutoGPU program to generate a truly optimal kernel should lie in its not considering 2D CUDA
blocks or its not attempting to cache matrices whose access pattern fulfills the coalescing criterion.

Moreover, it should be noted that the kernels’ performance stays steady for input iamge ma-
trices of increasing sizes.
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Figure 4.26: conv5 flcc: FLCC library kernel (5× 5 template)
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Figure 4.27: Execution times of the the reference and optimal CONV kernels (5× 5 template)

Figure 4.28: Performance of the reference and optimal CONV kernels (5× 5 template)
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Figure 4.29: Execution times of the input, intermediate and final CONV kernels (11× 11 template)

Figure 4.30: Performance of the input, intermediate and final CONV kernels (11× 11 template)
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Figure 4.31: Execution times of the reference and optimal CONV kernels (11× 11 template)

Figure 4.32: Performance of the reference and optimal CONV kernels (11× 11 template)
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Chapter 5

Conclusions and future
considerations

GPUs have advanced to a point that their effectiveness in performing massive computations on a
set of data can greatly surpass that of general-purpose CPUs. Exploiting the capabilities of this
new tool is definitely worthwhile, especially with regard to possible real-time applications where
a program’s execution time is a crucial factor.

A new programming model is introduced to allow the utilization of a GPU’s resources in solving
a computational problem. However, this model adds new difficulties to kernel optimization process:
Apart from the “traditional” optimization techniques, such as loop unrolling and strip-mining,
the global , shared and constant memory spaces of the CUDA architecture must be
accessed in an appropriate pattern; concurrent threads must be synchronized and divergence of
the parallel algorithm should be avoided; and a big enough computational load has to be assigned
to each computational element in order to hide the memory latency. The experimental results
presented in this report give a clearer picture of the performance boost that can be achieved by
each of the aforementioned optimizations.

The optimizations that refer to the memory access patterns or to thread synchronization and
concurrency may be considered as general good programming practices with respect to the CUDA
model. The optimal thread execution configuration of the kernel, on the other hand, is dependent
on the architectural characteristics of the GPU the kernel will execute in. Consequently, selecting
the appropriate parameters from the plethora of possible ones for a given GPU is important when
a high performance is desired.

The AutoGPU program attempts to apply all of the above optimizations and performs the
search for the optimal kernel configuration. This allows for the generation of a high performance
kernel, tweaked for the target GPU, without any (or little) manual optimization. Kernels generated
in this fashion were compared with regard to performance against manually optimized kernels
that perform the same computational process. The results illustrate the value of the AutoGPU
program: The generated kernel exhibits a very high performance which may surpass that of the
corresponding manually optimized one, without requiring that the user spend many hours, if not
days, in its development.

However, there are cases where the AutoGPU -generated kernel may fail to perform better
than a manually optimized one. This suggests that there are certain limitations in the result
that the AutoGPU program can achieve. The most significant one is probably the fact that
only 1-dimensional CUDA blocks are supported in the generated kernel. Thus, the AutoGPU
model should be extended to also allow a kernel configuration based on 2- and 3-dimensional
CUDA blocks. This would mean an increase in time for the optimization procedure, since for an
n-dimensional computation domain, all possible CUDA block configurations, where the block’s
dimensions are n or lower, must be checked; nonetheless, this is necessary for the generated kernel
to be able to achieve a performance as high as possible in all cases.

Furthermore, the AutoGPU model does not currently support the optimization of a kernel that
refers to a 3-dimensional computation domain. Experiments are needed to deduce the possible
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thread-element assignment schemes, as well as support of 3D-pitched arrays, provided after release
of CUDA v3.2, for this extension to be realized.

Lastly, to further facilitate the use of the AutoGPU program, certain featues might be added.
An important one would be a C source code parser, since the CUDA language is essentially an
extension of the C language, hence an input serial kernel is most likely to be written in C. This,
especially coupled with an appropriate user interface, would make the process of providing input
to the AutoGPU program much more simple.

In conclusion, the CUDA programming and architecture model is constantly evolving, pro-
ducing new capabilities as well as difficulties for high performance computations. A tool such as
AutoGPU, whose objective is to take advantage of the model’s characteristics in order to automat-
ically produce an optimized CUDA kernel, must be constantly developed along with the CUDA
model to achieve peak performance. Nevertheless, the experimental results collected by the cur-
rent implementation of AutoGPU indicate that its development follows the correct direction, and
that it may be an invaluable tool in the pursuit of high performance.
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Appendix A

Examples’ testing platforms

In order to optimize a CUDA kernel with the AutoGPU program, a testing platform and its input
data are needed. The source of the testing platforms of the kernels discussed in chapter 4, as well
as of the utility programs that were used to generate input for the kernels are presented in this
appendix.
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Figure A.1: The source code of the testing platform for the MATMUL kernel
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Figure A.2: The source code of the input generation utility program for the MATMUL kernel
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Figure A.3: The source code of the testing platform for the CONV kernel
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Figure A.4: The source code of the input generation utility program for the CONV kernel

81



Bibliography

[1] Lawrence C. Paulson, 1996. ML for the Working Programmer, 2nd Edition, Cambridge Uni-
versity Press.

[2] NVIDIA Corporation, 2010. NVIDIA CUDATM: NVIDIA CUDA C Programming Guide,
version 3.2, NVIDIA Corporation. [Link]

[3] Michael Wolfe, 2008. Compilers and More: Optimizing GPU Kernels, HPCwire. [Link]

[4] Andrew W. Appel, 2004. Modern Compiler Implementation in ML, Camrbidge Unversity
Press.

[5] Georgios Papamakarios, Georgios Rizos, 2011. FLCC Library: A Tool for Fast Computation
of Convolution and Correlation Coefficients of 2D and 3D Images, Diploma Dissertation,
Aristotle University of Thessaloniki, Dept. of Electrical & Computer Engineering.

82

http://developer.download.nvidia.com/compute/cuda/3_2_prod/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://www.hpcwire.com/features/Compilers_and_More_Optimizing_GPU_Kernels.html

	Representing the kernel
	Abstract Syntax Trees
	AST implementation in AutoGPU
	The expr, cond and lhs datatypes
	The vartype and fltprec datatypes
	The assignmode datatype
	The statement datatype


	Optimizing the kernel
	The Arguments of the Kernel
	Miscellaneous Tools
	Transformations on the AST
	Sparse vs. dense indexing scheme
	Accumulating partial results
	Caching through the __shared__ memory space
	Unrolling the loops
	Staying within array bounds

	Translation to CUDA source code
	Translating the AST
	Translating syntactic parameters of the AST

	Interaction with the Operating System
	AST Optimization

	AutoGPU running instructions
	Source code files & compilation
	Input, parameters and execution
	Testing platform development

	Examples
	Matrix Multiplication: MATMUL
	Without conditionals
	With conditionals

	Direct 2D Convolution: CONV
	5 5 convolution template
	11 11 convolution template


	Conclusions and future considerations
	Appendices
	Examples' testing platforms
	Bibliography

