

FAST DEFORMATION IMAGING FROM LIMITED-ANGLE PROJECTIONS IN RADIATION THERAPY

Fang-Fang Yin[†] Alexandros-Stavros Iliopoulos* Nikos P. Pitsianis* Xiaobai Sun*

*Department of Computer Science, Duke University [†]Department of Radiation Oncology, Duke University School of Medicine

Introduction

Image-guided radiation therapy is a major paradigm in cancer treatment, where on-board images (OBIs) may be used to monitor tumor motion and adjust radiation delivery.

The LIVE system [1], developed at Duke University, may account for intrafraction motion via Digital Tomosynthesis (DTS) from a limited-angle OBI scan. This reduces imaging time and dose; however, DTS is performed through iterative deformable registration [3], which presents a challenge in meeting clinical response time requirements.

We propose a versatile model for the design and development of primitive operations for DTS. Its purpose is to facilitate (a) flexible composition and (b) high-performance numerical implementation of advanced DTS algorithms. We demonstrate our approach and its results for the case of LIVE.

Digital forward projection models: primal & dual

physical model object space objectcentric (primal)

ray-grid sampling

$$p_{\theta}(\mathbf{u}_i) = \sum_{\rho_k \in \mathcal{R}(\mathbf{u}_i)} w_{ik} v_{\theta}(\mathbf{r}_{ik})$$

Cartesian re-gridding

Similarly for back-projection

Advantages

• Composition of digital operator weights—e.g. for DRR generation:

$$\mathbf{p}_{\theta} \simeq \mathbf{C}(\theta) \, \mathbf{M}(\theta) \, \mathbf{v}, \qquad \qquad \text{or} \qquad \qquad \mathbf{p}_{\theta} \simeq \mathbf{C}_{\text{ray}} \, \mathbf{M}_{\text{ray}}$$

$$\mathbf{p}_{\theta} \simeq \mathbf{C}_{\mathrm{ray}} \, \mathbf{M}_{\mathrm{ray}} \, \overline{\mathbf{v}}_{\theta}, \qquad \overline{\mathbf{v}}_{\theta} \simeq \left[\left(\mathbf{C}_{\mathrm{traj}}(\theta) \, \mathbf{M}_{\mathrm{traj}}(\theta) \right) \otimes \mathbf{I}_{z} \right] \mathbf{v}$$

- Separation of static (geometric and numerical model) and dynamic (volume/detector data) processing:
- C (composite coefficients) and M (grid masks) may be pre-computed
- only \mathbf{v} and \mathbf{p}_{θ} vary across iterations
- Reduced space (memory) and time (# of operations) complexity with dual model:

Set	Model configuration					Space	(GiB)	Time (C	Time (GFLOP)	
	$\overline{\Omega}_{\mathcal{U}}$	$\overline{\Omega}_p$	 	$ \mathcal{R}(\mathbf{u}) $	$\mathcal{N}(\mathbf{x})$	Primal	Dual	Primal	Dual	
A	$256 \times 256 \times 160$	512×384	30	256	$2\times2\times2$	45.2	1.2	23.0	9.8	
В	$256 \times 256 \times 160$	512×384	60	256	$2\times2\times2$	113.0	1.3	26.7	19.6	
C	$256 \times 256 \times 160$	512×384	60	256	$6 \times 6 \times 6$	244.2	3.4	805.6	206.1	
D	$512 \times 512 \times 320$	1024×768	60	512	$2\times2\times2$	903.8	10.0	213.4	157.0	

space-time complexities refer to both forward and backward projection operators, assuming all static data are pre-computed

- Efficiency and versatility:
- Numerical accuracy (discrete weights model) decoupled from performance
- Flexible mapping to computing architecture
- Composable coefficients → modular, high-level implementations
- Modest memory overhead
- (Almost) same complexities for helical and saddle source trajectories

Timing results

Total execution time (20 iterations):

- Previous: 1h 30m [2, 3]
- Current: $1m 25s (60 \times)$
- < 2s (interactive)
- Target:
- Execution parameters:
- 3D volume (CT/DTS): 256 × 256 × 136
- 2D projections (OBI/DRR): 512 × 384
- # of projection angles: 62
- AMD Opteron 6168 & NVIDIA Tesla K20c

Acknowledgements

The authors wish to thank You Zhang.

This work was supported in part by:

- NIH Grant No. R01-CA184173
- ARO Grant #W911NF-13-1-0344
- GPU donation, NVIDIA Corporation

Key references

- [1] L. Ren, Y. Zhang, and F.-F. Yin. A limited-angle intrafraction verification (LIVE) system for radiation therapy. Medical Physics, 41(2):020701, Feb. 2014.
- [2] H. Yan, L. Ren, D. J. Godfrey, and F.-F. Yin. Accelerating reconstruction of reference digital tomosynthesis using graphics hardware. Medical Physics, 34(10):3768, Oct. 2007.
- [3] Y. Zhang, F.-F. Yin, W. P. Segars, and L. Ren. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections. *Medical Physics*, 40(12):121701, Nov. 2013.