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Introduction

Image-guided radiation therapy is a major paradigm in cancer
treatment, where on-board images (OBIs) may be used to monitor
tumor motion and adjust radiation delivery.

The LIVE system [1], developed at Duke University, may account for
intrafraction motion via Digital Tomosynthesis (DTS) from a
limited-angle OBI scan. This reduces imaging time and dose;
however, DTS is performed through iterative deformable
registration [3], which presents a challenge in meeting clinical
response time requirements.

We propose a versatile model for the design and development of
primitive operations for DTS. Its purpose is to facilitate (a) flexible
composition and (b) high-performance numerical implementation of
advanced DTS algorithms. We demonstrate our approach and its
results for the case of LIVE.

Digital tomosynthesis reconstruction scheme [3]
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Digital forward projection models: primal & dual
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Advantages

• Composition of digital operator weights—e.g. for DRR generation:

pθ ' C(θ)M(θ) v, or pθ ' Cray Mray vθ, vθ '
[(

Ctraj(θ)Mtraj(θ)
)
⊗ Iz

]
v

• Separation of static (geometric and numerical model) and dynamic (volume/detector data) processing:
– C (composite coefficients) and M (grid masks) may be pre-computed
– only v and pθ vary across iterations

• Reduced space (memory) and time (# of operations) complexity with dual model:

Set
Model configuration Space (GiB) Time (GFLOP)

Ωv Ωp |Θ| |R(u)| N (x) Primal Dual Primal Dual

A 256×256×160 512×384 30 256 2×2×2 45.2 1.2 23.0 9.8
B 256×256×160 512×384 60 256 2×2×2 113.0 1.3 26.7 19.6
C 256×256×160 512×384 60 256 6×6×6 244.2 3.4 805.6 206.1
D 512×512×320 1024×768 60 512 2×2×2 903.8 10.0 213.4 157.0

space-time complexities refer to both forward and backward projection operators, assuming all static data are pre-computed

• Efficiency and versatility:
– Numerical accuracy (discrete weights model) decoupled from performance
– Flexible mapping to computing architecture
– Composable coefficients −→modular, high-level implementations
– Modest memory overhead
– (Almost) same complexities for helical and saddle source trajectories

Timing results
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Total execution time (20 iterations):
• Previous: 1h 30m [2, 3]
• Current: 1m 25s (60×)
• Target: < 2s (interactive)
Execution parameters:
• 3D volume (CT/DTS): 256× 256× 136
• 2D projections (OBI/DRR): 512× 384
• # of projection angles: 62
• AMD Opteron 6168 & NVIDIA Tesla K20c
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