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Abstract—We address certain properties that arise in
gigapixel-scale image stitching for snapshot images cap-
tured with a novel micro-camera array system, AWARE-2.
This system features a greatly extended field of view and
high optical resolution, offering unique sensing capabilities
for a host of important applications. However, three simul-
taneously arising conditions pose a challenge to existing
approaches to image stitching, with regard to the quality of
the output image as well as the automation and efficiency
of the image composition process. Put simply, they may
be described as the sparse, geometrically irregular, and
noisy (S.I.N.) overlap amongst the fields of view of the
constituent micro-cameras. We introduce a computational
pipeline for image stitching under these conditions, which
is scalable in terms of complexity and efficiency. With
it, we also substantially reduce or eliminate ghosting
effects due to misalignment factors, without entailing
manual intervention. Our present implementation of the
pipeline leverages the combined use of multicore and GPU
architectures. We present experimental results with the
pipeline on real image data acquired with AWARE-2.

I. INTRODUCTION

A. Image stitching

Digital image stitching offers a means of forming
images over an extended field of view (FoV) without
sacrificing image resolution. Constituent images may be
acquired by a special-purpose camera such as those of
planetary rovers [1], orbiting satellites [2], a sky-gazing
telescope, a single camera on a robotic mount [3], [4],
or a commodity camera with sweep-mode functionality.

Despite great advances in available stitching soft-
ware, obtaining high-quality mosaics largely relies on
several favorable conditions: the captured scene being
almost stationary; overlap between adjacent images be-
ing large and not adversely corrupted by noise; and
calibrated information on the extrinsic and intrinsic pa-
rameters of the image acquisition system [5] being fully
or partially accessible. Should no information be avail-
able on the extrinsic parameters, one may still recover
the spatial geometry for a stationary mosaic, provided
that the overlaps are rich in distinctive features [6].
Alternatively, the use of camera arrays [7]–[11] may

relax or remove the stationary-scene requirement, as
well as constrain the space of extrinsic parameters.

AWARE-2, a novel micro-camera array developed
by Brady et al. [11], allows capturing snapshots at
gigapixel scale. The distributed FoVs of simultaneously
firing micro-cameras can be combined by means of
image stitching to form a single high-resolution image
over an extended FoV, while foregoing scene motion
or other dynamic effects. Successors to AWARE-2
are expected to provide a cost-effective alternative to
very high-end or bulky gigapixel cameras. Such unique
imaging capabilities have many potential applications,
which include wildlife habitat monitoring [12], celestial
exploration [1], and recognition or tracking of moving
objects or people in crowded scenes [13]. In the rest of
this paper, we focus on image stitching with regard to
AWARE-2 characteristics, some of which are shared by
its precursors, contemporary peers, as well as successors
in the making.

B. The S.I.N. conditions

From a computational viewpoint, the constituent
AWARE-2 snapshots can be treated as if shot in succes-
sion by a single camera capturing an effectively static
scene. An additional advantage is the absence of paral-
lax between adjacent shots, owing to the optical design
of AWARE-2. Nonetheless, design considerations for
maximizing the composite FoV and resolution give rise
to three challenging conditions for the stitching process.

These conditions pertain to the sparse, geometrically
irregular, and noisy (S.I.N.) overlap amongst the con-
stituent FoVs—this is illustrated in fig. I.1: (i) Overlap
among constituent images is scarce; any two adjacent
images overlap over only a small portion of their
combined domain, if at all. (ii) The extrinsic param-
eters of each micro-camera are defined by two angular
rotations [14] and sensor displacement. These geometric
parameters are highly irregular across the set of micro-
cameras, as a result of manufacturing deviations from
the composite design, as well as camera packing on the
dome-like mount. (iii) Image data in regions of overlap
are highly noisy, due to adverse vignetting and stray



Fig. I.1: A mosaic of 7 AWARE-2 micro-camera images.
Overlapping regions are highlighted in orange, and challeng-
ing cases are circled. Top: overlap is too small. Bottom: the
region is very poor in distinctive features.

light effects [14]; this becomes more problematic for
regions that are lacking in features.

Existing stitching software solutions are consider-
ably challenged by the S.I.N. conditions. Some require
the FoV configuration to follow the conventional pattern
of a regular grid. On the other hand, grid-free solu-
tions rely on significant and distinctive overlap between
neighboring images, yielding poor results with sparsely
overlapped ones. These problems are further aggravated
by the presence of noise and photometric aberrations.

C. The stitching pipeline

Our aim is to obtain appropriate image transforma-
tions to effect correct and coherent alignment of the
constituent images. Misalignment gives rise to visible
geometric and photometric inconsistencies, and often
produces ghosting effects—see figs. IV.1a and IV.1c. It
stems from deviations in camera location and orientation
from the ideal, designed geometry, but also from the
inhomogeneous and dynamic nature of camera settings.
Moreover, we are concerned with the computational
efficiency and scalability of the stitching process. Based
on the above considerations, we introduce a compu-
tational pipeline, which does not require any manual
intervention—see the diagram of fig. I.2. With it, we
have obtained satisfactory results in snapshot stitching
with AWARE-2 data.

The underlying idea is as follows: We exploit scene-
dependent information (features) together with system-
specific information. The latter kind, particularly the
distributed camera placement configuration, need not
be static, but may be subject to subtle changes over
time for reasons such as mechanical or thermal drift [4],
[7], [14]. In our stitching approach, we use information
from extracted features to refine the system information;
and we use the designed or calibrated (by experimental
or computational means) geometric configuration to
confine and guide the feature-based alignment process,

or to provide a fallback option should scene-dependent
information be insufficient.

We introduce two key stages in sections II and III,
demonstrate experimental results in section IV, and
conclude the paper with section V.

II. MULTIPLE IMAGE ALIGNMENT

The multiple image alignment procedure consists of
two basic phases: (i) adjacent images are registered in a
pairwise manner, and (ii) the pairwise registration trans-
formations are adjusted into a coherent set of simulta-
neous transformations. We refer to the latter phase as
bundle adjustment, notwithstanding the term generally
implies 3D reconstruction, which we circumvent as we
are interested in producing 2D snapshot mosaics.

A. Pairwise image registration

Two images I𝑖 and I𝑗 are termed adjacent if they
overlap or share a common boundary. Pairwise reg-
istration refers, then, to the process of determining a
geometric transformation such that, in the absence of
noise and photometric variation,

I𝑖(v) = I𝑗(H𝑖𝑗v) ∀v ∈ 𝒟𝑖 ∩ 𝒟𝑗 , (II.1)

where v = [𝑥 𝑦 1]⊤ is a vector of homogeneous
coordinates; 𝒟𝑖 indicates the domain of image I𝑖; and
H𝑖𝑗 is the 3× 3 transformation matrix.

Automatic and robust image registration methods
often resort to feature-based approaches. These entail
extracting sets of corresponding features in both images
and using them as control points, v, for determining the
transformation matrix, H𝑖𝑗 . This process is complicated
by the presence of noise and photometric variation [4],
[15], which it must be made robust for. There is a rich
body of literature on feature-based image registration—
one may refer to [5] for an elaborated overview—and
many different types of features to consider. We make
use of SIFT keypoints [16], which are robust for a
broad class of transformations, albeit computationally
more expensive than others [17]; we use the SiftGPU
library [18] to compute the keypoints efficiently.

Because of the S.I.N. conditions, we extend the
nominal regions of pairwise overlap, 𝒟𝑖 ∩ 𝒟𝑗 , to com-
plement imprecise knowledge of the system geometry,
and to avoid unnecessary truncation of the domain of
potential features. This extension depends on deviation
tolerance settings and is refined through data learning.

Feature matching provides control points to be used
in determining the registration transformations. It is
realized in two steps: descriptor matching and outlier
removal. The former is effected using the approach
suggested by Lowe in [16], aided and accelerated by
system-specific information. The latter is discussed in
the next subsection, and it is central to our pipeline.
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Fig. I.2: A simplified diagram of the image stitching process. Computation-intensive modules are highlighted in orange. High-
performance operation categories are indicated by the dashed arrows.

Fig. II.1: Minimal FoV overlap may lead to the estimation
false-positive registration transformations.

B. PG-RANSAC

The set of matched descriptors may still contain
several false matches (or “outliers”). Such erroneous
control points can lead to inconsistent image alignment,
or broken mosaics, as shown in fig. II.1. Hence, outliers
must be removed. This is typically carried out by the
RANSAC algorithm [19] or a variation thereof. We have
developed a RANSAC-like algorithm, which we call
PG-RANSAC, for robust stitching under the S.I.N. con-
ditions. It incorporates the placement geometry of mul-
tiple cameras, as per their extrinsic parameter ranges,
into the outlier removal process. Thus, PG-RANSAC is
an integral part of the registration estimation and adjust-
ment process, greatly improving its overall robustness
by utilizing system information in tandem with image
features.

In order to avoid cases such as that of fig. II.1, we
must consider both points and transformations in the
outlier removal process, instead of just points. To this
end, we augment the ranking function in the RANSAC
verification step to make use of the expected placement
geometry:

𝜌′
(︀
𝑑, 𝒯 (𝜇), �̃�

)︀
= 𝑓

(︀
𝒯 (𝜇), 𝒯 (�̃�)

)︀
· 𝜌

(︀
𝑑, 𝒯 (𝜇)

)︀
, (II.2)

where 𝑑 is the feature re-projection distance; 𝒯 (𝜇) is

a transformation 𝒯 with parameters 𝜇; �̃� refers to the
expected parameters; and 𝜌(·, ·) is any RANSAC-style
ranking function, normalized to the range [0, 1]. The
weight function 𝑓(·, ·) penalizes transformations that
deviate much from the expected one, and has the form

𝑓(x, x̃) =

𝑁∏︁
𝑖=1

1

1 + 𝑒−𝛼[(𝑥𝑖−�̃�𝑖)−𝜏𝑖]
· 1

1 + 𝑒𝛼[(𝑥𝑖−�̃�𝑖)−𝜏𝑖]
,

(II.3)
where 𝑁 is the number of deviation measurements, such
as camera orientation, that are used to validate estimated
transformations; �̃�𝑖 is the expected value for the 𝑖-th
parameter or measurement; and 𝜏𝑖 is the error tolerance
that corresponds to �̃�𝑖, which may be related to the
camera array manufacturing/mounting process, noise in
sensor readings, etc. The weight function for a single
measurement is shown graphically in fig. II.2. It features
a plateau in the range [(�̃� − 𝜏), (�̃� + 𝜏)], and drops
sharply at the boundaries, at a rate dependent on 𝛼.

Incorporating this geometric constraint entails the
comparison of estimated transformations against the
expected ones. To do this, we generate a set of points to-
wards the periphery of the image domain and separately
apply the expected and estimated transformations to
them. Then, the mean angular and magnitude errors of
the motion vectors between the respectively transformed
points can be computed [20]; these are used as a
measure of deviation of the estimated transformation
from the assumed configuration. The set of inliers with
respect to this augmented measure is input to the subse-
quent bundle adjustment. Should no transformation be
estimated by the PG-RANSAC process for a pair of
images, which might be the case given the small and
noisy nature of overlap between images, then a set of
4 anchor points is generated. These effectively guide
the bundle adjustment process to respect the expected
transformation for the pair.

C. Bundle adjustment

Bundle adjustment generally pertains to the
structure-from-motion problem, which implies recon-
struction of the 3D scene [21]. Our objective is, rather,
to determine a set of projective transformations, one for
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Fig. II.2: Graph of eq. (II.3) for a single deviation parameter.

each constituent image. Still, formulation of this process
is analogous to that of a bundle adjustment problem.

Assume that each constituent sub-scene can be cap-
tured approximately by a plane, which is reasonable
when the distance between the captured scene and the
lens is large compared to the focal length of the lens. We
may then model the projective relations as homography
transformations, and use one of the images as a common
reference plane. We form a least-squares (LS) error
model for the simultaneous projections:

min
{H𝑖}

∑︁
𝒟𝑖∩𝒟𝑗 ̸=∅

∑︁
v𝑘∈ℳ𝑖𝑗

𝑤𝑖𝑗

⃦⃦
H𝑖v𝑘𝑖 −H𝑗v𝑘𝑗

⃦⃦
2
, (II.4)

where ℳ𝑖𝑗 denotes the set of matched control points
between two adjacent images; v𝑘𝑖 is the local homoge-
neous coordinate vector of the 𝑘-th control point in 𝒟𝑖;
and 𝑤𝑖𝑗 is a weight that normalizes the contribution of
each pair to the solution.

We have developed a fast method for minimizing the
above error. The LS solution to eq. (II.4) can be obtained
through the corresponding system of normal equations.
The related system matrix is a block-wise sparse, with
a 3 × 3 block for each image pair. Note that its size
depends solely on the number of constituent images,
and not on the number of control points. The block
structure corresponds directly to the Laplacian matrix of
an adjacency graph where nodes and edges correspond
to cameras and regions of FoV overlap, respectively—
see fig. II.3. The block-Laplacian matrix can be con-
structed easily and in parallel. Next, by choosing a
reference plane among the participating image planes,
we recast the homogeneous normal equations to a
non-homogeneous system, circumventing the null space
problem and short-cutting an otherwise lengthy and
complex iteration process [21], [22]. The solution to
the final, linear system can be obtained directly and
efficiently. The fast process is robust because of the PG-
RANSAC framework providing reliable control points.

III. IMAGE FUSION

Following the bundle adjustment process, every
pixel can be projected onto a specific location of the mo-
saic canvas, albeit different pixels might share the same
location. Photometric variation between overlapping and
adjacent image regions may result in visible seams in
the stitched image [23]. In order to fuse the overlap-
ping image data, we blend the images in the gradient
domain [24], [25]. This technique has the advantage
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Fig. II.3: A portion of the AWARE-2 camera adjacency graph.
Edges in dashed lines indicate very small overlap. The plane
associated with node 𝑅 is chosen as the reference plane.

of smoothing intensity seams, while maintaining high-
frequency information in the source images; moreover,
image gradients are invariant to camera sensor bias.

Let Î𝑐 be the 𝑐-th projected image on the mosaic can-
vas. Gradient-domain blending dictates that the blended
mosaic, Î, must satisfy

∇Î(v) =
∑︁
�̂�𝑐∋v

𝑤𝑐(v)∇Îc(v), (III.1)

where 𝑤𝑐(v) is a weighting function that we set to be
the reciprocal of the pre-calibrated flat-field measure-
ment for each pixel v ∈ �̂�𝑐, which reflects its apparent
gain and dark current [14]. The intensity-domain mosaic
is then computed via numerical integration.

We perform the image fusion computations entirely
in the GPU. Constituent images are back-projected
using bi-linear interpolation, and are subsequently dif-
ferentiated in batches of non-overlapping images. Last,
we employ the convolution pyramid scheme [26] to
effect a fast approximation of the integration operation.

IV. DEMONSTRATION

Our pipeline implementation makes combined use
of multicore and GPU architectures. Representative ex-
perimental results, obtained with our pipeline on real
data acquired with AWARE-2, are shown in fig. IV.1.
The images to the right were produced automatically
and processed within half a minute, without overlapping
CPU-GPU data transfers and computational processing.

V. ADDITIONAL REMARKS

We have outlined a computational pipeline for image
stitching at gigapixel scale, with scarce overlap of the
constituent fields of view, and under the presence of
noise, photometric variation, as well as other factors
that make the image acquisition conditions deviate
from the ideal, designed configuration. While existing



(a) (b)

(c) (d)
Fig. IV.1: Snapshot mosaics of a live scene, captured with the AWARE-2 camera prototype at the International Conference on
Computational Photography, Seattle, 2012 (bottom floor and architectural surroundings not shown). (a),(c): Results produced by
the AWARE-2 compositing pipeline [14], where tone mapping has been applied. (b),(d): Results produced automatically by the
alternative pipeline introduced in this paper, without tone mapping. Top row: The displayed scene spans the fields of view of
approximately 25 micro-cameras. Bottom row: Detail, zoomed in within the marked windows in the top-row images.



software for image stitching fails or performs poorly
with AWARE-2 data, our pipeline in its present imple-
mentation succeeded in effecting robust and efficient
stitching of high-resolution, ghost-free mosaics. In order
to achieve this, we explore and leverage the acquisition
conditions in tandem with image features, while using
one to refine the other. Further, we exploit advanced
algorithm techniques and modern parallel architectures
to automate and accelerate the stitching process. While
use of a snapshot camera array eliminates scene motion
effects, efficiency in the stitching process will become
paramount for applications using such camera systems
for image or video analysis of dynamically evolving
scenes, by enabling the monitoring of many kinds of
scientific or social phenomena at fast-changing rates.

The pipeline can be easily ported to other appli-
cations, not restricted to snapshots or AWARE-2. This
paper is the first written document about its overall
structure.1 Due to space constraints, detailed descrip-
tions and potential improvements are omitted and will
be reported elsewhere.

The authors wish to thank Esteban Vera Rojas, Steve
Feller, Daniel Marks, Lars Nyland, Changchang Wu, as
well as our anonymouns reviewers.
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