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Purpose: Often, the inverse deformation vector field (DVF) is needed together with the cor-
responding forward DVF in 4D reconstruction and dose calculation, adaptive radiation ther-
apy, and simultaneous deformable registration. This study aims at improving both accuracy
and efficiency of iterative algorithms for DVF inversion, and advancing our understanding of
divergence and latency conditions.
Method: We introduce a framework of fixed-point iteration algorithms with active feedback
control for DVF inversion. Based on rigorous convergence analysis, we design control mech-
anisms for modulating the inverse consistency (IC) residual of the current iterate, to be used
as feedback into the next iterate. The control is designed adaptively to the input DVF with
the objective to enlarge the convergence area and expedite convergence. Three particular
settings of feedback control are introduced: constant value over the domain throughout the
iteration; alternating values between iteration steps; and spatially variant values. We also
introduce three spectral measures of the displacement Jacobian for characterizing a DVF.
These measures reveal the critical role of what we term the non-translational displacement
component (NTDC) of the DVF. We carry out inversion experiments with an analytical DVF
pair, and with DVFs associated with thoracic CT images of 6 patients at end of expiration
and end of inspiration.
Results: NTDC-adaptive iterations are shown to attain a larger convergence region at a
faster pace compared to previous non-adaptive DVF inversion iteration algorithms. By our
numerical experiments, alternating control yields smaller IC residuals and inversion errors
than constant control. Spatially variant control renders smaller residuals and errors by at
least an order of magnitude, compared to other schemes, in no more than 10 steps. Inversion
results also show remarkable quantitative agreement with analysis-based predictions.
Conclusion: Our analysis captures properties of DVF data associated with clinical CT
images, and provides new understanding of iterative DVF inversion algorithms with a simple
residual feedback control. Adaptive control is necessary and highly effective in the presence
of non-small NTDCs. The adaptive iterations or the spectral measures, or both, may
potentially be incorporated into deformable image registration methods.

Keywords: deformation vector field, inversion, deformable image registration, fixed-point
iteration, spectral analysis

I. INTRODUCTION

We consider numerical inversion of a deformation vec-
tor field (DVF). Inverse DVFs are needed, together with
their respective forward DVFs, to map images, structure
contours, or doses back and forth in applications such
as 4D image reconstruction,1 dose accumulation calcula-
tions and multi-modality treatment planning in adaptive
radiotherapy,2–5 and cardiac functional analysis.6 DVF
inversion is also a fundamental operation in simultaneous
and symmetric registration methods.7–11 An important
consideration is ensuring that the forward and reverse
mappings are inverse-consistent.10,12 Theoretical guar-

antees of convergence and computational efficiency have
been a long-standing open problem with DVF inversion.

A consistent pair of forward and reverse mappings can
be obtained via one-way deformable registration followed
by a DVF inversion process,2,13 or via simultaneous, sym-
metric two-way registration methods.7–9,11 The former,
asymmetric approach is often preferred in certain clinical
applications with limited time window, in part because
it is shown to be faster empirically, and in part because
of the non-negligible asymmetry in clinical image qual-
ity. One of the images may be more adversely affected
by noise or artifacts than the other. Such asymmetry
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makes one-way registration better or worse depending
on the mapping direction, due to the high sensitivity of
registration methods to noise or variation in imaging con-
ditions.2,6,14 We consider the asymmetric approach to be
an effective means to counterbalancing the asymmetry in
image quality.

DVF inversion is often involved also in simultaneous
registration, which results in both forward and reverse
mappings.7–9,11 Inverse consistency (IC) between forward
and reverse mappings for deformable registration was ad-
dressed in the early work of Thirion15 and Christensen.12
The IC condition has since been incorporated in various
deformable registration models. It is either used as an
explicit constraint attached to an optimization model,7
or employed implicitly and approximately in numerical
iterations.8 The registration process may involve mul-
tiple intermediate transformations and their composi-
tion. DVF inversion is used to ensure that the trans-
formations, intermediate as well as final, meet the IC
condition. Many studies on simultaneous estimation of
forward-inverse DVF pairs can be found in the survey by
Sotiras et al.10 and references therein.

With a provided DVF as input, numerical inversion
of the DVF can be governed by the IC condition and
carried out in displacement space, rather than in image
space. The inversion relationship is inherently nonlin-
ear. One therefore resorts to iterative solution methods,
except in certain cases. There is a close relationship be-
tween IC residuals (i.e., deviations from the IC condition)
and inversion errors in the iterative estimates. We will
leverage this relationship to improve upon the inverse
DVF iterates by using the IC residuals as feedback into
the iteration.

Two particular and influential iteration algorithms for
DVF inversion were developed by Christensen and John-
son7 and Chen et al.13 The iteration by Christensen and
Johnson7 is often effective, and is notable in making use
of residual feedback. The iteration is closely related to
the residual method by Thirion,15 which is based on a
heuristic to enforce that DVF estimates are bijective (in-
vertible). The condition under which the iteration con-
verges or fails to converge was hitherto unknown. Chen
et al.13 departed from heuristic design. They introduced
a particular fixed-point iteration for DVF inversion, and
identified a convergence condition. The iteration was not
compared to the earlier algorithm by Christensen and
Johnson,7 and there is no mention of residual feedback.

We make the following key contributions to the under-
standing and convergence control of iterative DVF inver-
sion algorithms. (i) We present a framework of iteration
algorithms with simple and adaptive residual feedback
control. This includes the two precursor algorithms, in
both format and analysis. (ii) The framework is under-
pinned by a unified analysis of error propagation and
convergence. The analysis enables connections and com-
parisons among iteration algorithms for DVF inversion,
and leads to the design of more effective ones. (iii) We
characterize the critical role of what we introduce as the

non-translational displacement component (NTDC) in
error propagation, and provide quantitative NTDC mea-
sures. When the NTDC is non-small, adaptive residual
feedback control is necessary to guarantee convergence.
This insight is new. We assess our findings experimen-
tally with synthetic DVF data, and patient DVF data
obtained from thoracic CT images.

The rest of the document is organized as follows. In
Section II, we introduce our algorithm framework, pro-
vide formal analysis, present three practical feedback
control schemes, and discuss three spectral measures for
NTDC characterization. In Section III, we describe and
assess the patient DVF data used in our experiments.
Pre-inversion assessment of control schemes and post-
inversion evaluation of results with the patient DVFs are
provided in Section IV. A direct evaluation using analyt-
ical DVF data is included in Appendix A. We conclude
the paper in Section V with additional discussion on the
clinical utility of our algorithms and analysis.

II. METHODS

II.A. DVF inversion preliminaries

DVF inversion can be phrased as follows. A reference
and a target image, denoted by 𝐼ref and 𝐼tgt, respectively,
can be related to one another by two non-linear transfor-
mations. Denote by Ω the image domain, Ω ⊂ R3. The
forward transformation, f : Ω → Ω, maps the voxels of
the reference image 𝐼ref onto those of the target image
𝐼tgt via f(x′) = x′+u(x′), where u(x′) is the forward 3D
displacement at x′ ∈ Ω. Conversely, the inverse trans-
formation, g : Ω → Ω, maps the voxels of 𝐼tgt back to
𝐼ref via g(x) = x + v(x), where v(x) is the inverse 3D
displacement at x ∈ Ω. DVF inversion means obtaining
v given u. The two transformations are inverse to each
other: (f ∘ g)(x) = x, and (g ∘ f)(x′) = x′ for x,x′ ∈ Ω.
Consequently, the forward and inverse DVFs satisfy the
simultaneous inverse consistency (IC) condition:

v(x) + u(x+ v(x)) = 0, (1a)
u(x′) + v(x′ + u(x′)) = 0. (1b)

The IC condition governs iterative DVF inversion.

II.A.1. Inversion error & inverse consistency residual

Denote by v̂ an estimate of the inverse DVF v*. The
unknown error in the estimate,

e(x) = v̂(x)− v*(x), (2)

is manifested in the inverse consistency (IC) residual,

rv(x) = v̂(x) + u(x+ v̂(x)), (3)

which is computationally available. Qualitatively, the
residual is zero if and only if the inversion error is zero.
In order to use the IC residual as feedback for improving
the inverse DVF estimate, we investigate the quantitative
relationship between inversion error and IC residual.
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Assume in analysis that the deformation transforma-
tion f is differentiable. By the mean value theorem, the
IC residual and the inversion error can be related by

rv(x) = Jf (𝜉) e(x), (4)
where Jf (𝜉) is the forward transformation Jacobian eval-
uated at 𝜉, which lies between x + v*(x) and x + v̂(x).
When e(x) is small, Jf (𝜉) can be numerically approx-
imated by Jf (x + v̂(x)). The Jacobian Jf is spatially
variant over Ω, except in some special cases. Provided
with a forward DVF u, we will rely on the IC residual rv
and relationship (4) to improve upon the inverse estimate
v̂ via an iterative process.

By (1b), one shall also consider the other IC residual,
ru(x

′) = u(x′) + v̂(x′ + u(x′)). (5)
We omit a rigorous analysis of the differential relationship
between ru and the estimation error e. In a nutshell,
the residual is spatially related to the error through the
following mapping:

ru(x+ v̂(x)) = e(x+ rv(x)). (6)
The residual rv in (6) can be made sufficiently small if the
iteration converges. We will use ru(x+ v̂(x)) in addition
to rv(x) to quantitatively assess inverse DVF estimates.

II.A.2. Non-translational displacement component (NTDC)

We introduce the decomposition of a DVF into trans-
lational and non-translational components, to elucidate
the relationship between inversion errors and IC residu-
als. By (4), the estimate error is related to the IC residual
via Jf . The transformation Jacobian Jf is the displace-
ment Jacobian Ju shifted by the identity:

Jf = I+ Ju. (7)
When Ju = 0, then Jf = I and the residual rv is equal
to the estimate error e. The inverse displacement v can
then be obtained immediately by adding the residual to
the current estimate, regardless of the direction and mag-
nitude of displacement u. In this case, we consider the
corresponding displacement u as translational. When
Ju ̸= 0, there is a non-translational component in the
displacement. The non-translational displacement com-
ponent (NTDC) is responsible for the nontrivial, non-
transparent relationship between the estimate error and
the IC residual.

The NTDC Jacobian is used in DVF characterization,
pre-inversion convergence analysis and prediction, and
adaptive feedback control design. Conceptually, we de-
compose the displacement into translational ut and non-
translational unt components: u(x) = ut+unt(x). These
components are identified by their respective contribu-
tions to the Jacobian Ju. Only non-translational com-
ponents contribute to the Jacobian, i.e., Jut = 0 and
Junt = Ju. We may therefore refer to the NTDC Jaco-
bian as the displacement Jacobian Ju, with the under-
standing that the translational component plays no part
in it. We will introduce in Section II.C spectral measures
for characterizing the NTDC, and provide an explicit cri-
terion for considering the NTDC as non-small.

II.B. NTDC-adaptive iteration

II.B.1. Active feedback control framework

We introduce a family of fixed-point iterations for DVF
inversion, using the IC residual rv as feedback. In the
rest of this section, we denote the IC residual simply by
r. Feedback control is exercised to suppress the esti-
mate error, based on error propagation analysis and (4).
Assume a forward DVF u is provided over Ω. At step
𝑘 = 0, 1, 2, . . ., we compute the residual r𝑘 associated
with the current estimate v𝑘 and get the next estimate
by

v𝑘+1(x) = v𝑘(x)−B𝑘(x) r𝑘(x), (8)

where the term B𝑘(x) r𝑘(x) is the modulated residual,
and B𝑘(x) is a 3× 3 feedback control matrix associated
with x ∈ Ω. In this paper, we consider the control mech-
anism in its simplest form: B𝑘(x) is an isotropic scaling
matrix, B𝑘(x) = (1 − 𝜇𝑘(x))I. Iteration (8) then takes
the form

v𝑘+1(x) = v𝑘(x)− (1− 𝜇𝑘(x)) r𝑘(x). (9)

We refer to 𝜇𝑘(x) as the feedback control parameter. In
what follows, we will introduce three particular adap-
tive control schemes: constant parameter value over the
domain and throughout the iteration, alternating values
between iteration steps, and spatially variant values.

When the control parameter is spatially uniform, i.e.,
it does not vary with x, iteration (9) becomes

v𝑘+1(x) = v𝑘(x)− (1− 𝜇𝑘) r𝑘(x). (10)

Control is stationary if 𝜇𝑘 = 𝜇 for some constant 𝜇, and
non-stationary otherwise. The iterations with constant-
value control can be further divided into non-adaptive
(pre-fixed constants) and adaptive ones. The two pre-
cursor algorithms for DVF inversion7,13 mentioned in
Section I both adhere to the form of iteration (10) with
constant non-adaptive (pre-fixed) control values. Specif-
ically, 𝜇𝑘 = 0.5 yields the algorithm of Christensen and
Johnson,7 and 𝜇𝑘 = 0 yields the algorithm of Chen et
al.13

II.B.2. Spectral analysis

We provide analytical apparatus for designing residual
feedback control in the simple form of (9) in order to
guarantee convergence and improve convergence speed.
By (4) and (9), inverse estimate errors (2) propagate
throughout the iteration by the equation

e𝑘+1(x) = P𝑘(x;𝜇) e𝑘(x), (11a)
P𝑘(x;𝜇) = I− (1− 𝜇)Jf (𝜉𝑘), (11b)

where 𝜇 is short for 𝜇𝑘(x), and P𝑘(x;𝜇) is the one-step
error propagation matrix at 𝜉𝑘, which lies between x +
v*(x) and x + v𝑘(x). The propagation matrix depends
on the value of 𝜇 and varies during the iteration. If

𝜌(P𝑘(x;𝜇)) ≤ 𝜌sup, 𝑘 = 0, 1, 2, . . . , (12)
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for some 𝜌sup ∈ [0, 1), then the iteration converges. Here,
𝜌(P) denotes the spectral radius of the propagation ma-
trix P, i.e., the ratio between successive errors in magni-
tude.

Consider the special case where the displacement is
translational, i.e., Ju(x) = 0, Jf (x) = I, and P𝑘(x;𝜇) =
𝜇I. The iteration converges with any 𝜇 ∈ (−1, 1), and
converges faster when 𝜇 is closer to 0. At the mid-range
value, 𝜇 = 0, the iteration renders the inverse DVF in
one step. We focus our study on deformations with non-
translational components, without excluding the case of
translational displacement.

Feedback control design based on convergence analy-
sis is challenging. The point-wise error sequences (11a),
each associated with a voxel location x, cover the whole
domain Ω. Although the sequences depend on the initial
guess, a sequence e𝑘(x), 𝑘 = 0, 1, 2, . . ., converges to zero
if it can be guaranteed that the associated non-negative
scalar sequence 𝜌(P𝑘(x;𝜇)) at 𝜉𝑘(x), 𝑘 = 0, 1, 2, . . ., is
bounded from above below 1; see (11b) and (12). Even
with a fixed value of 𝜇, tracking every scalar sequence
of 𝜌(P𝑘(x;𝜇)) at unknown and spatially varying mean-
value locations 𝜉𝑘(x) is implausible. We surmount this
challenge by the following novel approach.

We take a covering-and-partitioning approach. Specif-
ically, with any value of the control parameter 𝜇, we con-
sider the deformation Jacobian everywhere over Ω. We
define the infinitesimal contraction matrix at all x ∈ Ω:

Q(x;𝜇) = I− (1− 𝜇)Jf (x) = 𝜇I− (1− 𝜇)Ju(x). (13)

Any particular value of the control parameter 𝜇 parti-
tions Ω into a contraction region,

Ωc(𝜇) = {x | 𝜌(Q(x;𝜇)) < 1, x ∈ Ω}, (14)

and its complement Ω − Ωc(𝜇), the non-contraction re-
gion. The error (11a) converges to zero if all the mean-
value locations 𝜉𝑘 fall within the contraction region. If
Ωc(𝜇) = Ω, i.e., the contraction region covers the entire
domain (or, more strictly speaking, supx∈Ω 𝜌(Q(x;𝜇)) <
1), then the iteration converges. By the covering-and-
partitioning approach, we reduce feedback control design
to finding the control parameter values that yield the
largest contraction region over Ω.

Consider the special value 𝜇 = 0, with which
𝜌(Q(x; 0)) = 𝜌(Ju(x)). If 𝜌(Ju(x)) < 1, then x lies
in the contraction region. Otherwise, x is in the non-
contraction region,

𝜌(Ju(x)) ≥ 1, (15)

and a positive feedback control value (𝜇 > 0) is war-
ranted. Formally, we define by (15) the concept of a
non-small NTDC at x: the NTDCs are considered non-
small where the spectral radius of the displacement Jaco-
bian is equal to or greater than 1. Whenever the mean-
value location 𝜉𝑘, at which Ju(𝜉𝑘) = P𝑘(x; 0), falls in a
non-small-NTDC region, the error in the next iterate is
magnified if active feedback control is not applied.

We describe in the rest of this section how to mate-
rialize the sufficient condition Ωc(𝜇) = Ω for guaran-
teed convergence of all iterative sequences. We translate
the condition into expressions that relate the parame-
ter 𝜇 to the eigenvalues of the transformation Jacobian,
𝜆𝑗(x) = 𝜆𝑗(Jf (x)), 𝑗 = 1, 2, 3.

Consider first the case where the eigenvalues are all
real and positive over Ω. The condition Ωc(𝜇) = Ω is
achieved by any specific value of 𝜇 in the range

max

{︂
−1, 1− 2 min

x∈Ω, 𝑗=1,2,3

1

𝜆𝑗(x)

}︂
< 𝜇 < 1. (16)

When 𝜇 is negative, (1−𝜇) > 1 and the impact of Ju on
error contraction is over-relaxed; see (13). When 𝜇 < −1,
a small spectral radius of Q(x;𝜇) is the result of algebraic
cancellation. To avoid severe cancellation and subsequent
instability in numerical computations, we bound the con-
trol parameter value from below by −1.

Consider next the presence of complex eigenvalues,
which are prevalent in DVFs associated with patient CT
images (see Table I in Section III.C). This should not
be a surprise; the eigenvalues of a plane rotation ma-
trix are complex, for instance. Complex eigenvalues
of a real-valued matrix exist in conjugate pairs. For
any fixed value 𝜇 < 1, the error contraction condition
𝜌(Q(x;𝜇)) < 1 becomes

2Re(𝜆𝑗(x)) > (1− 𝜇)|𝜆𝑗(x)|2, 𝑗 = 1, 2, 3, (17)

for x ∈ Ω. This condition immediately rejects singular
Jacobians, and gives rise to the local feasible parameter
range

max{−1, 1− 2𝛾(x)} < 𝜇 < 1, (18)

where

𝛾(x) = min
𝑗

Re(𝜆𝑗(x))

|𝜆𝑗(x)|2
= min

𝑗
Re

(︀
𝜆−1
𝑗 (x)

)︀
> 0. (19)

We refer to (19) as the controllability condition. It has
two equivalent expressions: one in terms of the eigenval-
ues, and one in terms of the reciprocal eigenvalues.

A few remarks about condition (19) are in order. The
condition rejects any Jacobian with eigenvalues on the
imaginary axis or in the left half of the complex plane, in
which case the determinant of the Jacobian may be neg-
ative, zero, or even positive. The condition is necessary
and sufficient for the parameter range (18) to be non-
empty, and hence for feasible values of 𝜇 to exist. One
can locate the few cases where the condition is violated.
Violations of the controllability condition anywhere in
the image domain most likely manifest as artifacts intro-
duced by the forward DVF generation process. In other
words, this condition shall be recognized as a rule for lo-
cal regularization, with respect to DVF inversion, not a
limitation imposed by the control mechanism (9).

II.B.3. Maximal error suppression

We consider now how to determine, over an infinites-
imal neighborhood of x, the control parameter value
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Fig. 1 Geometric outline of (22a) and (22b). See the explanation in Section II.B.3. The notation 𝜆(𝜇) is short for 𝜆(Q(𝜇)).

𝜇*(x) such that estimate errors are suppressed as much
as possible. Specifically, we minimize the spectral ra-
dius of the local infinitesimal contraction matrix, i.e.,
𝜇*(x) = argmin𝜇 𝜌(Q(x;𝜇)). By (13), the spectrum of
Q(x;𝜇) is that of the displacement Jacobian Ju(x) scaled
by (𝜇− 1) and shifted by 1. Since the analysis concerns
the variation of 𝜌(Q(x;𝜇)) with parameter 𝜇 at any fixed
point x, we simplify the notation Q(x;𝜇) to Q(𝜇), and
similarly with notation for other related quantities, omit-
ting x for the rest of this sub-section. To further simplify
the expressions below, we use the eigenvalues of Jf , which
are the NTDC eigenvalues shifted by 1; see (7).

Assume the controllability condition (19) holds, i.e.,
𝛾 > 0; otherwise, there exists no feasible parameter value.
When the three eigenvalues of Jf are all real and positive,
it is straightforward to verify that

𝜇* = 1− 2

𝜆max + 𝜆min
, (case R) (20a)

and

𝜌* = min
𝜇

𝜌(Q(𝜇)) =
𝜆max − 𝜆min

𝜆max + 𝜆min
< 1. (20b)

In contrast, in the presence of complex eigenvalues, which
appear in a conjugate pair, 𝜆c and 𝜆c, the geometric posi-
tions of the conjugate pair relative to the real eigenvalue
𝜆r are not maintained after scaling and shifting. Define

𝛾c =
Re(𝜆c)

|𝜆c|2
= Re(𝜆−1

c ); (21)

then, 𝛾 = min{𝛾c, 𝜆
−1
r }. By our analysis, the geometric

relationship between the complex and real eigenvalues
can be put into two mutually exclusive cases: case C1
if |1− 𝛾c𝜆r| ≤ |1− 𝛾c𝜆c|, and case C2 otherwise. The
optimal control parameter value for each case is

𝜇* =

⎧⎨⎩
1− 𝛾c, (case C1)

1− Re(𝜆c − 𝜆r)

|𝜆c| − 𝜆r

2

|𝜆c|+ 𝜆r
. (case C2)

(22a)

The optimal spectral radius is, for both cases,

𝜌* = min
𝜇

𝜌(Q(𝜇)) = |1− (1− 𝜇*)𝜆c| < 1. (22b)

The proof of (22) could be lengthy and tedious in
words. We provide instead a geometric explanation with
two drawings in Fig. 1; one for each case. The drawings
illustrate how the eigenvalues of Jf are scaled and shifted
onto those of Q(𝜇) in the complex plane, and how to lo-
cate the optimal scaling value. In each drawing, we locate
first the complex eigenvalues of Q(0) = −Ju. We con-
nect them by straight lines to (1, 0), where the multiple
eigenvalues of Q(1) reside. For any 𝜇, the conjugate pair
𝜆c(Q(𝜇)) lie on the two conjugate lines. In case C1, the
optimal value 𝜇* maps 𝜆c onto the very point at which
these lines meet the tangential circle centered at the ori-
gin; this gives the minimal spectral radius 𝜌*, since the
real eigenvalue by the same scaling and shifting falls in-
side the circle. In case C2, the real eigenvalue is outside
the circle (dashed blue in Fig. 1b). We rescale the eigen-
values until all three eigenvalues are on the same circle,
which is of the minimal spectral radius.

II.B.4. Control parameter schemes

II.B.4.a. Mid-range parameter value. We present an
adaptive scheme for determining a constant value, in-
cluding its existence condition, for the control parameter
such that uniform convergence is guaranteed over a sub-
region or neighborhood 𝒩 ⊆ Ω. First, we extend point-
wise quantities to region-wise quantities. Specifically, let
𝛾(𝒩 ) = minx∈𝒩 𝛾(x). Computationally, 𝛾(𝒩 ) can be
obtained easily with a minimum filter. If 𝛾(𝒩 ) > 0, then
the control parameter range, (max{−1, 1− 2𝛾(𝒩 )}, 1),
for uniform convergence over 𝒩 is non-empty. Any value
in this range can serve as a constant value for the con-
trol parameter, guaranteeing convergence. We may use



6

in particular the mid-range value. When 1 − 2𝛾 > −1,
the mid-range value over 𝒩 is simply

𝜇m(𝒩 ) = 1− 𝛾(𝒩 ), (23)

and can be easily determined. If 𝛾(𝒩 ) = 1, then
𝜇m(𝒩 ) = 0; if 𝛾(𝒩 ) = 0.5, then 𝜇m(𝒩 ) = 0.5. The mid-
range scheme (23) is adaptive to any DVF with 𝛾 > 0
over 𝒩 . It also leads to the next control scheme.

II.B.4.b. Alternating parameter values. Convergence
can be made faster, within the parameter range for uni-
form convergence, by a simple modification: allowing the
control parameter to take two alternating values. The
idea is to exploit the non-uniform spectral structure of
the DVF while keeping the control spatially uniform. As
we shall show in Section III with DVFs from patient im-
ages, the local mid-range values, or locally optimal val-
ues, over the entire image domain Ω may be grouped into
two sub-ranges in the convergence parameter range; one
at the lower end, and one at the higher end. A sim-
ple alternating scheme is to use a value 𝜇e at even steps
and another value 𝜇o at odd steps. Convergence can be
analyzed via two-step error propagation,

e2(𝑘+1)(x) = P2𝑘+1(x;𝜇o)P2𝑘(x;𝜇e)⏟  ⏞  
Poe(x)

e2𝑘(x), (24)

where P𝑘′(x;𝜇) = I−(1−𝜇𝑘′)Jf (𝜉𝑘′) and 𝜉𝑘′ lies between
x+v*(x) and x+v𝑘′(x), at iteration step 𝑘′. The spec-
tral radius 𝜌oe of the two-step propagation matrix can
be bounded from above by 𝜌o𝜌e, where 𝜌o and 𝜌e are the
spectral radii of the odd- and even-step propagation ma-
trices (P2𝑘+1(x;𝜇o) and P2𝑘(x;𝜇e)), respectively. Thus,
the contraction condition is maintained. Improvement
in convergence speed is due to the suppression of local
errors, which are aggressively suppressed at odd (even)
steps without being enlarged at even (odd) steps.

II.B.4.c. Spatially variant parameter values. The
non-uniform spectral structure of the transformation Ja-
cobian can be better exploited by letting the control
parameter vary spatially with x over Ω. This can be
achieved by determining the parameter value at x ∈ Ω
by a local neighborhood 𝒩 (x), such that the entire im-
age domain is covered,

⋃︀
x 𝒩 (x) = Ω. The neighborhood

size need not be greater than the maximal displacement
length, which is known in advance. The parameter value
at x can be the mid-range value over 𝒩 (x), or the locally
optimal value when the neighborhood is small enough.
The iteration with spatially variant control is essentially
non-stationary, because the value of 𝜇𝑘(x) depends on
the location of x+ v𝑘(x).

Locally optimal control, as described in Section II.B.3,
assumes implicitly that the remaining displacement re-
finement is small. This assumption is not a restriction,
as it can be met easily in practice by simply preceding the
scheme by a few iterations with another control scheme.
In particular, we may use spatially variant mid-range val-
ues over larger neighborhoods, which are not necessarily
uniform in size nor shape.

Spatially variant schemes incur extra but modest cost
in two parts. First, we create a parameter map once for
all iteration steps, by calculating the Jacobians, eigen-
values, and control parameter values over Ω. This pre-
processing step takes about the same time in execution
as a single iteration step. Then, the look-up of param-
eter values over the domain at each iteration step takes
no more than 5% of the cost for 3D vector-field inter-
polation. The overall cost is outweighed by the gain in
practice; see Section IV.

II.C. Spectral NTDC characterization

We discuss in this section how we characterize and
evaluate non-translational displacement components in
a given DVF, with respect to DVF inversion. The NT-
DCs over Ω can be fully described by the eigenvalues of
the displacement Jacobians Ju(x) in the complex plane.
Rather, we employ the following three real-valued scalar
functions for their informative properties. (i) The deter-
minant of Jf (x), which is commonly used for deformation
characterization.7,13 The transformation f is invertible if
and only if |Jf (x)| ≠ 0. (ii) The spectral radius of Ju(x).
Where 𝜌(Ju(x)) = 0, the DVF is locally translational;
where 𝜌(Ju(x)) ≥ 1, the NTDC is non-small. (iii) The
algebraic control index

1− 2𝛾(x), (25)

where 𝛾(x) is defined in (19).
The algebraic control index is informative in several

ways. First, it offers an equivalent criterion to (15) on
whether the NTDC at x is non-small:

1− 2𝛾(x) > 0 ⇐⇒ 𝜌(Ju(x)) ≥ 1. (26)

Second, the necessary and sufficient condition for the ex-
istence of feasible control parameter values is

1− 2𝛾(x) < 1 ⇐⇒ 𝛾(x) > 0. (27)

That is, the algebraic control index distinguishes non-
small NTDCs from small ones and furthermore tells
whether or not a non-small NTDC can be put under con-
trol by a single-parameter control mechanism (9). Third,
the index is a lower bound to all feasible control values;
see (18). It can be employed directly for locating the
mid-range parameter value (Section II.B.4.a), as well as
for selecting alternating values (Section II.B.4.b).

The algebraic control index (25) falls a little short of
replacing entirely the roles of the other two measures,
in two particular circumstances. When |Jf (x)| = 0, the
transformation is locally singular; the controllability con-
dition is violated in this case and the index is not well-
defined. When 𝜌(Ju(x)) = 0, the displacement at x is
locally translational; the algebraic control index is equal
to −1 in this case, but the converse is not necessarily
true. We use all three measures for data assessment in
Section III.C.
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III. EXPERIMENTS

We report experimental results on numerical DVF in-
version, using clinical and analytical data. In this section,
we describe the experimental set-up and present charac-
terization measures of the clinical DVF data. Results
with different inversion iteration schemes are presented
in Section IV with the clinical DVF data, and in Ap-
pendix A with the analytical DVF data.

III.A. Dataset description

The experiments presented here are carried out with
6 pairs of thoracic CT images at end of expiration (EE)
and end of inspiration (EI). The image data are from
the CT image collection available through the website
of the Deformable Image Registration Laboratory (DIR-
Lab) at the University of Texas Medical Branch.16,17 The
data collection includes two sets of patient images, with
10 patients in each set. One dataset contains 4DCT im-
ages acquired at the University of Texas MD Anderson
Cancer Center as part of radiotherapy planning for tho-
racic malignancy treatment.16 In-slice spatial resolution
is (0.96mm)2 and slice thickness is 2.5mm. The other
set contains EE and EI breath-hold CT images, taken
from the COPDGene study archive of the National Heart,
Lung, and Blood Institute.17 In-slice spatial resolution
ranges from (0.586mm)2 to (0.647mm)2 and slice thick-
ness is 2.5mm. We refer to the data associated with each
patient by the assigned label in the DIR-Lab website col-
lections. We have selected the images of 1 patient from
the 4DCT set and 5 patients from the COPD set.

Our selection was based on variations in displacement
and spectral measures (Section II.C) of associated DVFs,
such that we present the cases that pose a bigger chal-
lenge to DVF inversion. The forward DVF for each pa-
tient was obtained by one-way deformable image registra-
tion with the Velocity software (Varian Medical Systems,
Palo Alto, CA, USA). The EE image is used as reference
(primary) and the EI image as target (secondary), since
the EE image is less susceptible to respiratory phase bin-
ning or motion artifacts. The 4DCT DVFs exhibit only
small NTDCs, posing little challenge to effective feedback
control design, whereas the COPD DVFs exhibit more di-
verse spatial and spectral measures. We select the five
COPD DVFs with the largest amplitudes and variation
in displacements to test the inversion iterations with the
more challenging cases. We also select one DVF as rep-
resentative of the 4DCT DVFs, using the same criterion.
In what follows, we will provide measures and results in
summaries for each of the 6 DVFs. We will also pro-
vide in detail results for COPD4 DVF, which is the most
challenging case among the six DVFs with respect to in-
version, as indicated by the highest control index values
in Table I. The COPD4 DVF is displayed in Fig. 2 via
displacement-vector quivers in axial, coronal, and sagit-
tal slices, over a magenta-green overlay of the reference
and target images.

axial coronal sagittal

Fig. 2 The forward DVF with patient COPD4, visualized by
quiver-plots in axial, coronal, and sagittal slices, against an overlay
of the reference CT image (EE, magenta) and target image (EI,
green). The displayed quiver is spatially down-sampled by a factor
of 12 along the LR and AP axes and a factor of 6 along the SI axis.

III.B. Evaluation measures

We assess feedback control parameter settings for the
DVF inversion iteration with pre- and post-inversion
evaluation measures. For pre-inversion evaluation, we
use the spectral radii of the infinitesimal contraction ma-
trix (13) over Ω to assess the error contraction area and
ratio by each control setting. For post-inversion eval-
uation, we use the two IC residuals, rv and ru (Sec-
tion II.A.1), measured in point-wise magnitudes. In ad-
dition to inversion evaluation measures, we report char-
acterization measures of the forward DVFs. All measures
are scalar fields over the displacement domain.

We define the valid displacement domain Ω as follows.
Given the image domain Ω0 for an input DVF, we get

Ω = Ω0 − (Ω1 ∪ Ω2), (28)

where Ω1 = {x | x ∈ Ω0, f(x) ̸∈ Ω0} and Ω2 = Ω0 −
{f(x) | x ∈ Ω0}. That is, we exclude regions that are
either mapped outside the original domain or not over-
lapping with the transformed domain.

Regarding summaries of scalar-field measures, we ad-
dress two issues at once. First, a summary shall take into
consideration the uncertainty in numerically provided
DVF data due to regional delineation, noise, artifacts,
and outliers. Second, it shall reflect spatial variation in
the measure field and not obscure non-negligible changes
in relatively small regions. Taking into account these two
concerns, we summarize voxel-wise scalar measures over
Ω via multiple percentiles (upper-bound values). Specif-
ically, let 𝜑 be a scalar field over Ω, bounded from be-
low by 𝜑min. Let Ω(𝜑 = 𝜏) = {x | 𝜑(x) = 𝜏, x ∈ Ω}
be the level set or iso-contour set of 𝜑 at value 𝜏 , and
𝑝(𝜑 = 𝜏) = |Ω(𝜑 = 𝜏)|/|Ω| be the density of the level set.
The 𝛽-th percentile value of 𝜑 is defined as

𝜑[𝛽%] = inf
𝜏

{︂
𝜏

⃒⃒⃒⃒ ∫︁ 𝜏

𝜑min

𝑝(𝜑 = 𝜏 ′) d𝜏 ′ > 𝛽%

}︂
. (29)

In practical computation, we approximate 𝜑[𝛽%] via a
discrete histogram of 𝜑. For all six patient DVFs, we
report evaluation summaries with box-and-whisker plots
showing 2nd, 10th, 50th, 90th, and 98th percentiles; and
DVF characterization summaries in a table with 50th,
90th, and 98th percentiles. For the COPD4 DVF, we also
display image slices of each volumetric measure field.
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Table I Characterization summary of 6 patient DVFs by displace-
ment lengths (along LR, AP, and SI axes) and spectral measures
(determinant of the deformation Jacobian, spectral radius of the
displacement Jacobian, and algebraic control index (25)). The
rightmost column shows the fraction of voxels associated with com-
plex eigenvalues. Percentiles in the other columns are defined as
per (29).

Patient 𝛽 u(x) (mm) spectral measures Im(𝜆)
̸= 0LR AP SI |Jf |§ 𝜌(Ju) 1−2𝛾

4DCT7
50 0.7 0.9 1.3 1.0 0.1 −0.9

74%90 2.3 3.1 7.8 0.8 0.3 −0.7

98 4.3 5.3 13.3 0.6 0.4 −0.5

COPD1
50 3.0 12.1 7.7 0.9 0.3 −0.8

51%90 8.3 32.1 25.9 0.4 0.7 −0.3

98 14.0 37.4 33.6 0.1 1.0 0.0

COPD4
50 3.6 8.0 11.9 0.9 0.4 −0.7

44%90 10.2 23.9 34.6 0.3 0.9 −0.1

98 14.9 29.1 49.5 0.0 1.4 0.3

COPD5
50 2.3 8.7 10.1 1.0 0.3 −0.7

58%90 7.7 30.9 31.2 0.4 0.8 −0.2

98 12.5 39.2 43.0 0.1 1.2 0.1

COPD6
50 2.7 21.6 8.9 0.9 0.3 −0.7

69%90 7.9 26.0 21.6 0.4 0.7 −0.3

98 11.9 32.7 33.1 0.1 1.0 0.0

COPD8
50 1.8 6.2 6.7 0.9 0.3 −0.7

57%90 6.3 15.2 23.5 0.4 0.8 −0.3

98 10.0 20.3 38.2 0.0 1.3 0.3

§ (100 − 𝛽)-th percentiles (50th, 10th, 2nd) shown in the case of |Jf |

III.C. DVF characterization

Table I lists spatial and spectral measures of the six
forward DVFs. The spatial measures are displacement
lengths along the LR, AP, and SI axes. The spectral
measures were described in Section II.C.

The COPD DVFs have non-small NTDCs over 2% to
10% of the domain, by the criterion 𝜌(Ju) ≥ 1 or the
equivalent criterion on the control index, 1 − 2𝛾 ≥ 0.
They also have regions with zero or negative determi-
nants. Regions with non-small NTDCs seem to con-
centrate primarily, but not exclusively, around the di-
aphragm and chest wall where there is substantial motion
due to inspiration. In order to guarantee convergence of
the inversion iteration over no less than 98% of Ω, it is
necessary to exercise adequate residual feedback control.

We present in Fig. 3 a detailed view of the spectral
measures of the COPD4 DVF, via contoured heat-maps
over image slices. As discussed in Section II.C, the con-
trol index maps (bottom row) are indeed most informa-
tive. Regions with non-small NTDCs (1−2𝛾(x) ≥ 0) are
in the gray-to-orange color range, and the salient orange
spots indicate where the controllability condition (19) is
violated (1 − 2𝛾(x) ≥ 1). The other two maps provide
complementary or mutually confirming information. The
determinant maps (top row) show negative and zero val-
ues in blue and black, respectively; these are within the
orange regions in the bottom maps. The maps in the

axial coronal sagittal
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Fig. 3 Spatial variation of three spectral measures (Section II.C)
with the COPD4 DVF, in volumetric, contoured heat-maps over
the reference domain: |Jf (x)| (top); 𝜌(Ju(x)) (middle); and 1 −
2𝛾(x) (bottom). The display range for the determinant map is
determined by its 90th percentile value as per (29). Zero-valued
(black) regions in the determinant show where the deformation
transformation is non-invertible. The maps of 𝜌(Ju) show that
NTDCs are observed almost everywhere. The orange spots in the
bottom maps show where the control index is greater than one;
they coincide with the black and blue spots in the top maps, which
indicate zero or negative determinant values.

middle row show the spectral radii of NTDCs. Regions
with non-small NTDCs (𝜌(Ju(x)) ≥ 1) are highlighted in
red. The controllability condition holds over more than
98% of Ω. We suspect that the problematic spots where
it is violated were artifacts of the registration process.

The 4DCT7 DVF has small NTDCs: 𝜌(Ju) is small,
and |Jf | is not far from 1. The DVF satisfies the control-
lability condition virtually everywhere.

IV. RESULTS

We present results for iterative DVF inversion by (9)
with three types of feedback control schemes: (i) uni-
form, constant parameter 𝜇, with each of 4 values in
{0, 0.3, 0.5, 0.7}, which includes the two precursor al-
gorithms7,13; (ii) alternating parameter values 𝜇oe =
(𝜇o, 𝜇e), where 𝜇o and 𝜇e are adaptively set as the mid-
range values at the 50th and 98th percentiles, respec-
tively (see Sections II.B.4.a and II.B.4.b, and 1 − 2𝛾 in
Table I); and (iii) spatially variant control 𝜇*(x) with lo-
cally optimal values by (20a) or (22a). All six control
parameter settings are applied to each of the six DVFs.

Adaptive feedback control with the mid-range param-
eter value (Section II.B.4.a), although not reported as
another control scheme along the 6 schemes listed above,
is actually used in more than one way in the experiments.
First, the 50th and 98th percentile mid-range values are
employed in alternating-values control scheme. Second,
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Fig. 4 Error contraction ratio percentiles over Ω for each of the 6
DVFs, with 4 feedback control parameter settings: constant 𝜇 = 0
and 𝜇 = 0.5, alternating 𝜇oe, and spatially variant 𝜇*(x). Box
whiskers indicate the 2nd and 98th percentiles; the 10th and 90th
percentiles are at the low and high ends of each box; and the median
(50th percentile) is marked by a horizontal bar through each box.

the initial guess for each DVF inversion iteration is set to
v0(x) = (𝜇m[98%] − 1)u(x) with all 6 control schemes,
where 𝜇m[98%] is the 98th percentile mid-range value.
This is equivalent to taking a single step with mid-range
value control and zero initial guess.

This data-adaptive initialization yields a better initial
estimate, and mitigates an out-of-boundary issue with
small-magnitude control parameter values. Consider, for
instance, the iteration with 𝜇 = 0 and zero initial guess.
Even within the contraction region, it is likely that x −
u(x) falls outside the image boundary, and the iteration
fails at the second step, v2(x) = −u(x − u(x)), over a
large number of voxels, such as those on or below the
diaphragm, close to the inferior boundary.

We present in Section IV.A pre-inversion evaluation of
contraction area and ratio with each control scheme, and
in Section IV.B post-inversion evaluation of IC residuals
with the inverse DVF estimates.

IV.A. Contraction area & ratio

We provide in Fig. 4 a summary of error contraction
ratios, i.e., the spectral radii of the infinitesimal contrac-
tion matrices, for each of the 6 DVFs and with each of the
following 4 control settings: 𝜇 = 0, 𝜇 = 0.5, alternating
values 𝜇oe, and spatially variant values 𝜇*(x). The latter
two are adaptive. Lower contraction ratios indicate faster
error suppression. With the 4DCT7 DVF, the contrac-
tion ratios indicate convergence by all schemes, with the
iteration with 𝜇 = 0.5 at a much slower pace. With the
COPD DVFs, except COPD4, the two constant, non-
adaptive schemes are comparable to each other at the
90th percentile. At the 95th (not shown) and 98th per-
centiles, the scheme with 𝜇 = 0 fails to contract over non-
small NTDC regions, whereas the scheme with 𝜇 = 0.5
maintains contraction ratios under 1. The value 0.5 hap-
pens to be in the control parameter range of each COPD
DVF. The adaptive control scheme with alternating val-
ues for each DVF is better than the non-adaptive schemes
up to the 90th percentile and in fact up to the 95th per-
centile (not shown). If it is desirable that the contraction
region cover 98% or more of the domain, one shall use the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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Fig. 5 Volumetric heap-maps of the error contraction ratio
𝜌(Q(x;𝜇)) over the reference domain, with the COPD4 DVF. Com-
parison between 4 different feedback control parameter settings:
𝜇 = 0; 𝜇 = 0.5; alternating values, 𝜇oe, with 𝜇o = 0.15 at odd
steps and 𝜇e = 0.65 at even steps; and spatially variant values,
𝜇*(x). Errors are suppressed more aggressively over the darker
regions where 𝜌(Q(x;𝜇)) is small, but are enlarged over the red
regions, where 𝜌(Q(x;𝜇)) ≥ 1.

high-percentile mid-range value, which happens to be be-
tween 0.5 and 0.65 for each COPD DVF. The spatially
variant scheme yields the lowest contraction ratios at all
percentiles and with each DVF.

We display in Fig. 5 a comparison between the 4 con-
trol parameter settings in the spatial variation of error
contraction ratios with the COPD4 DVF. The regions in
red are non-contraction regions. Failure to contract is
either due to violation of the controllability condition or
due to inadequate feedback control (cf. Figs. 3 and 5).
The violation regions are common to all heat-maps, and
correspond to the orange spots in the control index maps
in Fig. 3. The scheme with 𝜇 = 0 has the smallest con-
traction area, indicating the failure of this non-adaptive
control setting over the controllable region. Spatially
variant control 𝜇*(x) yields the largest contraction area
and lowest contraction ratios.
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Fig. 6 Inverse consistency residuals 𝑟v(x) and 𝑟u(x+ v(x)), reported in magnitude percentiles (29) in log-scale over the target domain,
at the 10th iteration step with each patient and feedback control setting. Box whiskers indicate the 2nd and 98th percentiles; the 10th
and 90th percentiles are at the low and high ends of each box; and the median (50th percentile) is marked by a horizontal bar through
each box. The 𝑦-axis range is truncated to [10−5, 2]mm for the 4DCT7 plot, and to [0.001, 20]mm for the COPD plots; percentile values
outside these ranges are not shown. The horizontal dashed line in each plot indicates the in-slice resolution of the corresponding CT image.

IV.B. Inverse consistency residuals

We summarize in Fig. 6 post-inversion evaluation of
the iteration (9) by 6 different feedback control schemes,
for each of the 6 DVFs, in terms of the two IC resid-
uals in Section II.A.1. The residuals are calculated at
the 10th iteration step, measured by magnitude 𝑟(x) =√︀
𝑟2LR(x) + 𝑟2AP(x) + 𝑟2SI(x), and reported as percentile

values in log-scale.
With the 4DCT7 DVF, IC residuals are below the in-

slice resolution with every scheme. They are larger with
𝜇 = 0.5 due to slower convergence, as expected by the
pre-inversion evaluation, and even larger with 𝜇 = 0.7.

With the COPD DVFs, we note first that substan-
tial spatial variation of the residuals is observed for each
DVF. The residuals at the 50th and lower percentiles are
well below 1mm with all control settings. How far below
1mm is related to the convergence pace, since the con-
traction region for each control setting covers much more
than half of the domain. The iteration with constant
𝜇 = 0.7 is the slowest. We observe the following among
the 4 constant, non-adaptive control schemes. With the
same initialization, residual reduction does not correlate
linearly with the values of 𝜇: specifically for the 5 COPD
DVFs, the 𝜇 = 0 and 𝜇 = 0.7 settings are inferior to
𝜇 = 0.3 and 𝜇 = 0.5 at high percentiles. The latter
two settings are comparable at the 98th percentile, and
the scheme with 𝜇 = 0.3 yields smaller residuals up to

the 90th. No single constant-value scheme is as good as
the adaptive scheme with alternating values. The residu-
als by the scheme with spatially variant values are much
smaller than by other schemes, by roughly an order of
magnitude or more at the 90th percentile. More remark-
ably, the 98th percentile residuals are reduced to below
2mm by only 10 iteration steps with spatially variant
control.

We provide in Figs. 7 and 8 a detailed comparison be-
tween 4 feedback control settings with the COPD4 DVF.
Fig. 7 shows the spatial variation of the IC residuals at
the 10th iteration step, visualized as volumetric quiver-
plot and magnitude heat-map slices, overlaid on the tar-
get CT image. Fig. 8 shows the progression of residual
magnitudes in 90th, 95th, and 98th percentile values for
the first 15 iteration steps. Both figures highlight the ad-
vantage of NTDC-adaptive iterations over non-adaptive
ones. In particular, the spatially variant control scheme
reduces the residuals more rapidly and over the largest
area. At the 10th step, by Fig. 7, it has removed or sub-
stantially reduced the problematic spots visible in the
other heat maps. In fact, it renders residuals below the
in-slice resolution (0.59mm) by 7 steps at the 95th per-
centile, and by 15 steps at the 98th; the non-adaptive
schemes take twice as many or more steps to reach the
same range, or fail to reach it.
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Fig. 7 Volumetric quiver-plots of rv(x) and ru(x+v(x)), with contoured heat-maps of magnitude (in mm), at the 10th iteration step with
the COPD4 DVF, overlaid on the target image. Comparison between four feedback control schemes: constant 𝜇 = 0, constant 𝜇 = 0.5,
alternating 𝜇 = 𝜇oe (with 𝜇o = 0.15 and 𝜇e = 0.65), and spatially variant 𝜇*(x). The heat-map display range is truncated at 10mm for
visual inspection. White spots indicate regions where residual feedback entailed out-of-bounds values during the iteration.
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Fig. 8 Pace of inverse consistency residual suppression during the first 15 iteration steps with the COPD4 DVF, reported in percentiles
of 𝑟v(x) and 𝑟u(x+ v(x)) in log-scale. Comparison between four feedback control schemes: constant 𝜇 = 0, constant 𝜇 = 0.5, alternating
𝜇 = 𝜇oe (with 𝜇o = 0.15 and 𝜇e = 0.65), and spatially variant 𝜇*(x). The black horizontal dashed lines mark the in-slice image resolution.
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V. DISCUSSION AND CONCLUSION

We have elucidated and characterized the central role
of non-translational displacement components (NTDC)
in iterative DVF inversion. We have developed a frame-
work of NTDC-adaptive algorithms for DVF inversion
with a simple residual feedback control mechanism, and
completed the framework with rigorous convergence anal-
ysis. Experimental results demonstrate the superior per-
formance of our adaptive control methodology, in both
convergence area and speed. We have also found re-
markable agreement between pre-inversion assessment of
control schemes, as arising from our analysis, and post-
evaluation of inversion results.

The clinical utility of our algorithms and analysis can
be reflected in multiple ways. (i) NTDC-adaptive itera-
tion algorithms enable quick and accurate estimation of
an inverse DVF, which is valuable in a number of clin-
ical applications, such as 4D image reconstruction and
adaptive radiotherapy. (ii) The spectral measures in Sec-
tion II.C can be used, independently of any inversion
task, for evaluating DVFs generated with existing soft-
ware under clinical application conditions. (iii) The in-
version algorithms, presented here as an asymmetric ap-
proach for generating the inverse of a forward mapping,
can be incorporated with ease into existing software for
simultaneous deformable image registration, which may
consist of multiple forward and backward transformation
stages.10 It is also plausible to employ the spectral mea-
sures as local regularization terms at each transformation
stage, complementary to global ones. Additional, sys-
tematic studies are needed for such extensions. Potential
benefits include rapid refinement in inverse consistency,
increased robustness to the asymmetry in image qual-
ity between registered images, and reduced registration
artifacts.

Lung deformations are of great clinical concern.1,2
DVFs obtained from thoracic CT images are used in turn
to test our theory and algorithms. Further testing, with
similar as well as different types of deformations, will bet-
ter underscore the scope and impact of our theory and
algorithms.
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(a) (b) (c)

Fig. 9 Image-space visualization of the analytical DVFs of (A1).
(a) Reference image of concentric rings over [−34, 34]2. (b) Target
image obtained by deforming the reference image with the forward
DVF of (A1a) with parameter values 𝑚 = 8 and 𝑏 = 0.5. (c) Target
image by the forward DVF with parameter values 𝑚 = 8 and 𝑏 =
0.8.

Appendix A: Numerical inversion errors with an
analytical DVF pair

We provide comparisons in numerical inversion errors
among several DVF inversion algorithms in the frame-
work of (9). The study of inversion errors, unlike IC
residuals, requires the ground-truth inverse DVF. We use
the 2D analytical DVFs introduced by Chen et al.13:

u(x′) =

(︂
1

1 + 𝑏 cos(𝑚𝜃(x′))
− 1

)︂
x′, (A1a)

v(x) = 𝑏 cos(𝑚𝜃(x))x, (A1b)

where x,x′ lie in a 2D domain Ω, 𝑏 ∈ (0, 1) is a radial
(stretch) parameter, 𝑚 ∈ N is an angular (oscillation) pa-
rameter, and 𝜃(x) ∈ [0, 2𝜋) is the angular coordinate of x
in the polar representation xT = ‖x‖(cos 𝜃(x), sin 𝜃(x)).
The angular coordinate is well-defined everywhere except
at x = 0. It is straightforward to verify that the analyt-
ical DVFs are inverse to each other. The DVFs were
visualized in image space by Chen et al.13 via deforming
a specific reference image of concentric rings; we re-create
such images in Fig. 9.

In numerical experiments, we discretize the analytical
DVFs on a grid of finite resolution, apply each inver-
sion algorithm to the discretized forward DVF, and com-
pare the numerical inverse estimate to the inverse DVF.
Specifically, we set 𝑚 = 8 and 𝑏 = 0.8, and discretize
u on a 2D grid over [−34, 34]2 with spatial resolution
0.05. We let Ω be the sub-grid over [−17, 17]2, where
both DVFs are valid in the sense of (28). We assess the
spectral properties of the numerical DVF and present in
Fig. 10 its spectral maps by the three characterization
measures introduced in Section II.C.

Four iterative inversion algorithms are examined. The
same algorithms are compared in IC residuals in Sec-
tion IV.B. The first two are existing work7,13; they are
non-adaptive and globally constant, with the control pa-
rameter values 𝜇 = 0 and 𝜇 = 0.5. The next two are
adaptive to the DVF. One is non-stationary, using the al-
ternating parameter values 𝜇𝑜 and 𝜇𝑒 (Section II.B.4.b),
adaptively set to 50th and 98th percentile mid-range val-
ues over Ω. The other is spatially variant 𝜇*(x) (Sec-
tion II.B.4.c), using locally optimal values (per (20a)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 0.0 0.2 0.5 0.8 1.0 -1.0 -0.5  0.0  0.5  1.0

(a) |Jf (x)| (b) 𝜌(Ju(x)) (c) 1− 2𝛾(x)

Fig. 10 Spectral maps of three characterization measures (Sec-
tion II.C) of the discretized DVF (A1a) over Ω = [−17, 17]2.
(a) Determinant map. Small (black) and large (orange) values
show volume shrinkage and expansion, respectively. (b) Spectral
NTDC radius map. Non-small NTDC regions, per (15) and (26),
are highlighted in red. (c) Algebraic control index map. The in-
dex range shows that global convergence is feasible with adaptive
feedback control; see (18) and (27).

and (22a), customized to 2D DVFs), except in a small
neighborhood around x = 0 where the mid-range value
is used.

Inversion errors are calculated pixel-wise by e𝑘(x) =
v𝑘(x)−v(x), with the estimate at the 𝑘-th iteration step
and x ∈ Ω; see (2). They are presented in two comple-
mentary views. In the summary view (Fig. 11), we pro-
vide the sequence of inversion error percentiles (29) over
each iteration process up to the 15th step. We show
in Fig. 12 the spatial distribution of errors via snap-
shots of inversion error maps at three iteration steps,
𝑘 = 1, 8, 15. In order to take into consideration also the
response of each algorithm to the initial guess, we present
the error-map snapshots with two different initial guesses:
v

[a]
0 (x) = 0 and v

[b]
0 (x) = 0.08 cos(8𝜃)[−𝑥2 𝑥1]

T.
The two non-adaptive iterations fail in reducing the

errors over the 8 radial ridge regions with 𝑏 = 0.8, as
shown in Fig. 12. The divergence regions correspond to,
and can be predicted by, those with non-small NTDCs
and high control index values in Fig. 10. The two adap-
tive iterations successfully suppress and annihilate the
inverse errors. With the spatially variant adaptive con-
trol, inversion errors are reduced to sub-pixel length in
no more than 3 steps. If the analytical values of 𝜇*(x)
are used, the algorithm renders the inverse in a single
step.
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Fig. 11 Inversion error magnitudes in three percentiles (90th left, 95th middle, and 98th right) during the first 15 steps of each iteration
with the discretized DVF, with two different initial guesses (top and bottom). Each plot shows the error sequence with each of the following
four control schemes: constant 𝜇 = 0, constant 𝜇 = 0.5, alternating 𝜇oe with 𝜇o = 0 and 𝜇e = 0.77, and spatially variant 𝜇*(x). Error

magnitudes, 𝑒(x) =
√︁

𝑒2LR + 𝑒2AP + 𝑒2SI, are measured in pixel-length unit and plotted in log-scale.

 0.0  5.0 10.0 15.0 20.0 25.0 30.0

1 step 8 steps 15 steps

𝜇
=

0
𝜇
=

0.
5

𝜇
oe

𝜇
*(
x
)

(a) initial guess v
[a]
0 (x)

1 step 8 steps 15 steps

(b) initial guess v
[b]
0 (x)

Fig. 12 Inversion error map snapshots at three steps (𝑘 = 1, 8, 15) during iterative inversion of the discretized DVF, with initial guess
v

[a]
0 (left) and v

[b]
0 (right). Each row contains error maps with one of the following four control schemes (from top to bottom): constant

𝜇 = 0, constant 𝜇 = 0.5, alternating 𝜇oe with 𝜇o = 0 and 𝜇e = 0.77, and spatially variant 𝜇*(x). Error magnitudes are measured in
pixel-length unit. Errors within a pixel are shown in white, and errors beyond 30 pixels are shown in red. The first two schemes fail in
error suppression around the 8 radial ridge lines; the next two successfully suppress the errors over the entire domain. The scheme with
𝜇*(x) is robust to the change in the initial guess.
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