

SAKURA: RECURSIVE CONSTRUCTION AND TRAVERSAL OF FMM SKELETON

Nikos Sismanis¹ Alexandros-Stavros Iliopoulos² Rio Yokota³ Nikos P. Pitsianis^{1,2} Xiaobai Sun²

¹ ECE, Aristotle University of Thessaloniki ² CS, Duke University ³ GSIC, Tokyo Institute of Technology

Motivation

- Tree building and graph traversal for interaction challenge parallel architectures, slowing down parallel FMM execution.
- Updating the tree and interaction lists is critical in time-dependent computations.
- Infrequent updates lead to loss of accuracy.

Evolution of galaxy distribution in Astrophysics simulation; figure taken from [2].

→ Sakura takes a fully recursive approach for processing the FMM skeleton (tree partitions + interaction lists), ensuring the efficient storage and traversal of the data structure.

Adaptive Tree Building

- Fast spatial partitioning of source and target sets via adaptive geometric binning.
- Hierarchically local mapping of particle records to memory.

Illustration of geometric partitioning and corresponding memory rearrangement of a 2D particle-set. The particle records are recursively binned in memory, following the spatial partition hierarchy. The recursion terminates for partitions/bins whose population is below a threshold, while empty partitions/bins are discarded.

References

- [1] L. F. Greengard and V. Rokhlin. A fast algorithm for particle simulations. *Journal of Computational Physics*, 73(2):325–348, 1987.
- [2] E. Platen, R. van de Weygaert, and B. J. T. Jones. A cosmic watershed: the WVF void detection technique. *Monthly Notices of the Royal Astronomical Society*, 380(2):551–570, Sept. 2007.
- [3] H. C. Plummer. On the problem of distribution in globular star clusters. *Monthly Notices of the Royal Astronomical Society*, 71(1):460–470, 1911.
- [4] R. Yokota. An FMM based on dual tree traversal for many-core architectures. *Journal of Algorithms and Computational Technology*, 7(3):301–324, 2013.

FMM Interaction Lists

- ► Explicit formation of interaction lists
- 1. Fast counting of interaction links (dual-tree traversal; pass 1)
- 2. Tight memory allocation for all links with a single OS call
- 3. Instantiation of interaction lists (dual-tree traversal and memory stuffing; pass 2)
- Minimal number of node-pair visits during the counting and instantiation passes.

Near-neighbor links in two resolution levels of a sample dual tree (source + target trees). **Green** boxes contain target particles, **magenta** boxes contain source particles, while **blue** boxes contain both target and source particles. **Orange** arrows indicate target-to-source links. Interaction lists (not shown) are induced by multi-level neighboring relationships; hence, only near-neighboring pairs of nodes need to be visited for interaction list formation.

- Original, compressed, and cross-level interaction lists are supported.
- ► Implicit-list interactions
 - The fast traversal algorithm is also applicable to implicit interaction list approaches.

Experimental Set-up

- Particle distributions for simulations:

• Low- and high-accuracy simulations:

- expansion order p = 4 and p = 9

uniform distribution on sphere octant surface

Plummer distribution [3]

• Simulation platform:

							Cache levels			
CPU Type	CPUs	Cores	Thr.	CPU clock	L1	L2	L3			
Xeon E5-2650	2	8	16	2.4GHz	32KB	256KB	30MB			

Experiments

Sakura performance (comparison with the widely-used ExaFMM package [4]):

ratio of combinatorial construction to total FMM execution time (t_c/t_c+t_n)

		<i>p</i> =	= 4		p=9				
	Octant		Plum.		Octant		Plum.		
N	skr	exa	skr	exa	skr	exa	skr	exa	
10	20	48	22	38	6	16	4	11	
20	18	50	22	43	5	18	4	12	
40	18	53	22	45	5	21	4	13	
80	18	50	20	45	5	18	3	14	
160	18	54	21	50	5	19	3	15	
320	19	54	21	52	5	19	3	31	

total FMM execution time in seconds $(t_c + t_n)$

	p=4				p=9			
	Octant		Plum.		Octant		Plum.	
N	skr	exa	skr	exa	skr	exa	skr	exa
10	2	3	5	6	5	7	10	14
20	4	6	10	13	11	13	20	27
40	8	13	19	25	21	26	40	52
80	14	23	30	43	40	51	75	101
160	28	49	58	90	82	102	151	201
320	49	103	107	189	159	214	299	502

N: # of particles (M); **skr**: Sakura execution; **exa**: ExaFMM execution t_c : time for combinatorial construction; t_n : time for numerical evaluation of FMM

- FMM skeleton construction cost ratio reduceed by $2.5–3.5 \times$
- total FMM time reduced up to $2\times$ for larger data-sets

Plummer sphere evolution

- cumulative relative energy error: $\Delta E_t = \frac{E_t E_0}{E_0}$
- E_t : total (kinetic + potential) energy at time t
- # particles: 10M; # time steps: 3000; $\Delta t = 1kyr$

Plummer sphere core collapse

- Lagrangian radii: minimal radii which enclose a certain portion of the total system mass
- # particles: 10M; # time steps: 25000; $\Delta t = 100yr$

- error increases with less frequent FMM skeleton updates
- execution time: 3-step updates with Sakura \approx 15-step updates with ExaFMM

Strong thread scalability

- # particles: 160M
- p = 4
- FMM skeleton construction scales just as well as the FMM computations
- both scale almost ideally up to 16 threads (# of cores)

