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Problem description

• Points 𝒳 = {x𝑖}𝑛
𝑖=1 initially stored in order 𝑎(𝒳)

Access order 𝑏(𝒳) far different from 𝑎(𝒳)
– inter-procedure or inter-operation

• Indirect indexing 𝑎(𝒳) ↦→ 𝑏(𝒳)
– invokes irregular memory access patterns
– computation becomes acutely memory bounded
– difficult to parallelize

• Common solutions: reordering operations, data, or both
– loop transformations: splitting, fusion, skewing, distribution
– strip-mining, tiling and permutation

• Common solutions are challenged by scattered data

• Fast data translocation: Physical data relocation Π : 𝑎(𝒳) ↦→ 𝑏(𝒳)

Objective

Improve performance of operations on scattered data
– optimal data locality for minimal memory access latency
– maximal utilization of parallel resources & scheduling schemes

Applications

• Scattered data samples acquired/generated in various applications
– 3D scans, magnetic resonance imaging
– Molecular/celestial dynamics simulations
– Integral imaging, augmented or virtual reality
– Graph embedding

• Processing typically involves calculation of all-point interactions
– direct evaluation too expensive, 𝑂(𝑛2) operations
– approximation/compression techniques: 𝑂(𝑛 log 𝑛) or 𝑂(𝑛)

∗ arithmetic operations
memory operations becomes very small

computation becomes acutely memory bounded
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Methodology

Demo case: scatter-grid translations

Data translation between scattered data points and regular points
on an auxiliary grid (externally specified or internally determined)

Scattered interactions are decomposed into

• local translations between scattered and grid points (S2G & G2S)

• global interactions among the equispaced grid points (G2G)

This poster focuses on local translations S2G and G2S
The local window support is 𝑤 = 4 × 4 grid points
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Multi-level data translocation

• Hierarchical binning (coarser to finer grids)

– adhere to memory hierarchy
– utilize memory bandwidth
– explore data & task parallelism

• Matrix view

– block-wise factorization of permutation Π
– blocks not necessarily of equal size
– recursion not necessarily uniform in size and depth

Memory access patterns

• Scattered points are translocated prior to S2G and G2S translations

– points residing in the same grid cell are placed together

Local translation matrix, at each translocation step, with 960,000 coefficients between 128 × 128 regular grid points (rows) and 60,000 scattered points (columns).
The local window support is 𝑤 = 4 × 4 grid points.

Red-black non-overlapping partition of a 2D grid, with 30×30
grid points (blue) and 60,000 scattered points

Red-black scheduling

Partition grid into non-overlapping regions (red-black)

• Data coherence

– No write conflicts
– No data racing

• Minimal synchronization barriers

• Maximal use of parallel resources

Architecture specification

CPU Clock Cores L1 L2 L3 RAM BW
(GHz) (KiB) (KiB) (MiB) (GiB) (GiB/s)

per-core shared

Intel Core i7-4558U 2.80 2 64 256 4 8 10.5
Intel Core i7-6700 3.40 4 32 256 8 32 19.9
AMD Ryzen 1900X 3.80 8 96 512 16 64 31.6

Memory bandwidth measured with the parallel STREAM copy benchmark.

Performance results

Performance of S2G & G2S on 3D dataset of 𝑛 = 2,097,152 scattered points
drawn randomly following a uniform distribution over [0, 1)3

Speedup at 128 × 128 × 128 grid
computer Core i7-4558U Core i7-6700 Ryzen 1900X
#thread 1 2 1 4 1 8

without translocation 1.0 1.7 1.0 1.9 1.0 3.8
with translocation 6.9 11.9 6.1 19.5 6.4 24.6

ratio 6.9 7.0 6.1 10.3 6.4 6.5

Sequential execution Parallel execution
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The execution time with data translocation is shown in solid colored bars
The data translocation overhead, denoted as Π (blue bar), is well paid-off
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