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Abstract—We introduce SG-t-SNE, a nonlinear method for
embedding stochastic graphs/networks into 𝑑-dimensional spaces,
𝑑 = 1, 2, 3, without requiring vertex features to reside in,
or be transformed into, a metric space. Graphs/networks are
relational data, prevalent in real-world applications. Graph
embedding is fundamental to many graph analysis tasks, besides
graph visualization. SG-t-SNE follows and builds upon the core
principle of t-SNE, which is a widely used method for visualizing
high-dimensional data. We also introduce SG-t-SNE-Π, a high-
performance software for rapid 𝑑-dimensional embedding of
large, sparse, stochastic graphs on personal computers with su-
perior efficiency. It empowers SG-t-SNE with modern computing
techniques exploiting matrix structures in tandem with memory
architectures. We present elucidating graph embedding results
with several synthetic graphs and real-world networks in this
paper and its Supplementary Material.1

I. INTRODUCTION

Big and sparse graphs/networks are relational data aris-
ing in various research fields and real-world applications.
Such data have great diversity in attributes, contents and
properties, such as biological networks, social, friend or co-
author networks, commercial product graphs, food webs, eco-
logical networks, telecommunication networks, information
networks, transportation networks, word co-occurrence graphs,
and image networks [1]–[15]. Graph/network analysis plays an
important role in data analysis.

A graph 𝒢(𝑉,𝐸) has a set 𝑉 of vertices and a set 𝐸 of
edges. The vertices (nodes) are an abstraction of entities or
objects that have concrete forms or possess particular attributes
in a real-world context. The vertices may stand for molecules,
proteins, neuron cells, species, products, customers, words,
documents, signals or time series, images or pixels. An edge
(link) connecting two vertices represents a certain relationship,
an interaction, or proximity between them. Additional graph
information may include vertex attributes and edge weights.

Fundamental to many graph analysis tasks, graph embed-
ding renders a mapping from vertices to their coded (feature)
vectors in a code space (the embedding space) with code
length 𝐿. The mapping is also known as vertex embedding. It
is subject to one or more conditions to preserve or reconstruct
certain graph properties in the embedding space. For example,
if the edge weights are pairwise (geometric or geodesic)
distances between nodes, one wishes to preserve the pairwise
distance relationships as much as possible.

1Supplementary Material is at http://t-sne-pi.cs.duke.edu.

(a) Stochastic matrix (b) 2D embedding (c) 3D embedding

Fig. 1: Essential neighbor and structural connections in a 𝑘NN graph for a
Möbius strip lattice, with 𝑛 = 8,192 nodes on a 256×32 lattice and 𝑘 = 150,
are obscured or crumbled by a 2D embedding, yet principally captured by a
3D embedding. (a) The stochastic matrix of the 𝑘NN graph (by Euclidean
distance) is displayed in a 32×32 pixel array. Each pixel represents a 256×256
submatrix, the pixel value (color-coded) is the sum of the submatrix elements.
(b)–(c) The 2D and 3D embeddings by SG-t-SNE with 𝜆 = 100, taking 1,000
iterations, including 250 early exaggeration ones with 𝛼 = 12. The initial
coordinates are drawn randomly from a uniform distribution. (It is shown in
Supplementary Material that the embedding of the same graph by t-SNE is
more susceptible to distortion, within the feasible perplexity range.)

The feature/code vector length 𝐿 is chosen sufficiently high
for large graphs/networks and multiple analytical tasks. For
example, 𝐿=300 in word embedding with word2vec [16]
and GloVe [17]. Various graph analysis tasks are subsequently
carried out in an embedding space. They include (semi-,
un-) supervised classification or stratification, abnormality
detection, noise reduction, propagation patterns, content rec-
ommendation, and prediction. In recent years, numerous types
of high-dimensional graph embedding techniques are tried out
with neural networks [18]–[28].

High-dimensional graph embedding is often followed and
accompanied by dimension reduction and low-dimensional
embedding for multiple purposes: (i) making visual assess-
ment, inspection, and summary of the analysis results; (ii) fa-
cilitating interactive exploration; and (iii) discovering connec-
tions to the original, interpretable attributes. There is a plethora
of low-dimensional graph embedding techniques [29]–[32].
Among the notable ones are the original stochastic neighbor
embedding (SNE) method by Hinton and Roweis [33] and
the remarkable variant t-distributed SNE (t-SNE) by van der
Maaten and Hinton [34]. In particular, t-SNE is widely used
or customized for nonlinear dimensionality reduction and data
visualization [35]–[38]. It has successfully assisted scientific
discoveries, as reported in numerous articles in Nature and
Science magazines [39]–[41].

Previous t-SNE algorithms and software, however, are lim-
ited in two aspects: (i) They require that the data points be
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in a geometric space and the associated graph (internally
generated) be the 𝑘-nearest neighbor (𝑘NN) graph, regular
with a constant degree 𝑘. In many real-world networks, the
vertex attributes do not readily reside in a metric space; the
vertex degrees vary greatly, far from constant. (ii) The software
is limited in practical use either to small graphs/networks or to
one or two dimensional embeddings. We demonstrate in Fig. 1
that three-dimensional (3D) embedding has greater capacity of
preserving local and global connectivities. We show further in
Section III that three-dimensional (3D) embedding elucidates
more structural information, which may be valuable to analysis
and discovery.

We make two major contributions in the present work.
First, we introduce a novel nonlinear approach, SG-t-SNE, for
embedding large, sparse, stochastic graphs into 𝑑-dimensional
spaces, 𝑑 = 1, 2, 3, without requiring vertex features to reside
in, or be transformed into, a geometric space. SG-t-SNE
follows and builds upon the core principle of SNE. It extends
the use of t-SNE to the entire realm of stochastic graphs,
including but no longer limited to distance-based 𝑘NN graphs.
We equip SG-t-SNE with a parametrized rescaling mechanism
in order to explore the graph sparsity. In the special case of
𝑘NN graph embedding, the results by the conventional t-SNE
with 𝑘 neighbors can be well matched or outmatched by SG-
t-SNE with 𝑘′ neighbors, with 𝑘′ much smaller than 𝑘.

Second, we introduce the novel components in a high-
performance software, SG-t-SNE-Π [42]. The novelty lies
in how we explore and utilize data locality and parallelism
in computation with large sparse matrices and compressible
matrices. Two-dimensional (2D) graph embedding is sped up
multiple times, up to 5×, by the new software, in com-
parison to the best previously existing t-SNE software [38].
Furthermore, with superior efficiency, SG-t-SNE-Π enables
practical 3D embedding of large sparse graphs on personal
computers. We also present experimental results in this pa-
per on several real-world graphs/networks: two gene-cell co-
expression networks, a social network created by Google,
and an Amazon product network. More experimental results
and steerable views of 3D embeddings are available in the
Supplementary Material.

II. EMBEDDING SPARSE STOCHASTIC GRAPHS

We introduce SG-t-SNE. We apply and extend the essential
principle of SNE/t-SNE to the entire realm of sparse stochastic
graphs. A stochastic graph/network 𝒢 = (𝑉,𝐸,Pc) has
𝑛 = |𝑉 | vertices and 𝑚 = |𝐸| stochastically weighted edges.
The stochastic weights are specified by matrix Pc = [𝑝𝑗|𝑖].
At each vertex 𝑖, {𝑝𝑗|𝑖}𝑛𝑗=1 is the probability distribution
conditional on 𝑖. The stochastic interpretation is specific to
the particular graph/network analysis problem under consid-
eration. We denote by A = [𝑎𝑖𝑗 ] the binary-valued adjacency
matrix (the sparsity mask) of the graph. We assume that 𝒢 has
no isolated (0-degree) vertices. We are especially concerned
with large and sparse real-world graphs. Each typically has
a large vertex set and sparse connections, i.e., 𝑛 = |𝑉 | is
large and 𝑚 = |𝐸| = 𝑂(𝑛). The graph is not necessarily

(534) (678)

ID 𝑛sub 𝑒in 𝑒out 𝑤in 𝑤out

(534) 44 374 20 71.7 2.4
(678) 70 506 19 114.6 3.3

Fig. 2: Two-dimensional embedding of an Amazon product network, with
𝑛 = 334,863 products and 𝑚 = 1,851,744 edges [5]. Each edge connects
two products that are frequently purchased together. Left: Vertex embedding.
The highlighted vertices are two disjoint product communities with IDs 534
and 678. The embedding is by SG-t-SNE, with 𝜆 = 10, taking 8,000
iterations, including 2,000 early exaggeration iterations with 𝛼 = 12. The
initial coordinates are drawn randomly from a Gaussian distribution. The
graph is inadmissible to the conventional t-SNE. Right: The subgraphs of
the two communities with intra-community edges in blue and external edges
in red. The table details each of the communities in numbers of nodes, internal
edges and external edges, and the sum of weighs over the internal and external
edges.

regular with constant degree, or with vertex attribute vectors
in a metric space.

A. An investigative review of t-SNE

We describe first the essence of t-SNE. Provided with a
graph 𝒢 with stochastic weights at each vertex, described
by a stochastic matrix Pc = [𝑝𝑗|𝑖], and given a prescribed
modest dimensionality 𝑑, t-SNE generates vertex embedding
coordinate vectors 𝒴 = {y𝑖}𝑛𝑖=1 in R𝑑, regulated by the t-
distribution,

𝑞𝑖𝑗 =
(1 + ‖y𝑖 − y𝑗‖2)−1∑︀
𝑘 ̸=𝑙(1 + ‖y𝑘 − y𝑙‖2)−1

, 𝑖 ̸= 𝑗. (1)

Define Q(𝒴) = [𝑞𝑖𝑗 ]. The embedding arrives at the optimal
matching to the joint distribution P = (Pc +PT

c )/(2𝑛) in the
sense that

𝒴* = argmin
𝒴

KL(P‖Q(𝒴)), (2)

where KL denotes the Kullback-Leibler divergence.
The standard version of t-SNE, however, is developed,

used, viewed and reviewed as a nonlinear dimension reduction
algorithm, due primarily to the following particular interface
to the distribution matching objective (2). The input is a set
of data points in terms of feature vectors 𝒳 = {x𝑖}𝑛𝑖=1 in an
𝐿-dimensional space R𝐿 endowed with a distance function
d(·, ·). The feature vector length 𝐿 is (much) larger than
the embedding dimension 𝑑. The algorithm locates the 𝑘-
nearest neighbors (𝑘NN) of each vertex, and integrates them
into the 𝑘NN graph, which is regular (with constant degree
𝑘). Denote by D the matrix of squared pairwise distances,
D = [𝑑2𝑖𝑗 ] = [d2(x𝑖,x𝑗)]. Then, the distance-weighted 𝑘NN
matrix D⊙A (Hadamard product of D and A) is converted
to a stochastic matrix Pc by

𝑝𝑗|𝑖(𝜎𝑖) =
𝑎𝑖𝑗 exp

(︀
−𝑑2𝑖𝑗/2𝜎

2
𝑖

)︀∑︀
𝑙 𝑎𝑖𝑙 exp(−𝑑2𝑖𝑙/2𝜎

2
𝑖 )
. (3)



Fig. 3: Spaceland (3D) and Flatland (2D) embedding of the social network orkut as of 2012 [5]. The network has 𝑛 = 3,072,441 user nodes and
𝑚 = 237,442,607 friendship links. The degree varies from 1 (leaf nodes) to 33,313 (hub node). The graph is inadmissible to the conventional t-SNE. The
embedding is by SG-t-SNE with 𝜆 = 10, taking 8,000 iterations, with initial coordinates drawn randomly from a Gaussian distribution. The 2D embedding
takes only 50 minutes on the Intel Xeon E5 (Table I). Left–Middle: The embeddings display community structures. The leaf nodes (67,767 of them) are in
the halo-like peripheral area. The rest can be roughly split into two hemispherical regions, which may likely correspond to the largest user populations in
two geographical areas; one is in and around Brazil, the other is in and around India and some other countries in Asia. Right: The scatter diagrams in the
thumbnails show six identified communities with IDs 107, 325, 688 (top row) and 2196, 3208, 3405 (bottom row). The top ones reside in one hemispherical
region, the bottom ones in the other. This pattern indicates the impact of geographical regions, cultures, and societies on social network structures. The
histogram shows the degree distribution in logarithmic scale, of the friendship links over all users.

At every vertex 𝑖, the Gaussian parameter 𝜎𝑖 is determined by

−
∑︁
𝑗

𝑎𝑖𝑗𝑝𝑗|𝑖(𝜎𝑖) log(𝑝𝑗|𝑖(𝜎𝑖)) = log(𝑢), (4)

where 𝑢 is a prescribed parameter interpreted as the perplexity,
i.e., log(𝑢) is the entropy. In the sense of equation (4), the
conditional distributions at all vertices are equalized.

We make a couple of remarks on the relationship between
𝑢 and 𝑘. Commonly, the heuristic rule 𝑘 = ⌊3𝑢⌋ is used.
Veritably, the condition 0 < 𝑢 < 𝑘 is necessary for the solu-
tions to (4) to exist at all vertices. With a larger perplexity 𝑢,
one would increase 𝑘 proportionally to get a better embedding
in the sense of (2), at the expense of a denser graph, larger
memory requirement, and longer execution time.

To unleash the greater potential of t-SNE, we must unravel
two restraining knots. One is the coupling between distance
and stochastics by (3). The other is the pairing between vertex
degree and perplexity by (4).

B. Advantages of admitting stochastic graphs

The stochastic 𝑘NN graphs generated by (3) and (4) are
only a subset of stochastic graphs. While they play a key
role for t-SNE being seen and used as a tool for nonlinear
dimensionality reduction and data visualization, they obscure
the essential principle of t-SNE in several ways. (i) Real-world
graph data stem from various sources [1]–[12]. Often, the
native and interpretable descriptors of the entity vertices are
not readily in a metric space. The descriptors may contain both
numerical and categorical data attributes. For such data, t-SNE
may be preceded by a high-dimensional metric-space embed-
ding, using machine learning tools (e.g., neural networks) and
techniques [16], [17], such as in parametrized t-SNE [43], at
a very high computational cost. (ii) In the case where the
feature descriptors are in a metric space, constructing the 𝑘NN

graph is computationally expensive. Randomized approximate
methods are used to reduce the asymptotic complexity to
𝑂(𝑛 log 𝑛) [44], [45]. However, such methods do not leverage
domain-specific spaces of random variables [46]. (iii) The
𝑘NN graph and the outcome of t-SNE vary with the choice
of vector space, distance function, and 𝑘NN search methods.
(iv) The stochastic recasting of a 𝑘NN graph is exclusively
confined in conventional t-SNE to the particular form (4), not
inclusive of other probabilistic models. The above limitations
are common to many t-SNE variants [34]–[41] and other multi-
dimensional scaling (MDS) algorithms [29]–[31]. There exist
nonlinear dimension reduction methods that attempt to circum-
vent the 𝑘NN search with certain sampling strategies [32].

Stochastic graphs are found or generated in a multitude of
other ways. We give two examples. First, for high-security
information networks, the vertex features are not publicly
accessible and their links are stochastically encrypted [47].
Second, network data are often available only with binary-
valued links. Nonetheless, the stochastic weights of the links
may be recovered to a significant extent from the local and
global connection topologies. We use in this paper two such
stochastic graphs from a recent study [48]: one is of a social
network, the other of an e-commerce network. In addition,
real-world graphs are typically irregular, with high-degree hub
nodes and 1-degree leaf nodes. See, for example, the degree
distribution of the orkut network in Fig. 3.

We effectively distinguish and separate, in principled con-
cepts as well as in practical operations, stochastic graph
modeling from graph embedding. This disentangling allows
for exploring the potential in each and integrating the best
from each. We explore the potential in 𝑑-dimensional graph
embedding of a stochastic graph for graph/network analysis.



Fig. 4: Spaceland (3D) and Flatland (2D) embedding of the 𝑘NN graph (𝑘 = 90) associated with 𝑛 = 1,306,127 RNA sequences of E18 mouse brain
cells [49]. The 𝑘-nearest neighbors (𝑘 = 90) are located in the space of the 50 principle components of the top 1,000 variable genes [50]. Left–Middle: The
embeddings are by SG-t-SNE-Π with perplexity 𝑢 = 30, taking 8,000 iterations, including 2,000 early exaggeration iterations with 𝛼 = 12. The initial
coordinates are drawn randomly from a uniform distribution. Two subpopulations are color-annotated: GABAergic subtype (SNCG, SLC17A8) in blue and
VLMC subtype (SPP1, COL15A1) in red. They are clearly separated from the rest in 3D embedding. Right: Histograms of the stochastic 𝑘-neighbors recall
values over all vertices; recall(𝑖) =

∑︀
𝑗 𝑝𝑗|𝑖 𝑏𝑖𝑗 , where B = [𝑏𝑖𝑗 ] is the adjacency matrix of the 𝑘NN graph of the embedding points {y𝑖}. The stochastic

weights 𝑝𝑗|𝑖 are common to both 2D and 3D embeddings. The histogram for the 3D embedding (red) shows relatively higher recall scores than the 2D
embedding (blue). The quantitative comparison is consistent with that by visual inspection.

C. Introduction of SG-t-SNE

Our algorithm SG-t-SNE follows the essential principle of t-
SNE and removes the barriers in its conventional version. SG-
t-SNE admits any stochastic graph 𝒢 = (𝑉,𝐸,Pc), including
stochastic 𝑘NN graphs. It is capable of not only adapting to
the sparse pattern in the input graph, but also exploiting the
pattern for better distribution matching and vertex embedding
with a nonlinear rescaling mechanism.

Specifically, we generate from Pc a family of parametrized
stochastic matrices, Pc(𝜆). The role of the rescaling mech-
anism is to explore and exploit the potential in distribution
matching (2) from the P side, given the fixed t-distribution (a
Cauchy distribution) on the Q side. Unlike the perplexity 𝑢 in
t-SNE, the parameter 𝜆 for SG-t-SNE exploits the sparsity
without imposing any constraint. In the special case of a
weighted 𝑘NN graph, 𝜆 is untangled from 𝑘.

We describe the mechanism and effect of nonlinear rescaling
with a single parameter 𝜆. Let 𝜑(·) be a rescaling kernel func-
tion that is monotonically increasing over R+, with 𝜑(0) ≥ 0.
For any 𝜆 > 0, SG-t-SNE generates Pc(𝜆) = [𝑝𝑗|𝑖(𝜆)] as
follows. We determine the rescaling exponent 𝛾𝑖 at each vertex
𝑖 by the equation ∑︁

𝑗

𝑎𝑖𝑗 𝜑
(︁
𝑝𝛾𝑖

𝑗|𝑖

)︁
= 𝜆, (5)

and then reshape and rescale the conditional probability

𝑝𝑗|𝑖(𝜆) =
𝑎𝑖𝑗 𝜑

(︁
𝑝𝛾𝑖

𝑗|𝑖

)︁
𝜆

, (6)

where A is the binary-valued adjacency matrix (the sparsity
mask) of graph 𝒢, which is invariant to any change in 𝜑 or 𝜆.
Unlike (4), the rescaling solutions exist unconditionally.

The rescaling mechanism introduces an additional degree of
freedom to exploit the graph sparsity, without restriction on
the sparsity pattern. In this paper, we use the identity function
𝜑(𝑥) = 𝑥 as the rescaling kernel for all experiments. At 𝜆 = 1,

we get 𝛾𝑖 = 1 and Pc(1) = Pc, the input matrix. At an integer
value 𝜆 = 𝑘 > 1, if node ℓ has degree 𝑘, then 𝛾ℓ = 0 and
𝑝𝑗|ℓ = 1/𝑘. In the special case of a regular graph with degree
𝑘, if we set 𝜆 = 𝑘, then 𝛾𝑖 = 0 at all vertices, i.e., Pc(𝑘) =
A/𝑘. In general, at 𝜆 ̸= 1, the ratio between every nonzero
element to the peak element

(︀
𝑝𝑗|𝑖/maxℓ 𝑝ℓ|𝑖

)︀
is changed to(︀

𝑝𝑗|𝑖/maxℓ 𝑝ℓ|𝑖
)︀𝛾𝑖 . The weight distribution for each vertex is

reshaped, according to the rescaling equation (5), in adaptation
to local connections.

In SG-t-SNE, only two changes are made from t-SNE. One
is at the interface. SG-t-SNE admits any stochastic graph,
including but not limited to stochastic 𝑘NN graphs. The
other is the introduction of the nonlinear scaling equation (5).
Equation (4) can still be used as a particular mechanism to
convert 𝑘NN graphs into stochastic ones.

We show in Figs. 2 and 3 the embeddings of two real-world
networks, enabled by SG-t-SNE. Each exhibits a distinctive
cluster structure. We show in Fig. 5 that even with 𝑘NN graphs
at input, the embedding by t-SNE at 𝑘 = 150, 𝑢 = 50 is well
matched or outmatched by that with SG-t-SNE at 𝑘 = 30,
𝜆 = 80, on a sparser matrix and at a lower computation cost.
We recommend multiple views at various values of 𝜆.

III. RAPID SPACELAND EMBEDDING

The practical use of t-SNE was largely confined to Flatland
(2D) or Lineland (1D) embedding, despite the prototype
implementation by van der Maaten2 supporting embedding of
several dimensions. We advocate Spaceland (3D or higher)
embedding and endorse “the enlargement of the imagina-
tion” [51]. Among abundant evidence, we illustrate in Figs. 1,
3, and 4 the extended capacity to capture and reveal multi-
fold connections between (overlapping) subpopulations, which
were not previously seen with network data visualization.

There were multiple obstacles to Spaceland embedding. The
journey of t-SNE is marked by continuous efforts and progress

2https://lvdmaaten.github.io/tsne
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in reducing the arithmetic complexity and execution time of
searching for an optimal embedding. We present SG-t-SNE-Π,
a software renovation. It enables rapid Spaceland embedding
of large, sparse graphs on desktop or laptop computers, which
are available and affordable to researchers by and large.

The vertex embedding coordinate vectors 𝒴 = {y𝑖}𝑛𝑖=1 are
determined in t-SNE by applying the gradient descent method
to the minimization problem (2). The computation per iteration
step is dominated by the calculation of the gradient, which is
reformulated into two terms by van der Maaten [35],

𝜕(KL)

𝜕y𝑖
=

4

𝑍

∑︁
𝑖̸=𝑗

𝑝𝑖𝑗𝑞𝑖𝑗(y𝑖 − y𝑗)⏟  ⏞  
attraction term

− 4

𝑍

∑︁
𝑖 ̸=𝑗

𝑞2𝑖𝑗(y𝑖 − y𝑗),⏟  ⏞  
repulsion term

(7)

where 𝑍 =
∑︀

𝑖𝑗 𝑞𝑖𝑗 . The terms are named by analogy to the
attractive and repulsive forces in molecular dynamics simula-
tions. The attraction term can be cast as the sum of multiple
matrix-vector products with sparse matrix PQ = [𝑝𝑖𝑗𝑞𝑖𝑗 ] and
𝑑 coordinate vectors, one along each embedding dimension.
Similarly, the repulsion term can be cast as the sum of multiple
matrix-vector products with dense matrix QQ = [𝑞𝑖𝑗𝑞𝑖𝑗 ] and 𝑑
coordinate vectors. The calculation of the attraction term takes
𝑂(𝑑𝑚) arithmetic operations, where 𝑚 = |𝐸| is the number
of edges. A naive calculation of the repulsion term, however,
takes 𝑂(𝑑𝑛2) arithmetic operations. This quadratic complexity
would prohibit the use of t-SNE on large graphs.

A. Fast approximations to the repulsion term

Two existing t-SNE variants use approximate algorithms to
calculate the repulsion term. They reduce the quadratic com-
plexity to 𝑂(𝑐𝑑𝜖 𝑛 log 𝑛), where 𝑐𝜖 > 2 increases reciprocally
with 𝜖, which is a prescribed approximation error tolerance.
The specific value of 𝑐𝜖 in the prefactor 𝑐𝑑𝜖 depends also on
the choice of approximation algorithm and its parameters. The
first approximation algorithm, by van der Maaten, adopts the
Barnes-Hut (BH) algorithm [52]. We refer to this version as t-
SNE-BH. An alternative approximation algorithm, named FIt-
SNE, emerged last year [38].

We describe the fundamental concepts and distinctive ap-
proaches behind the two approximation algorithms, instead
of reviewing each in detail. The matrix-vector multiplication
with QQ is a convolution with the Cauchy kernel on non-
equispaced, scattered data points {y𝑖}𝑛𝑖=1. We refer to such a
convolution as “nuConv”. A convolution may have broad or
narrow (windowed) support. A narrow-support convolution has
complexity 𝑂(𝑤𝑑𝑛), where 𝑤 is the support window size; the
corresponding matrix is sparse, spatially banded. The nuConv
with QQ is of broad support. Fortunately, the structure of QQ
can be exploited.

There are two renowned and distinctive families of algo-
rithms for fast nuConv of broad support. One family is based
on the fast multipole method (FMM), with asymptotic arith-
metic complexity 𝑂(𝑛) [53]–[55]. FMM splits a convolution
of broad support into 𝑂(log 𝑛) convolutions of narrow support
at multiple spatial levels. Its extended family includes the

(a) Stochastic graph Pc, 𝑘 = 30 (d) SG-t-SNE (3D): 𝑘=30, 𝜆=80

(b) t-SNE (2D): 𝑘=150, 𝑢=50 (c) SG-t-SNE (2D): 𝑘=30, 𝜆=80

Fig. 5: Multiple views of subpopulations of 𝑛 = 8,381 peripheral blood
mononuclear cells (PBMC-8k) [50]. The subpopulations (color-coded) were
found by the SD-DP classification analysis [57]. (a) The stochastic 𝑘NN
graph Pc (𝑘 = 30), with rows/columns permuted so that cells in the same
subpopulation are placed close together. Each pixel corresponds to a 16× 16
matrix block. (b)–(c) It is compelling that the embedding by SG-t-SNE on
a sparse graph is comparable to that by t-SNE on a graph 5× as dense.
(d) Rapid Spaceland (3D) embedding is enabled by SG-t-SNE-Π. All three
embeddings take 1,000 iterations, including 250 early exaggeration iterations
with 𝛼 = 12. The initial embedding coordinates are drawn randomly from a
uniform distribution.

Barnes-Hut algorithm, with complexity 𝑂(𝑛 log 𝑛) [52]. The
other family is related to non-uniform fast Fourier transforms
(nuFFTs), with arithmetic complexity 𝑂(𝑛 log 𝑛) [21], [56].
FIt-SNE takes the latter approach. Its software implementation
is available for 1D or 2D embedding only.3

As the arithmetic complexity for calculating the repulsion
term (with dense QQ) is reduced, the execution time for 2D
embedding with FIt-SNE or t-SNE-BH becomes dominated
by the computation of the attraction term (with sparse PQ);
see Fig. 6. Both FIt-SNE and t-SNE-BH face a steep rise
in execution time for 3D embedding. FIt-SNE also suffers
from exponential growth in memory requirement due to data
padding for converting aperiodic convolutions to periodic.

B. Introduction of SG-t-SNE-Π

With SG-t-SNE-Π, we expedite the entire gradient calcula-
tion of (7), not only on each of the interaction terms but also on
data relocations between the terms. We render Spaceland (3D)
embedding in shorter time than Flatland (2D) embedding with
FIt-SNE or t-SNE-BH. We overcome challenges at multiple
algorithmic stages with innovative approaches. We utilize the
matrix structure and the memory architecture in concert.

Fast computation with sparse PQ: The irregular sparsity
pattern of PQ invokes irregular memory accesses, which
incur long latency on modern computers with hierarchical

3https://github.com/KlugerLab/FIt-SNE

https://github.com/KlugerLab/FIt-SNE
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Fig. 6: Multiple comparisons in execution time for embedding of 𝑘NN graphs,
𝑘 ∈ {30, 90}, with 𝑛 = 1,306,127 nodes as single-cell RNA sequences
of E18 mouse brain cells [49]. Each embedding takes 1,000 iterations and
maintains an approximation error below the same tolerance (10−6). (i) In total
time, with the same sparsity parameter 𝑘, 3D embeddings by SG-t-SNE-Π
take less time to finish 1.5× operations in comparison to 2D embeddings
by t-SNE, on all three multi-core computers (Table I). (ii) In memory usage,
SG-t-SNE-Π does not augment grid size and thereby admits larger graphs.
(iii) The computation with sparse matrix PQ dominates the t-SNE time on
machines with lower bandwidth. SG-t-SNE-Π reduces the PQ time further
by embedding a sparser graph (𝑘 = 30) with results comparable to that by
t-SNE on a graph 3× as dense (𝑘 = 90). Additional notes: the SG-t-SNE-Π
code is to be optimized; a version utilizing graphics cards is in development.

memories [58]. The execution time of FIt-SNE is evidently
dominated by the computation with PQ at 𝑘 = 90 and 𝑢 = 30;
see Fig. 6. The computation speed is limited by the memory
bandwidth and how it is utilized.

We exploit the fact that matrix PQ is sparse and inherits
the fixed sparsity pattern of matrix P, despite the iterate
changes of Q. We permute P such that rows and columns
with similar nonzero patterns are placed closer together. The
permuted matrix becomes block-sparse with denser blocks,
not necessarily block diagonal. A denser block leads to better
data locality in memory reads and writes. There are several
efficient approaches to clustering rows and columns, see [57]
and references therein. The overhead for permuting P once
is amortized across all iterations, and is well paid off, see
Fig. 6. In implementation, we adopt the sparse storage format
and matrix computation routines provided in the Compressed
Sparse Blocks (CSB) library [59], [60].

Fast computation with dense QQ: We take the spectral
approach for computation with 𝑄𝑄, similar to FIt-SNE. We set
an auxiliary grid in the embedding domain. The nuConv with
QQ is then factored into three consecutive convolutional op-
erations: S2G, G2G, and G2S. The S2G and G2S convolutions
translate {y𝑖} to their neighboring grid points and vice versa.
G2S can be instrumented as a local interpolation; and S2G
as the transpose. Both are of narrow support, taking 𝑂(𝑤𝑑𝑛)
arithmetic operations, where 𝑤 is the local window size per
side. G2G is an aperiodic convolution across the grid.

We make algorithmic innovations for each convolution
factor. Instead of embedding G2G into a circulant convolution
via augmenting data size with zero padding, we reformulate
the aperiodic convolution as the in-place combination of two
periodic convolutions, eliminating the need to augment the

TABLE I: Architecture specification of three multi-core computers used for
the embedding experiments. Memory bandwidth is measured with the parallel
STREAM copy benchmark [61].

CPU Clock Cores L1 L2 L3 RAM BW
(GHz) (KiB) (KiB) (MiB) (GiB) (GiB/s)

per-core shared

Intel Core i7-4558U 2.80 2 64 256 4 8 10.5
Intel Core i7-6700 3.40 4 32 256 8 32 19.9
Intel Xeon E5-2640v4* 2.40 10 32 256 25 256 36.7

*2 sockets (non-uniform memory access—NUMA)

grid size and increase memory usage by a factor of 2𝑑. This
memory saving alone allows embedding of a larger graph on
a laptop or desktop computer. The execution time for S2G and
G2S is dominated by latency in irregular data access, which is
a typical challenge in sparse matrix calculation. Prior to S2G,
the scattered data points {y𝑖} are binned into the grid cells.
This data partition and binning process significantly improves
the data locality and parallelism scope in S2G, and thereby
shortens the S2G time. The same holds true for G2S. In other
words, we make another novel use of the grid for exploiting
data locality and parallelism.

Fast data translocation: The orderings in accessing {y𝑖}
between the PQ and QQ procedures and between the transla-
tion operations within QQ differ from each other. In addition,
the data set {y𝑖} undergoes dynamic changes in the iterative
search for the best matching (2). For the PQ term, {y𝑖}
are accessed according to the permuted rows and columns
of P. For the QQ term, the embedding data points are
accessed by their partition over grid cells. At each iteration
step, we translocate the data {y𝑖} back and forth between
the two terms, in multiple stages. In essence, a point-to-point
cross permutation is factored into layers of block-to-block
permutations, according to the memory hierarchy.

Data permutations, although unaccounted for in arithmetic
complexity, play a key role in accelerating sparse or compress-
ible matrix computations on modern computers [62], [63]. We
use Π in the software name SG-t-SNE-Π to signify their role.

IV. ADDITIONAL REMARKS

The embeddings of synthetic and real-world
graphs/networks with SG-t-SNE-Π show characteristic,
beautiful and elucidating structures. The orkut embedding
reveals overlapping and non-overlapping regions between
social communities. The embedding of the Amazon product
network can serve market analysis for assessing previous
claimed product clusters and making new recommendations
or predictions. With 3D embeddings enabled, we gain
multiple vantage points, free of 2D confinement, to uncover
previously unseen connections and separations, as shown
with the biological networks PBMCs and E18-MBCs.
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