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Abstract—Markov Random Field (MRF) is a powerful graph-
ical model for representing a wide range of applications in
statistical machine learning. MRF encodes the conditional depen-
dence among random variables (RVs). One approach to solving
problems represented by MRF is using probabilistic algorithms
such as Gibbs sampling. These methods go through all RVs in
MRF and update them iteratively, until converged to the final
result. In this work, we build on three observations to skip
updating RVs that cannot change their value during the current
iteration, hence avoiding unnecessary work: i) after the warm-
up period, most RVs tend to not change values very often, ii) an
RV can only change its value if either it has a non-concentrated
probability distribution function (PDF), or at least one of the RVs
on which it is conditionally dependent has changed its value, and
iii) approximation techniques used for hardware specialization
make it increasingly likely that RVs have concentrated PDFs.
Therefore, we introduce event-driven Gibbs sampling which only
updates RVs when necessary. Our analysis shows significant
speedup can be gained for two image analysis applications.

I. INTRODUCTION

Markov Random Field (MRF) is a powerful graphical model
for representing a wide range of applications in statistical
machine learning [6], [8], [12]. MRF encodes the conditional
dependence among random variables (RVs). One approach to
solving problems represented by MRF is using probabilistic
algorithms such as Gibbs sampling [3]. These methods go
through all RVs in the MRF model and update them iteratively,
until converged to the final result. The update process relies on
sampling from probability distributions, which is often compu-
tationally intensive. This is due to the significant overhead of
sampling in conventional processors [14]. Furthermore, Gibbs
sampling at first appears to be a sequential algorithm because
updating each RV depends on the latest value of all other RVs
in the model.

Despite these challenges, the statistical properties of these
algorithms, especially their interpretability, make them an
attractive alternative approach to deep learning. Therefore,
developing solutions to accelerate these algorithms, such as
hardware specialization and extracting parallelism from the
model, are of significant importance. To this end, deploying
pseudo-random number generation can help reduce the sam-
pling inefficiency [15]. Additionally, to avoid the overhead of
serial execution, one can take advantage of the conditional
independence of RVs, i.e., develop a schedule which allows
multiple independent RVs be updated in parallel [3]–[5], [13].

Orthogonal to the aforementioned techniques to optimize
the hardware implementation of Gibbs sampling, we can adopt
algorithmic optimizations to avoid performing unnecessary
work and thus, further speedup the execution. In this work,
we build on three observations to eliminate updating RVs
that are guaranteed to not change their values during the
current iteration: i) after the warm-up period, most RVs
tend to not change values very often, ii) an RV can only
change its value if either it has a non-concentrated probability
distribution function (PDF), i.e., it has non-zero probabilities
of taking on multiple values, or at least one of the RVs on
which it is conditionally dependent has changed value, i.e., its
PDF has changed, and iii) approximation techniques used for
hardware specialization make it increasingly likely that RVs
have concentrated PDFs. Therefore, we introduce event-driven
Gibbs sampling (EDGS). In this scheme, optimized queues
are used to keep track of RVs that must be updated. To be
more specific, a RV is added to the queue if i) another RV
on which it is conditionally dependent changes its value, or
ii) it does not have a concentrated PDF. Our evaluations show
22.2%−57.7% speedup can be gained for two image analysis
applications.

The rest of the paper is organized as follows. Section II
provides a brief background about probabilistic algorithms
and the motivation for our work. EDGS is explained in
Section III. Section IV presents RV range queue, an optimized
queue structure that complements EDGS. Evaluation results
are presented in Section V. Finally, Section VI discusses the
future directions and concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Probabilistic Algorithms

Bayesian inference combines new evidence and prior beliefs
to update the probability estimate for a hypothesis. Consider D
as the observed data and X as the latent random variable. The
prior distribution of X is p(X) and p(D | X) is the probability
of observing D given a certain value of X . In Bayesian
inference, the goal is to retrieve the posterior distribution
p(X | D) of the random variable X when D is observed.
As the dimensions of D and X increase, it often becomes
difficult or intractable to numerically derive the exact posterior
distribution p(X | D).

One approach to solving these inference problems is to use
probabilistic Markov chain Monte-Carlo (MCMC) methods,



 

while not converged { 

    foreach x in X { 

        compute label probabilities; 

        assign new label based on the probabilities; 
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Fig. 1. Markov Chain Monte Carlo algorithm (left) for Markov Random Field
(right) inference. Note that sampling is performed in the inner loop.

e.g., Gibbs sampling [3], that converge to an exact solution by
iteratively generating samples for RVs. Figure 1 shows this
process. The detailed explanation is provided elsewhere [3].

In practice MCMC becomes inefficient for many problems
that have high dimensionality (i.e., many RVs) and complex
structure. It can require many iterations before convergence,
and the inner loop in Figure 1 includes generating samples
from probability distributions which is computationally expen-
sive for conventional processors [14] and thus, a specialized
accelerator is needed to address these shortcomings.

B. First-order Markov Random Field

Markov Random Field (MRF) is a graphical model for
representing a wide range of applications in statistical machine
learning. MRF encodes the conditional dependence among
RVs. Figure 1 (right) illustrates an example model and its
connection with the Gibbs sampling algorithm. In the model,
each RV depends on its four immediate neighbors. Due to
this structure, the RVs can be divided into two regions so that
all of RVs in each region are conditionally independent. This
enables us to generate a chromatic schedule to update all RVs
in each region in parallel [3]–[5], [13].

C. Stochastic Processing Unit

Zhang et al. propose a Gibbs sampling function unit, called
Stochastic Processing Unit (SPU), that utilizes specialization
and pseudo-random number generation to accelerate MCMC
computations [16]. Figure 2 demonstrates the microarchitec-
ture of this function unit. It is composed of four main stages,
namely energy computation (equation in Figure 1), dynamic
energy scaling (Equation 1), energy to probability conversion
(Equations 2 and 3), and sampling.

Es(l) = E(l)− Emin (1)

Ps(l) = (2Pbits − 1)× exp(−Es(l)/T ) (2)

Ptr(l) = b2blog2 Ps(l)cc (3)

Energy computation takes the singleton data and neighbor
labels, all 6-bit values, and computes the energy of a possible
label, E(l) in Figure 1, where α and β are application
parameters. Next, E(l) is dynamically scaled by subtracting
the minimum energy of all labels from it to maximize the
dynamic range. Energy values (raw and scaled) are 8-bit
unsigned integers. The scaled energy Es(l) is then converted to
a scaled probability represented by a 4-bit unsigned integer.
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Fig. 2. Microarchitecture of the SPU reproduced from [16].

The original probability (real number in [0, 1]) is calculated
using exp(−Es(l)/T ), in which T is a per iteration param-
eter. To avoid using floating-point function units, though, the
probability is scaled using Equation 2, and then truncated
using Equation 3. Pbits = 4 ensures the scaled probability is
in [0, 16), which allows for representing the number using 4
bits. This approximation technique, called probability cut-off,
causes the scaled probabilities less than one to be rounded
down to zero, and is one of the main factors for many
of RVs having concentrated PDFs. Afterward, Equation 3
approximates the scaled probabilities to the nearest power of
two, i.e., Ptr ∈ {0, 1, 2, 4, 8}. The possible values of Ptr(l)
can be pre-computed and stored in a look-up table (LUT).
These values must be updated if T changes.

The last stage generates a sample per RV based on
{Ptr(0), Ptr(1), ..., Ptr(L − 1)}, where L is the number of
labels, using the least significant twelve bits of a 19-bit
Linear Feedback Shift Register (LFSR) to implement the
inverse transform sampling. The SPU’s throughput is one RV
update per L cycles, if it receives the appropriate input (i.e.,
neighborhood labels and singleton data) at every cycle.

The SPU can be used in one of two modes: i) pure sampling,
or ii) optimization. The main difference between these two
modes is that in pure sampling, the parameter T is the same
for all Gibbs sampling iterations, whereas in optimization
(simulated annealing), T gradually decreases to help faster
convergence to a final solution [3]. Therefore, in optimization
mode, as the iterations proceed, picking the labels with higher
energies becomes less and less likely, thus making the PDF
more concentrated. Our goal in Section III is to detect and
avoid updating the RVs that have concentrated PDFs and
unchanged neighbors, consequently speeding up the execution
of the algorithm.

D. Stable Random Variables

As the execution of Gibbs sampling algorithm makes
progress, RVs gradually converge to their final labels. This pro-
cess is further accelerated in the optimization mode. Therefore,
it becomes unnecessary to update all RVs at every iteration
because some of them simply cannot change their label. Figure
3 shows the number of times RVs change labels normalized to
the total number of times they are updated in three input sets
for two applications of stereo vision and motion estimation
each. Based on the figure, only 22% − 46% of RV updates

2



0%

20%

40%

60%

80%

100%

art poster teddy dimetr. rubber. venus

Stereo Vision Motion Estimation

R
V

 C
h

an
ge

s 
N

o
rm

al
iz

e
d

 t
o

 
To

ta
l R

V
 U

p
d

at
e

s 

Fig. 3. Number of times that RVs change labels normalized to the total
number of times they are updated, for stereo vision and motion estimation.

while(iteration < max_iterations) { 

    while(black_queue not empty) { 

        update next RV in queue; 

        foreach(neighbor) { 

            if(old label != new label || 

            neighbor not concentrated) { 

                  put neighbor in white_queue; 

            } 

        } 

    } 

    while(white_queue not empty) { 

        … 

    } 

} 

while(iteration < max_iterations) { 

    foreach(black RV) { 

        update RV; 

    } 

    foreach(white RV) { 

        update RV; 

    } 

} 

(a) (b) 

Fig. 4. Comparison of update procedure when (a) all RVs are updated at
each iteration, and (b) when EDGS is adopted. The shaded regions highlight
the additional work that must be done in EDGS compared to the baseline.
The process for white RVs in EDGS is omitted for the sake of brevity.

result in changing labels. Consequently, there is opportunity
for up to 54%−78% speedup. However, not all of this speedup
can be gained. If a RV simply does not change its label does
not mean that it cannot do so. Some other conditions must be
met for us to be able to skip updating RVs, which is explained
in Section III.

III. EVENT-DRIVEN GIBBS SAMPLING

A RV can only change its label if i) it has more than one
label with non-zero probability (i.e., non-concentrated PDF),
or ii) at least one of the RVs on which it is conditionally
dependent changes its label and thus, changing this RV’s
PDF. In other words, if a previous computation resulted in
a PDF concentrated on one label, which is likely due to the
probability cut-off technique in the SPU, the PDF is going to
remain that way until something in its neighborhood changes.
Therefore, we update variables in two cases, i) if at least one
of its neighbors change, or ii) it did not have a concentrated
PDF to begin with. We call this optimization event-driven
Gibbs sampling (EDGS). This technique is similar to vertex
programming in graph algorithms [9], [10], but we customize
it for the context of MRF inference with Gibbs sampling.

We utilize specialized queues to keep track of RVs that
must be updated. The queue’s structure is explained in detail

BQ 

WQ 

… 

… 

RV Sequencer 

nbr4 nbr3 nbr2 nbr1 

Concentration 

Bits 

Memory 

Controller 

 

Memory 

 

 

Memory 

 

RV 

Selector 

SPU 

Range 

Finder/ 

Creator 

Old 

Label 

== 

Neighbors’ 

Address 

Calculation 

Fig. 5. Schematic of an accelerator with RQs implementing EDGS.

in Section IV. We use two queues to hold RVs in alternate
rounds of the chromatic schedule described in Section II-B,
i.e., one queue for holding black RVs and another for white
RVs.

Figure 4 compares EDGS and the plain vanilla update
scheme that updates all RVs at every iteration. The shaded
regions show the extra work that must be done in EDGS to
read RVs from the queues and write new RVs to them. In
order to simplify writing new RVs to the queue, we check
the necessary conditions when an RV’s neighbors are being
updated. This works because the conditional independence in
first-order MRF is mutual. Therefore, while updating a RV, we
compare its new label with its old label, and if the two labels
do not match, we put all the neighbors in their corresponding
queue. Additionally, we have to check if the neighbors have
concentrated PDFs. To do so, we add an extra bit to each RV
which is set only if the RV has a concentrated PDF.

IV. RANDOM VARIABLE RANGE QUEUE

Keeping RVs that need to be updated in queues simplifies
selecting the next RV to update compared to a design in which
such RVs are marked using an extra bit. However, the area
overhead of additional queues capable of potentially storing all
RVs is significant. To mitigate this problem, we propose using
range queues (RQs) instead. Entries in a RQ are ranges of RVs
instead of individual RVs. For instance, N entries 1, 2, ..., N
in an ordinary queue would be compressed to a single entry
[1 : N ] in a RQ. The intuition is that since RVs that are close
to each other are expected to exhibit similar behavior, they will
form large enough ranges that result in significantly smaller
queues. Even in the worst case when every other RV must form
a separate range (because two consecutive RVs would fall in
the same range), the queue capacity would not be higher than
an ordinary queue.

Nevertheless, the queue size in a hardware implementation
must be fixed at the design time. Fortunately, RQ’s flexibility
means performance gain can be traded off with queue capacity,
which makes designing the RQ for correctness easier. Consider
a scenario when a new RV must be added to the RQ, but the
RQ has run out of space. In this case, we can always extend
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TABLE I
APPLICATION PARAMETERS USED IN EVALUATIONS.

Motion Estimation
α β initial T Labels Size Iterations

dimetrodon 400 584×388
rubberwhale 6 6 500 49 584×388 3000
venus 400 210×190

Stereo Vision
α β initial T Labels Size Iterations

art 28 348×278 1000
poster 6 7 10 30 435×383 500
teddy 56 450×375 1000

the bounds of the range closest to the new RV such that it
encompasses the RV. This is always valid because it is fine to
update extra stable RVs. Other policies may be used as well,
such as contracting the RQ by merging the two closest ranges
together, but this will add more complexity to the control logic
and could adversely affect the clock rate.

Figure 5 shows the schematic of the accelerator augmented
with RQs to implement EDGS. First, inside RV sequencer,
which is responsible for sequencing through RVs that must
be updated, RV selector reads a range from the head of the
appropriate RQ and after selecting one RV from it, updates its
bounds. Then the addresses of the neighbors are calculated.
These addresses are stored in registers, to be added to the
alternate RQ if deemed necessary at the end of the update
process, and also sent to the memory controller for accessing
memory. The old label of the RV is also written to a register
to be later compared with the new label and decide whether
the neighbors must be updated. After the memory controller
receives the neighbors’ addresses, it reads the data from
appropriate memory units and sends them to the SPU. It also
sends concentration bits to the RV sequencer to be stored
along neighbor addresses. Finally, once the update process is
finished, the SPU sends the new label to the memory controller
to be written back to memory, and to the RV sequencer. After
comparing the new label to the old one, if any neighbors must
be updated, the range finder/creator searches the appropriate
RQ to find the proper index to put the neighbor at.

V. EVALUATION

We use two image analysis applications to evaluate our
design, namely stereo vision [2], [11] and motion estimation
[7]. Stereo vision reconstructs the depth information of objects
in a field captured from two cameras by matching the pixels
between the two images. In motion estimation, the goal
is to determine the motion vectors of pixels between two
consecutive frames of a video.

We implemented the applications in C++ using double-
precision floating point, and mimicked the SPU behavior by
driving the probabilities of labels with energies less than 1/8
of the maximum energy to zero (recall dynamic scaling and
probability cut-off in Section II-C). We assume the RQs can
accommodate as many ranges as necessary. Our preliminary
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Fig. 6. Per iteration and cumulative number of RV updates when utilizing
EDGS, normalized to the total number of updates in the baseline (a), and
quality results of EDGS compared to the baseline (b), for stereo vision.
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Fig. 7. Per iteration and cumulative number of RV updates when utilizing
EDGS, normalized to the total number of updates in the baseline (a), and
quality results of EDGS compared to the baseline (b), for motion estimation.

results show that limited-size RQs still provide notable perfor-
mance gains, but more rigorous evaluations are future work.

We evaluate each application using three input image sets
from Middlebury [1], [11]. Table I summarizes the parameters
used for each input. Parameter names correspond to those
in Figure 1. In order to compare the quality of the results,
we compare against a MATLAB implementation which uses
double-precision floating-point to perform the computations.
We use bad-pixel (BP) percentage as the metric for stereo
vision [11], and end-point error (EPE) as the metric for
evaluating motion estimation results [7].

Figures 6 and 7 demonstrate performance and quality results
for the two applications. Considering the random nature of the
algorithm, as expected EDGS has almost no impact on the
final result in terms of quality of the output. However, EDGS
successfully reduces the cumulative amount of RV updates
by 22.2% − 57.7% and 30.8% − 38.6% for stereo vision
and motion estimation, respectively. Furthermore, the sharper
decline in the number of per-iteration RV updates can be used
as a metric to determine faster convergence.

VI. CONCLUSION AND FUTURE WORK

Markov Random Field (MRF) is a powerful graphical
model for representing numerous applications. It encodes
the conditional dependence among random variables (RVs).
Probabilistic algorithms such as Gibbs sampling [3] can be
used to solve problems represented by MRF. Gibbs sampling
is an iterative method which goes through all RVs in MRF and
updates them until converged to the final result. The update
process needs sampling from probability distributions, which
is computationally intensive. Therefore, it is desirable to avoid
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unnecessary RV updates if possible. To this end, in this paper
we propose event-driven Gibbs sampling (EDGS). In this
scheme, we use optimized range queues (RQs) to keep track
of RVs that must be updated. Our evaluations using two image
analysis applications show that speedups of 22.2% − 57.7%
can be gained for various input data sets.

As future work, we plan to refine the design of RQs to
make them more amenable to hardware implementation. We
also plan to design and implement the high-level architecture
of an accelerator that takes advantage of EDGS and RQs.
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