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Abstract—Statistical machine learning often uses probabilistic
algorithms, such as Markov Chain Monte Carlo (MCMC), to
solve a wide range of problems. Probabilistic computations,
often considered too slow on conventional processors, can be
accelerated with specialized hardware by exploiting parallelism
and optimizing the design using various approximation tech-
niques. Current methodologies for evaluating correctness of
probabilistic accelerators are often incomplete, mostly focusing
only on end-point result quality (“accuracy”). It is important for
hardware designers and domain experts to look beyond end-point
“accuracy” and be aware of how hardware optimizations impact
statistical properties.

This work takes a first step toward defining metrics and a
methodology for quantitatively evaluating correctness of prob-
abilistic accelerators. We propose three pillars of statistical
robustness: 1) sampling quality, 2) convergence diagnostic, and
3) goodness of fit. We apply our framework to a representative
MCMC accelerator and surface design issues that cannot be
exposed using only application end-point result quality. We
demonstrate the benefits of this framework to guide design space
exploration in a case study showing that statistical robustness
comparable to floating-point software can be achieved with
limited precision, avoiding floating-point hardware overheads.

I. INTRODUCTION

Statistical machine learning, like other methods in artificial
intelligence, has become an important workload for computing
systems. Such workloads often utilize probabilistic algorithms,
such as Markov Chain Monte Carlo (MCMC) methods, which
enable the potential to provide generalized frameworks to
solve a wide range of problems. As alternatives to Deep
Neural Networks, these algorithms provide easier access to
interpreting why a given result is obtained through their model
transparency and statistical properties. Many specialized ac-
celerators are proposed to address the sampling inefficiency of
probabilistic algorithms, by utilizing approximation techniques
to improve the hardware efficiency, such as reducing bit
representation, truncating small values to zero, or simplifying
random number generators.

Understanding the influence of these approximations on the
application results is crucial to meet the quality requirement
in real applications. A hardware accelerator should provide
correct execution of target algorithms. A common approach
to evaluating correctness is to compare the end-point result
quality (“accuracy”) against accurately-measured or hand-
labeled ground-truth data using community-standard bench-
marks and metrics: the hardware execution is considered to be
correct if it provides comparable “accuracy” to the software-
only implementations that do not have these approximations.
However, in the domain of probabilistic computing/algorithms,

correctness is defined by more than the end-point result of
executing the algorithm, and includes additional statistical
properties that convey uncertainty and interpretability about
the end-point result. End-point “accuracy” is necessary but not
sufficient to claim correctness: 1) given the uncertainty of input
data, the observed end-point result quality has no indication of
“accuracy” for unseen data, and thus just making statements on
the observed “accuracy” is not enough, 2) many applications
look beyond the end-point “accuracy” and consider uncertainty
quantification, and 3) measuring “accuracy” may not always
be possible as ground-truth data is not always accessible.
Current methodologies for evaluating probabilistic accelera-
tors are often incomplete or adhoc in evaluating correctness,
focusing only on end-point “accuracy” or limited statistical
properties. Failure to adequately account for domain-defined
correctness can have adverse or catastrophic outcomes, such
as a surgeon failing to completely remove a tumor due to
incorrect uncertainty in a segmented image [4]. Therefore,
a probabilistic architecture should provide some measure (or
guarantee) of statistical robustness.

This work takes a first step towards defining metrics and
a methodology for quantitatively evaluating correctness of
probabilistic accelerators beyond end-point result quality. We
propose three pillars of statistical robustness: 1) sampling
quality, 2) convergence diagnostic, and 3) goodness of fit
(Contribution 1). Each pillar has at least one quantitative em-
pirical metric: Effective Sample Size (ESS) in sampling qual-
ity; Gelman-Rubin’s R̂ and convergence percentage in con-
vergence diagnostic; and Root Mean Squared Error (RMSE)
and Jensen-Shannon Divergence (JSD) in goodness of fit.
These pillars do not require ground-truth data and collectively
enable comparison of specialized hardware to 64-bit floating-
point (FP64) software. We expose several challenges with
naively applying existing popular metrics for our purposes,
including: high dimensionality of the target applications, and
random variables with zero variance. Therefore, we modify the
existing methodologies for sampling quality and convergence
diagnostic, and propose a new metric (convergence percentage)
for convergence diagnostic (Contribution 2). We call on
domain experts to develop metrics with stronger theoretical
foundations to account for common hardware optimizations.

As a case study, we demonstrate the framework in a
representative probabilistic accelerator [20] and show that
1) end-point “accuracy” alone is insufficient, particularly for
predicting outcome for previously unseen inputs, and 2) that
FP64 is insufficient as ground truth since in some cases more
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Fig. 1. Stereo vision using Markov Chain Monte Carlo (Markov Random
Field Gibbs Sampling). Note that Sampling is performed in the inner loop.

limited precision can produce more accurate end-point results
based on labeled data (Contribution 3). The analysis shows
that the accelerator achieves the same application end-point
result quality as FP64 software, confirming the previous work.
However, we show the accelerator differs with FP64 in ESS
and convergence percentage, and reveal that applications need
to run 2× more iterations on the accelerator to achieve the
same statistical robustness as FP64, reducing the accelerator’s
effective speedup. We also explore the design space of the
above accelerator to expose the trade-offs between statistical
robustness and area/power (Contribution 4). We find that
considerable improvement in statistical robustness, comparable
to the FP64 software, can be achieved by slightly increasing
the bit precision from 4 to 6 and removing an approximation
technique, with only 1.20× area and 1.10× power overhead.

II. BACKGROUND AND MOTIVATION

A. Probabilistic Algorithms

Probabilistic (stochastic) algorithms are a powerful ap-
proach used in many applications (e.g., image analysis,
robotics, natural language processing, global health, and wire-
less communications). Probabilistic algorithms solve problems
by randomly inferring the parameters in the probabilistic
models to explain observed data, which create opportunities
to provide generalized frameworks and are the only practical
approach to solve certain problems, such as high-dimensional
inference. Compared with deep neural networks, probabilistic
models are “conceptually simple, compositional, and inter-
pretable” [8]. Bayesian Inference is an important framework
in probabilistic models, which updates the probability estimate
(a.k.a., posterior distribution) for a hypothesis by combining
information from prior beliefs and observed data. As the
dimension of data and probability distribution increases, an-
alytically or numerically deriving the exact result of a pos-
terior distribution becomes complicated and intractable. One
approach to break “the curse of dimensionality” is Markov
Chain Monte Carlo (MCMC), methods that solve the problems
by iteratively generating samples on random variables and
eventually converge to a result regardless of the initial stage.

Fig. 1 shows an example of using an MCMC method,
Markov Random Field (MRF) Gibbs Sampling, in stereo

vision. Stereo vision reconstructs the depth information of
objects in an image pair by matching the corresponding pixels
that represent the same objects. The results are presented in
a disparity map, indicating the depth of the corresponding
objects in the image (lighter is closer). The MCMC method
iterates the image pixels by considering the disparity of each
pixel as a random variable. For each pixel, it evaluates proba-
bilities of each possible label (disparity outcome) and draws a
sample as the output label. Each probability is determined by
the neighboring pixels label values and the initial pixel data
values of the image pair, defined by First-Order MRF graphical
model. The outer loop (a.k.a., iteration) iterates on the whole
image until convergence. MCMC methods rely on efficiently
generating samples from a parameterized distribution, which
involves step 1) efficiently computing the parameters of the
distribution to sample from based on observed data, and
step 2) efficiently generating samples from the parameterized
distribution. Unfortunately, as described in previous work [19],
sampling overhead can be notably high.

B. Specialized Probabilistic Accelerators

Meeting the needs of domain experts may be achieved by
accelerating sampling through hardware specialization. Spe-
cialized architectures are proposed to accelerate specific algo-
rithms and models, such as a Stochastic Transition Circuit [13],
dedicated MCMC models [10], [12], CMOS-hybrid MRF
Gibbs Sampling Unit [19], [20], and compiler workflows [2].
Many of these accelerators use various forms of approximation
(e.g., limited bit precision, pseudo random number generators,
etc.) to reduce area/power, allowing more individual units on
a single chip and thus improving overall performance. As
described in Sec. I, it is important to measure (or guarantee)
the correctness of these accelerators, including both end-point
result quality and statistical robustness. Sec. III presents our
proposed metrics and framework and we use an accelerator
from Zhang, et al. [20] (described below) as a case study
to demonstrate how to analyze an existing accelerator and to
perform design space exploration.

C. A Representative Probabilistic Accelerator

As a case study, we consider the Gibbs Sampling accelerator
design described by Zhang, et al. [20] implemented entirely
in CMOS using pseudo random number generation instead of
molecular optical devices (cf. [20] Sec. IV.C). Fig. 2 shows the
baseline pipeline design, which we call a Stochastic Processing
Unit (SPU). It is divided into four main stages with two
internal decoupling FIFOs and an inverse transform method
is used for the discrete sampler.

Given the data and neighbor labels, the first stage computes
the total energy of a possible label E(i) each cycle. The
energy E(i) is then dynamically scaled using subtraction to
maximize the dynamic range (Eq. 1). Both E(i) and Es(i) are
8-bit unsigned integers. In the third stage, the scaled energy
Es(i) is converted to a scaled probability represented in 4-
bit unsigned integer. The original probability is computed
by exp(−Es(i)/T ) which is represented as a real number
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Fig. 2. The SPU pipeline derived from RSU-G [20]. The sampling stage is
replaced with a CMOS discrete sampler.

between [0,1] using floating-point in software, where T is a
fixed parameter per outer iteration. However, the probability
is scaled using Eq. 2 and truncated using Eq. 3 to match the
unsigned integer representation, where Pbits = 4 is the number
of bits in the scaled probability output ptr(i). Additionally,
probability truncation drives all scaled probabilities that are
less than one to zero and 2n approximation rounds all scaled
probabilities down to the nearest 2n integer value (Eq. 3). The
value of ptr(i) can be pre-computed and stored in a look-up
table (LUT). The values in the LUT need updates if T changes
between iterations. The final stage of SPU generates a discrete
sample per variable based on the probabilities of all possible
label values {ptr(0), ptr(1), ...} using the least 12 bits of a
19-bit LFSR to implement the inverse transform sampling.

Es(i) = E(i)− Emin (1)

ps(i) = (2Pbits − 1)× exp(−Es(i)/T ) (2)

ptr(i) = b2blog2 ps(i)cc (3)

The SPU supports two operating modes: 1) pure-sampling
and 2) optimization (simulated annealing). Pure-sampling it-
eratively generates Gibbs samples using constant temperature
T , where T is considered a parameter obtained during model
training. When converged, the estimated distribution of a
random variable (e.g., distribution of possible disparities in a
pixel) can be obtained by collecting the latest N samples. An
exact result can be obtained from the mode of the estimated
distribution, the most frequent label. The optimization mode
uses simulated annealing to converge to an exact result faster
than pure-sampling by strategically decreasing the temperature
T , but cannot provide an estimated distribution. The previous
work [20] evaluates only the optimization mode.

We implement the SPU in Verilog and use QuestaSim
simulation to evaluate the end-point result quality of the same
three applications assessed in the previous work [20]: image
segmentation, motion estimation, and stereo vision. Tab. I
shows the result quality comparison between FP64 software
and the SPU. Each result is collected by a single run per
dataset in optimization mode. We validate that the SPU with
a simple 19-bit LFSR as its random number generator (RNG)
achieves the same result quality as the software. Image seg-
mentation results indicate the same conclusion and are omitted
for brevity. We also obtain similar high quality applicatoin

TABLE I
SPU RESULT QUALITY FROM ONE RUN PER DATASET.

Motion estimation1 Stereo vision2

Dataset Software SPU Dataset Software SPU
dimetrodon 0.600 0.611 art 26.8% 27.7%
rubberwhale 0.371 0.376 poster 12.3% 11.0%
venus 0.460 0.449 teddy 26.9% 27.8%
1 Metric is end-point error [1]. Lower is better.
2 Metric is bad-pixel percentage [16]. Lower is better.

results on an Intel Arria 10 FPGA prototype. Despite these
results we are left with the question: What do the results in
Tab. I indicate about accelerator statistical robustness? The
short answer is nothing. The following sections present our
initial efforts toward providing a better answer.

III. THREE PILLARS OF STATISTICAL ROBUSTNESS

To identify appropriate measures of hardware statistical
robustness, we draw on known techniques utilized by domain
experts to evaluate their models and algorithms. Ideally, we
could formally prove bounds on relevant metrics [6], [9].
Unfortunately, some hardware optimizations (e.g., truncation
to zero) make formal proofs extremely difficult or impos-
sible. A provable architecture introduces more complicated
hardware. Therefore, we rely on existing empirical diagnostic
tests for MCMC techniques, that are based on foundations in
statistics, to establish three pillars for assessing a probabilistic
accelerator’s statistical robustness: 1) sampling quality [17],
2) convergence diagnostic [5], and 3) goodness of fit. Each
pillar has at least one quantitative measure. Collectively these
pillars evaluate correctness, help in understanding/explaining
end-point results, and can indicate the performance of the
MCMC execution, such as how many iterations are required
to converge. Previous work addresses some statistical metrics
for MCMC accelerators (e.g., KL-divergence and QQ plots
[13], ESS/second [12], and goodness of fit tests [15]). These
metrics all belong to one of three pillars proposed in this work
and we argue all three pillars are needed to fully characterize
the statistical robustness of an MCMC accelerator.

Note that the statistical robustness is jointly affected by the
algorithm and hardware architecture. Therefore, we compare
hardware results with FP64 software as the baseline to extract
the impact of hardware optimizations.

A. Pillar 1: Sampling Quality

A sampling algorithm with perfect sampling quality gen-
erates independent samples. However, an MCMC sample is
drawn based on the current values of random variables—the
outcome of samples in the previous iteration. This dependency
creates correlations between samples which is nontrival until
several subsequent samples are drawn, which can be rep-
resented as an autocorrelation time τ . This implies that by
generating n samples from MCMC, only n/τ samples can be
considered independent. A sufficient number of independent
samples are required to derive meaningful statistical measures
(e.g., mean and variance). Note that the sample dependency
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is an intrinsic property of MCMC algorithms and exists even
with a perfect random number generator and FP64 precision.

Effective Sample Size (ESS) is commonly used as a sam-
pling quality metric that represents how many independent
samples are drawn among all the dependent samples. In
general, higher ESS indicates the MCMC sampler is more
efficient at generating independent samples. Theoretically,
ESS = n provides the best sampling quality where all
samples are independent. Since closed form expressions for
ESS are difficult, we estimate ESS using known initial positive
sequence (IPS) method [12], [17]. Note that ESS has no
definition when all collected samples have the same value
(zero variance), which is possible in practice as shown in Sec.
IV. Many MCMC problems are high-dimensional (a 320×320
image has 102,400 dimensions). An ideal metric can report a
scalar ESS value to account for all dimensions as a single
random variable. While methods exist to report multivariate
ESS [18], to our knowledge they aren’t practical in our case
and they do not allow zero variance for any variable. In this
paper, we calculate ESS per dimension (random variable/pixel)
and report the arithmetic mean ESS. Sec. IV describes how
we handle zero variance cases.

Pillar Insight. If ESS is low it may take more MCMC iter-
ations to achieve an acceptable ESS. If a hardware accelerator
produces substantially lower ESS than software, the additional
iterations may reduce its effective speedup.

B. Pillar 2: Convergence Diagnostic

An important question for an MCMC method is when to
stop iterating, determined by when the MCMC is converged.
Multiple methods exist to measure the convergence [5]. We
use Gelman-Rubin’s R̂ (potential scale reduction factor) [3], a
popular quantitative method to measure whether a univariate
random variable (e.g., a pixel in stereo vision) is converged
at a certain iteration. Gelman-Rubin’s R̂ estimates the con-
vergence by comparing the between-chain variance (B) and
within-chain variance (W ) across multiple independent runs
on the same MCMC instance1. As a rule of thumb [3], [7],
a univariate random variable is considered converged when
R̂ < 1.1. Typically larger R̂ indicates that more iterations are
needed to converge.

A scalar convergence diagnostic is preferred for multi-
dimensional applications. Similar to ESS, handling high di-
mensions and the random variables with estimated zero vari-
ance (W = 0) is challenging using existing methods [3]. The
original Gelman-Rubin’s R̂ metric has no definition at W = 0.
We consider a random variable converged when B = 0 and
W = 0, which indicates all samples are the same value from
different iterations and MCMC runs. A random variable is
not considered converged when B > 0 and W = 0, which
indicates samples are the same value within MCMC runs,
but different across MCMC runs. We propose convergence
percentage, the percentage of converged univariate random
variables, as our new metric.

1Instance refers to the same input data, model and configuration parameters.

Pillar Insight. Low convergence percentage indicates that
more iterations are needed for the model to converge. If a
hardware accelerator takes substantially more iterations to
converge than software, the additional iterations may reduce
its effective speedup.

C. Pillar 3: Goodness of Fit

Finally, understanding the “goodness of fit”—the difference
between end-point results produced by the software and by the
hardware accelerator—is critical to evaluating the overall qual-
ity of the hardware accelerator. A straightforward approach
is to compare the end-point result quality using community-
standard benchmarks and metrics. However, ground truth data
are not always available. We provide two “goodness of fit”
approaches: 1) using application specific data to measure how
good the hardware results fit to a reference software result, and
2) using a distribution divergence measurement to evaluate all
possible data inputs and provide worst-case divergence.

1) Application Data Analysis: We are interested in how
close/different the results are between the software and hard-
ware. Popular quantitative metrics for “goodness of fit” include
Root Mean Squared Error (RMSE) and coefficient of determi-
nation (R2). We choose RMSE given the value of R2 can
be misleading by the small variance of the software results.
RMSE measures the root of average squared difference be-
tween the result from a hardware MCMC run and a reference
software run, ranging from 0 to infinity where lower is better.
Due to the stochastic nature of MCMC methods, each MCMC
run can have different end-point results for either software or
hardware. To account for this variation, we compute RMSE
for both hardware and software with respect to a reference
software result from multiple MCMC runs. The reference
software result is obtained using the mode of multiple software
runs to minimize the result variation in a single software
reference run.

2) Data-independent Analysis: Recall from Sec. II-A that
step-one of sampling is computing the probability distribu-
tion to sample from. Hardware approximations in this step
introduce divergence from the distribution obtained from FP64
software. Quantifying the distribution divergence of hardware
Phw from software Psw provides insights on why the re-
sults are good (or bad), how the hardware may perform on
unobserved data, and the worst-case divergence in arbitrary
data inputs. This can be measured using a popular divergence
measure Kullback-Leibler (KL) divergence. However, KL-
divergence goes to infinity when any entry of Phw(i) is zero
while Psw(i) is non-zero, which is likely to happen under
the hardware technique of truncating small probabilities to
zero, and thus cannot be directly applied in our study. We use
the symmetric method Jensen-Shannon Divergence (JSD) [11]
instead as the divergence measurement. Evaluating JSD on
arbitrary data inputs for a random variable with many possible
labels, such as in stereo vision, is challenging in both analytical
and empirical approaches given the complicated mathematical
representation and the large parameter space. In this work, we
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Fig. 3. ESS per random variable in stereo vision teddy. Red regions
correspond to zero variance. Red regions in the SPU overlap high ESS regions
with small variances in the software.

start from evaluating the JSD in binary label cases, such as in
a foreground-background image segmentation.

Pillar Insight. Substantially worse RMSE or JSD results
for a hardware accelerator means it is likely producing low
quality application end-point results and more iterations or
model/hardware design changes may be required.

IV. ANALYZING EXISTING HARDWARE

We apply the three pillars of statistical robustness on
an existing hardware, the Stochastic Processing Unit (SPU)
described in Sec. II-C.

A. Methodology

In this work we consider a single SPU, as it is sufficient
to explore the statistical robustness questions. We primarily
utilize MATLAB for both the FP64 software and for a func-
tionally equivalent SPU simulator. Importantly, we also have
SPU implementations in Verilog, Chisel, and HLS all with
verified results. We choose stereo vision and motion estimation
as our test applications. The concept of applying MRF Gibbs
Sampling on motion estimation is similar to stereo vision as
described in Sec. II-A, except the output label is a 2D motion
vector of a pixel, indicating where the pixel moves to in the
next frame. We pick three datasets from Middlebury [1], [16]
for each application, as in the previous work [20]. We also
considered, but omit, image segmentation since it converges
too fast to produce meaningful statistical measurements. Recall
the SPU supports two operating modes (sampling and opti-
mization). For optimization, measuring Effective Sample Size
(ESS) and Gelman Rubin’s R̂ is not conceptually meaningful,
we evaluate sampling quality and convergence diagnostic for
sampling only and goodness of fit for both modes. For brevity,
we mainly present stereo vision results and summarize motion
estimation results. More can be found elsewhere [21].

B. Results Analysis

1) Sampling Quality: We analyze ESS on SPU compared
with the FP64 software by collecting the last 1,000 iterations
of MCMC runs in the two applications. We evaluate the ESS
per random variable and report the arithmetic mean. Fig. 3
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Fig. 4. Sampling quality (a) and convergence diagnostic (b) results in stereo
vision. Higher is better.

shows an example ESS per random variable in stereo vision
teddy dataset. Red regions indicate the random variables have
zero variance, and thus considered inactive and ESS cannot
be calculated. Due to truncating small probabilities to zero,
the SPU has more inactive random variables (26.2%) than
the software (1.4%). Zero variance means the probability of
a possible label is large enough that all random samples pick
the same label, which can indicate convergence. The variance
of corresponding inactive random variables in software are
consistently small, indicating the random variable are likely
to consistently pick the same label as well—a concentrated
distribution. Therefore, high inactive percentage does not
necessarily imply bad result quality.

Fig. 4a shows the ESS arithmetic mean for a single MCMC
run per dataset in stereo vision. We verify that different runs
have small ESS differences (< 6). The mean “overall” ESS
eliminates the random variables with zero variance in software
and hardware, respectively. Fig. 3 reveals that the inactive
regions in the SPU (red) correspond to the high ESS regions in
the software due to small but non-zero variance (yellow), and
thus overall ESS is biased toward software. Therefore, we also
report the mean “active” ESS which only includes the regions
with non-zero variances in both software and the SPU, where
ESS is more meaningful. As a consequence, the active ESS
eliminates the regions with small variance in the software,
which can potentially benefit the SPU. The importance of
these small variances needs to be evaluated and we are actively
looking for methods to account for these regions. The software
has 1.1-1.4× higher active ESS than the SPU in stereo vision
and around 1.2× in motion estimation (not shown). This
implies the SPU needs to run 1.1-1.4× iterations to reach the
same active ESS as the software.

2) Convergence Diagnostic: We evaluate the convergence
diagnostic of SPU using the proposed convergence percentage
metric. Each convergence percentage value is collected from
10 runs per dataset. Each run forfeits the first half of iterations
as the burn-in period and only keeps the second half, as
proposed by Gelman et al. [7]. Fig. 4b shows the stereo vision
results. The number of iterations is normalized with respect to
SPU runs. Overall, convergence percentage is high in both the
software and the SPU: more than 80% of random variables
in stereo vision and more than 90% in motion estimation (not
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shown). More than 99.5% of random variables with W = 0
in SPU are converged. In stereo vision, the SPU reaches the
same or better convergence percentage than software with 2×
iterations. This indicates the SPU needs to be at least 2× faster
in order to have a better overall performance in this application
in terms of convergence percentage. Previous work [19], [20]
shows that a pipeline with the same data interface provides
the speedups of at least 2.8× and up to 84×.

3) Goodness of Fit: Fig. 5a shows the RMSE box plots
of 10 MCMC runs per dataset compared with a reference
result obtained by the mode of 10 software runs per dataset.
Whiskers of the software and the SPU overlap in all stereo
vision benchmarks, suggesting close results. The software
and the SPU produce closer results in simulated annealing
optimization mode. Fig. 5b shows the end-point result quality
using ground truth data and application metrics. Whiskers of
the software and the SPU overlap except for art in stereo
vision in sampling mode. Software and SPU whiskers overlap
in optimization mode, indicating the difference in end-point
result quality is very small. This is consistent with the single-
run results in Tab. I. Note that no obvious differences between
software and the SPU are visually observable in the stereo
vision disparity maps and motion estimation flow maps.

It seems intuitive to assume that FP64 software should
produce no worse results than hardware with limited precision,
truncation, and a simplified RNG. We find this assumption
holds in most, but not all, cases. We observe that in sampling
mode, motion estimation benchmark dimetrodon has consis-
tently lower end-point result error in the SPU than in FP64
software, but has higher RMSE in the SPU (see elsewhere
[21]). This result indicates two insights: 1) software with
higher precision does not necessarily produce better end-point
result quality, and 2) a higher RMSE compared to software
does not always indicate worse end-point result quality. The
general link between the goodness of fit measure and the ap-
plication end-point result quality needs to be further explored.
This confirms collectively applying three pillars beyond end-
point result quality is necessary to evaluate correctness.
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Fig. 6. Jensen-Shannon Divergence comparison between the SPU (left) and
a previously proposed accelerator 1st-gen RSU-G (right).

We analyze the Jensen-Shannon Divergence of SPU relative
to software with FP64 probability representation. Our goal is
to provide insights about why hardware exhibits good or bad
application end-point results and how it may perform with
arbitrary input data. We assume each random variable has
a binary distribution in this analysis. By sweeping a wide
range of possible energy inputs E(i) from 0 to 255 in integer,
corresponding to arbitrary data inputs, Fig. 6 plots JSD in
T = 10 (initial T in optimization mode) with two different
SPU microarchitectures: 1) the SPU described in Sec. II-C and
2) an early design 1st generation RSU-G [19] that was shown
to lack sufficient precision and dynamic range [20]. These
results clearly show the problems with the 1st-gen RSU-G. The
more recent SPU JSDs are negligible in most energy inputs
(blue regions), whereas the 1st-gen RSU-G has high JSD for
many inputs (yellow) and becomes worse when T decreases
(not shown). A key difference between these two designs is
dynamic scaling for energy values in the SPU, which is not
present in the 1st-gen RSU-G.

V. DESIGN SPACE EXPLORATION: A CASE STUDY

The previous section shows that architectural optimizations
might have negative influence on the statistical robustness,
even though producing comparable end-point results to FP64
software. Can we achieve desirable statistical robustness with-
out the commensurate overhead of FP64?

The SPU pipeline (Fig. 2) has several design parameters
related to bit precision that potentially influence statistical
robustness, including energy E(i) and Es(i), scaled and
truncated probability ptr(i), and RNG output bits. We fix
energy E(i) and Es(i) at 8 bits based on previous work [13],
[20]. The number of bits in ptr(i) considerably influences the
size of the energy-to-probability converter and the discrete
sampler. We evaluate three design points with 4, 6, 8-bit
ptr(i)s. The influence of RNG output bits is small compared
to ptr(i) and we find a 19-bit LFSR with 12-bit RNG outputs
does not reduce the statistical robustness or result quality
across all design points. The SPU truncates all ptr(i)s to
the nearest 2n values (2n approximation), enabling efficient
energy-to-probability conversion by comparing the boundaries
of energy values. Without 2n approximation, a double-buffered
256-entry LUT is required to achieve a stall-free design. We
evaluate the statistical robustness of each scaled probability
design point with and without 2n approximation. The above
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Fig. 7. Stereo vision sampling quality (a), (b) and convergence diagnostic (c)
in the design points.

design parameters generally do not directly influence the SPU
per-iteration performance assuming the same interface at the
same clock frequency. However, a design with lower precision
may take more iterations to converge; higher precision requires
more area and power affecting the number of SPU units in
systems with limited area/power budget.

A. Evaluating Design Parameters

Figs. 7 and 8 show our design space results. For brevity,
we show only stereo vision results and highlight motion
estimation results where needed. Starting from the current
SPU design (“spu”), we analyze the statistical robustness
by gradually increasing the precision: 1) replace the 19-bit
LFSR sampler with an FP64 Mersenne Twister sampler while
keeping the front-end pipeline unchanged (“p4a”); 2) increase
the bit width of ptr(i) to 6, 8-bit (“p6a” and “p8a”), with
2n approximation; 3) remove 2n approximation (“p4”, “p6”,
and “p8”); and 4) keep front-end pipeline up to the scaled
energy (Es(i)) output unchanged, but has a FP64 back-end
for probability conversion and discrete sampling (“pd”).

1) Sampling Quality: Fig. 7a shows the overall ESSs (re-
spectively omit random variables with zero variances for each
design) increase when more bits are added, partly as a result
of fewer random variables with zero variances. Recall the SPU
truncates small scaled probabilities ptr(i) < 1 to zero. Adding
more bits keeps more possible labels with small probabilities
available to be sampled. Fig. 7b shows the active ESS for
the teddy dataset. Recall active ESS masks out the random
variables inactive in either software or the SPU. With 2n
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Fig. 8. Stereo vision RMSE and end-point results in the design points
(sampling mode).

approximation, increasing bit precision does not close the gap
in active ESS with the software. Without 2n approximation,
6 or 8-bit ptr(i) have comparable overall and active ESS to
software. Results for motion estimation (omitted) are similar.

2) Convergence Diagnostic: Fig. 7c shows the convergence
percentage increases with the increasing bit precision. In
contrast to ESS, 2n approximation improves the convergence
percentage under the same bit precision. Hardware with 6-bit
and 8-bit ptr(i) with and without 2n approximation produces
comparable convergence percentage to software. All designs
except “p4” produce the same or higher convergence percent-
age for motion estimation (results not shown).

3) Goodness of Fit: Fig. 8a shows RMSE results compared
with software reference results. Observable lower RMSEs
can be found in stereo vision art when increasing the bit
precision from 4 to 6. Differences of RMSEs are hard to notice
when further increasing the precision given whiskers largely
overlap in most datasets. Application end-point results in Fig.
8b exhibit the same trends. All designs produce comparable
result quality to the software in optimization mode (not
shown). Motion estimation results are summarized elsewhere
[21]. Overall, optimization is more robust than sampling at
producing good result quality across various designs. For both
modes, increasing the scaled probability to 6 bits produces
comparable goodness of fit results to the software.

B. Resource Usage

1) FPGA Resource Usage: We evaluate three different
implementations of the SPU (“spu”) on an Intel Arria 10
FPGA: 1) an optimized hand-written Verilog implementation
with 4-bit scaled probability, 2) a High-Level Synthesis (HLS)
implementation (HLS-int) that matches the hand-written Ver-
ilog (but using HLS basic integer data-types), and 3) an HLS

7



TABLE II
AREA AND POWER ANALYSIS IN ASIC

Design Area (µm2) Power (mW) Design Area Power
spu 1957 2.17 p4 2112 2.21
p6a 2134 2.31 p6 2356 2.38
p8a 2309 2.46 p8 2599 2.54

implementation with a 32-bit floating-point (FP32) back-end
after energy computation (HLS-fp), eliminating the energy
scaling stage. HLS-fp is developed in order to assess the
option of directly using FP32 representation inside the SPU
for probability conversion and sampling. HLS-int (frequency
369MHz) is close to the Verilog (374MHz) implementation
in terms of performance both with 1 initiation interval cycle,
but consumes more resources (3.7× ALMs, 7.3× memory, and
2.5× DSPs. See [21]). HLS-fp consumes 13.7× ALMs, 33.7×
memory, 6.3× DSPs compared to Verilog and most impor-
tantly performs remarkably worse due to its lower frequency
(320MHz) and throughput (3 initiation interval cycles) caused
by the FP addition. Clearly, naively implementing the SPU in
FP32 consumes too much resources and significantly reduces
the performance benefits. A human-designed architecture is
needed to improve efficiency.

2) ASIC: We estimate the ASIC area/power for various
design points. Circuits elements written in Chisel are synthe-
sized in a predictive 15nm library [14] using Synopsys Design
Compiler. Memory elements (FIFOs and LUTs) are estimated
using Cacti 7 in 22nm technology, the smallest supported
technology. Tab. II summarizes the results. Total area/power
numbers are the sum of 15nm circuitry and 22nm memory
elements. Power is estimated at 1GHz. All designs can run up
to 3.3GHz, bounded by the SPU energy computation stage.
Increasing the SPU ptr(i) from 4-bit to 6-bit precision while
keeping the 2n approximation (“p6a”) incurs 1.09× area and
1.07× power overheads, but has considerably better statistical
robustness. Removing 2n approximation (“p6a”) adds double-
buffered LUTs for energy-to-probability conversion, thus in-
curs 1.20× area and 1.10× power overheads. Despite a 10%
difference in area, we advocate the 6-bit designs without 2n

approximation in an ASIC for better sampling quality if area
is not a major concern. The benefit from further increasing the
bit-precision is marginal based on the previous analysis.

VI. CONCLUSION

Domain-specific accelerators require correctness evaluation.
In probabilistic algorithms, statistical robustness is an impor-
tant aspect of correctness defined by domain experts. Current
methodologies often omit statistical robustness and thus lack
a comprehensive definition of correctness. This work takes a
first step toward defining metrics and a three-pillar framework
for evaluating correctness of probabilistic accelerators beyond
application end-point result quality. We apply the three pillars
on an existing hardware accelerator and surface design issues
that cannot be revealed by only using end-point result quality.
The three pillars guide the design space exploration and

achieve considerable improvements in the statistical robustness
by slightly increasing the bit precision.
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