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I. INTRODUCTION

A Markov Random Field (MRF) is a graphical model for
representing a wide range of applications in statistical machine
learning [4]. MRF encodes the conditional dependence among
random variables (RVs). One approach to solving problems
represented by MRF is using probabilistic algorithms, e.g.,
Gibbs sampling [2]. These methods go through all RVs in the
MRF model and update them iteratively, until converged to the
final result. This process relies on sampling from probability
distributions, which is often computationally intensive.

Despite the challenges, the statistical properties of these
algorithms, especially their interpretability, make them an
attractive alternative approach to deep learning and in some
cases, the only approach for certain problems. Therefore,
developing solutions to accelerate these algorithms are of sig-
nificant importance. To achieve this, we can adopt algorithmic
optimizations to avoid performing unnecessary work.

In this work, we build on three observations that reveal when
RVs cannot change their labels during the current iteration: i)
after the warm-up period, most RVs tend to not change labels
very often, ii) an RV can only change its label if either it has a
non-concentrated probability distribution function (PDF), i.e.,
it has non-zero probabilities of taking on multiple labels, or
at least one of the RVs on which it is conditionally dependent
has changed its label, i.e., its PDF has changed, and iii)
approximation techniques make it increasingly likely that RVs
have concentrated PDFs. Therefore, we introduce event-driven
Gibbs sampling (EDGS). In this scheme, queues are used to
keep track of RVs that must be updated. To be more specific,
a RV is added to the queue if i) another RV on which it is
conditionally dependent changes its value, or ii) it does not
have a concentrated PDF. We implement EDGS for GPUs to
take advantage of the high amount of parallelism provided
by them. Our evaluations show up to 30.3% speedup can be
gained for stereo vision.

II. BACKGROUND AND MOTIVATION

A. First-order Markov Random Field

A MRF encodes the conditional dependence among RVs.
Figure 1 (right) illustrates an example first-order MRF model
and its connection with the Gibbs sampling algorithm. In the
model, each RV depends on its four immediate neighbors. Due
to this structure, the MRF can be divided into two regions so

 

while not converged { 

    foreach x in X { 

        compute label probabilities; 

        assign new label based on the probabilities; 

    } 

} 

 
Requires sampling from 

probability distributions 

𝐸𝑥 𝑙 = 𝛼𝐸𝑥𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 𝑙  

+𝛽𝐸𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 

𝑃𝑥 𝑙 = 𝑒−
𝐸𝑥 𝑙

𝑇  

Fig. 1: Markov Chain Monte Carlo algorithm (left) for Markov Random Field
(right) inference. Note that sampling is performed in the inner loop.

that all of RVs in each region are conditionally independent.
This enables us to generate a chromatic schedule to update all
RVs in each region in parallel [2].

B. Probabilistic Algorithms

Bayesian inference combines new evidence and prior be-
liefs to update the probability estimate for a hypothesis.
One approach to solving these inference problems is to use
probabilistic Markov chain Monte-Carlo (MCMC) methods,
e.g., Gibbs sampling [2], that converge to an exact solution by
iteratively generating samples for RVs. Figure 1 shows this
process. Gibbs sampling may be used in one of two modes: i)
pure sampling (constant T ), or ii) optimization (T gradually
decreases to help faster convergence).

C. Approximation in Gibbs Sampling

In the optimization mode, convergence to the final result can
be further accelerated by utilizing approximation techniques.
One such approximation inspired by a hardware Gibbs sam-
pling accelerator [5] is truncating very small label probabilities
to zero. Equation 1 illustrates this approximation, where C is
the cutoff threshold used for truncation.

Ptr(l) =

{
P (l), if maxl∈L P (l)

P (l) < C

0, otherwise
(1)

D. Stable Random Variables

As RVs gradually converge to their final labels, it becomes
unnecessary to update all RVs at every iteration because
some of them simply cannot change their label. Based on
our experiments, in stereo vision for the benchmark inputs
only 24% − 46% of RV updates result in changing labels.
Consequently, there is opportunity for up to 54% − 76%
speedup. However, not all of this speedup can be gained. If
a RV simply does not change its label does not necessarily
mean that it cannot do so.
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Fig. 2: Speedup of EDGS (a), percentage of skipped updates of EDGS for region- and RV-level granularity(b), and bad pixel percentage (c) for stereo vision.
EDGS-C in graphs means EDGS with cut-off threshold C.

III. EVENT-DRIVEN GIBBS SAMPLING

If a previous RV update computation resulted in a PDF
concentrated on one label, which is likely due to the decreasing
T in optimization mode and the probability cut-off technique,
the RV’s PDF is going to remain that way until something
in its neighborhood changes. Therefore, we update a variable
in two cases, i) if at least one of its neighbors change, or
ii) it did not have a concentrated PDF to begin with. We
call this optimization event-driven Gibbs sampling (EDGS).
This technique is similar to vertex programming in graph
algorithms, but we customize it for the context of MRF
inference with Gibbs sampling. We utilize two queues to keep
track of RVs that must be updated in alternate rounds (i.e., a
queue for black RVs and another queue for white RVs). While
updating a RV, we compare its new label with its old label,
and if the two labels do not match, we put all the neighbors
in their corresponding queue. Additionally, we have to check
if the neighbors have concentrated PDFs. To do so, we use a
matrix whose entries correspond to RVs and are set only if
the corresponding RV has a concentrated PDF.

IV. EDGS IMPLEMENTATION FOR GPUS

To evaluate the effectiveness of EDGS, we implemented it
for execution on GPUs due to the massive parallelism provided
by them. Due to the single-instruction multiple-thread (SIMT)
execution model of the GPU, i.e., all threads in a warp execute
more efficiently when they are in lockstep, skipping updates
of stable RVs is better done at the granularity of warps instead
of individual RVs. To address this issue, we break the MRF
into regions at least as large as a warp and keep track of the
conditions for updating RVs at the granularity of these regions
instead of individual RVs. Although tracking RVs at a coarser
granularity might decrease the opportunity to skip updating
stable RVs (because a region must be updated even only one
RV in it is not stable), an upside of this approach is lower
pressure on the memory system. Since we use queues to store
the indices of RVs to be updated, tracking regions instead of
individual RVs means that much smaller queues are needed.
In addition to smaller queue size, there will be less contention
for queue operations.

V. EVALUATION

We use stereo vision with input sets from Middlebury [3]
for our evaluations. Our baseline is a parallel version of Gibbs

sampling with no skipped RVs. We performed design space
exploration using region size, thread blocks per SM, and
probability cut-off threshold. We selected the fastest point for
each design in our comparisons. We ran all experiments on
Nvidia RTX 2080 Ti GPU. We use bad-pixel (BP) percentage
as the quality metric. We also report the percentage of skipped
updates using regions of RVs to quantify the effects of EDGS
on the Gibbs sampling algorithm performance.

Figure 2b compares the percentages of skipped updates
for two granularities of region-level and RV-level. The figure
illustrates the trend of declining skipped updates as the cut-
off threshold decreases for both granularities, which has the
effect of smaller speedups as the cut-off threshold shrinks.
Furthermore, it shows the best case opportunity for skipping
updates if we were to track update conditions at RV-level
instead of region-level. Although at a finer granularity the
opportunity for skipping updates would grow by 52.5%-
82.2%, the mismatch between the SIMT execution model and
RV-level updates leads to 10.9%-43.5% slowdown. On the
other hand, the highest speedup for region-level updates is
30.3% which is achieved by EDGS-2. However, it comes with
a high quality loss in some cases. EDGS-4 limits this loss to
less than 3% and provides a 16.4% speedup. Evaluations with
more applications are presented elsewhere [1].
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