Push vs. Pull: Data Movement for Linked Data Structures :

Chia-Lin Yang and Alvin R. Lebeck

Department of Computer Science
Duke University

Durham, NC 27708 USA
{yangc,alvy}@Qcs.duke.edu

Abstract

As the performance gap between the CPU and main mem-
ory continues to grow, techniques to hide memory latency
are essential to deliver a high performance computer sys-
tem. Prefetching can often overlap memory latency with
computation for array-based numeric applications. How-
ever, prefetching for pointer-intensive applications still re-
mains a challenging problem. Prefetching linked data struc-
tures (LDS) is difficult because the address sequence of LDS
traversal does not present the same arithmetic reqularity as
array-based applications and the data dependence of pointer
dereferences can serialize the address generation process.

In this paper, we propose a cooperative hardware/software
mechanism to reduce memory access latencies for linked data
structures. Instead of relying on the past address history to
predict future accesses, we identify the load instructions that
traverse the LDS, and execute them ahead of the actual com-
putation. To overcome the serial nature of the LDS address
generation, we attach a prefetch controller to each level of
the memory hierarchy and push, rather than pull, data to
the CPU. Our simulations, using four pointer-intensive ap-
plications, show that the push model can achieve between 4%
and 30% larger reductions in execution time compared to the
pull model.

1. INTRODUCTION

Since 1980, microprocessor performance has improved
60% per year, however, memory access time has improved
only 10% per year. As the performance gap between pro-
cessors and memory continues to grow, techniques to reduce

“This work supported in part by DARPA Grant DABT63-
98-1-0001, NSF Grants CDA-97-2637, CDA-95-12356, and
ETA-99-72879, Career Award MIP-97-02547, Duke Univer-
sity, and an equipment donation through Intel Corporation’s
Technology for Education 2000 Program. The views and
conclusions contained herein are those of the authors and
should not be interpreted as representing the official policies
or endorsements, either expressed or implied, of DARPA or
the U.S. Government.

Copyright ACM 2000, Appears in International Conference on Supercom-

puting (ICS) 2000

the effect of this disparity are essential to build a high per-
formance computer system. The use of caches between the
CPU and main memory is recognized as an effective method
to bridge this gap [21]. If programs exhibit good temporal
and spatial locality, the majority of memory requests can be
satisfied by caches without having to access main memory.
However, a cache’s effectiveness can be limited for programs
with poor locality.

Prefetching is a common technique that attempts to hide
memory latency by issuing memory requests earlier than de-
mand fetching a cache block when a miss occurs. Prefetching
works very well for programs with regular access patterns.
Unfortunately, many applications create sophisticated data
structures using pointers, and do not exhibit sufficient reg-
ularity for conventional prefetch techniques to exploit. Fur-
thermore, prefetching pointer-intensive data structures can
be limited by the serial nature of pointer dereferences—
known as the pointer chasing problem—since the address of
the next node is not known until the contents of the current
node is accessible.

For these applications, performance may improve if lower
levels of the memory hierarchy could dereference pointers
and pro-actively push data up to the processor rather than
requiring the processor to fetch each node before initiating
the next request. An oracle could accomplish this by know-
ing the layout and traversal order of the pointer-based data
structure, and thus overlap the transfer of consecutively ac-
cessed nodes up the memory hierarchy. The challenge is to
develop a realizable memory hierarchy that can obtain these
benefits.

This paper presents a novel memory architecture to per-
form pointer dereferences in the lower levels of the memory
hierarchy and push data up to the CPU. In this architec-
ture, if the cache block containing the data corresponding
to pointer p (*p) is found at a particular level of the mem-
ory hierarchy, the request for the next element (*p+offset)
is issued from that level. This allows the access for the next
node to overlap with the transfer of the previous element. In
this way, a series of pointer dereferences becomes a pipelined
process rather than a serial process.

In this paper, we present results using specialized hard-
ware to support the above push model for data movement
in list-based programs. Our simulations using four pointer-
intensive benchmarks show that conventional prefetching us-
ing the pull model can achieve speedups of 0% to 223%,
while the new push model achieves speedups from 6% to
227%. More specifically, the push model reduces execution
time by 4% to 30% more than the pull model.

The rest of this paper is organized as follows. Section 2
provides background information and motivation for the push
model. Section 3 describes the basic push model and details
of a proposed architecture. Section 4 presents our simula-
tion results. Related work is discussed in Section 5 and we
conclude in Section 6.

2. BACKGROUND AND MOTIVATION

Pointer-based data structures, often called linked data
structures (LDS), present two challenges to any prefetching
technique: address irregularity and data dependencies. To
improve the memory system performance of many pointer-
based applications, both of these issues must be addressed.

2.1 Address Irregularity

Prefetching LDS is unlike array-based numeric applica-
tions since the address sequence from LDS accesses does
not have arithmetic regularity. Consider traversing a linear
array of integers versus traversing a linked-list. For linear
arrays, the address of array elements accessed at iteration
i is Agqar + 4 % i, where Agqqr is the base address of ar-
ray A and ¢ is the iteration number. Using this formula,
the address of element A[i] at any iteration i is easily com-
puted. Furthermore, the above formula produces a compact
representation of array accesses, thus making it easier to
predict future addresses. In contrast, LDS elements are al-
located dynamically from the heap and adjacent elements
are not necessarily contiguous in memory. Therefore, tra-
ditional array-based address prediction techniques are not
applicable to LDS accesses.

Instead of predicting the future LDS addresses based on
address regularity, Roth et. al [19] observed that the load
instructions (Program Counters) that access LDS elements
are themselves a compact representation of LDS accesses—
called a traversal kernel. Consider the linked-list traversal
example shown in Figure 1, the structure list is the LDS
being traversed. Instructions 1 and 3 access list itself, while
instruction 2 accesses another portion of the LDS through
pointer p. These three instructions make up the list traversal
kernel. Assembly code for this kernel is shown in Figure 1b.

Consecutive iterations of the traversal kernel create data
dependencies. Instruction 3 at iteration a produces an ad-
dress consumed by itself and instruction 1 in the next it-
eration b. Instruction 1 produces an address consumed by
instruction 2 in the same iteration. This relation can be rep-
resented as a dependency tree, shown in Figure 1c. Loads in
LDS traversal kernels can be classified into three types: re-
current, traversal, and data. Instruction 3 (list=list—forward)
generates the address of the next element of the list struc-
ture, and is classified as a recurrent load. Instruction 1

(p=list—patient) produces addresses consumed by other pointer

loads and is called a traversalload. All the loads in the leaves
of the dependency tree, such as instruction 2 (p—time++)
in this example, are data loads.

Roth et. al proposed dynamically constructing this ker-
nel and repeatedly executing it independent of the CPU ex-
ecution. This method overcomes the irregular address se-
quence problem. However, its effectiveness is limited be-
cause of the serial nature of LDS address generation.

2.2 Data Dependence
The second challenge for improving performance for LDS
traversal is to overcome the serialization caused by data de-

list = head;
while(list !'= NULL) {
p = list->patient; /* (1) traversal load */
x = p->data; /* (2) data load */
list = list->forward; /* (3) recurrent load */

a) source code

1: 1w $15, 01($24)
2: 1w $4, o02($15)
3: 1w $24, 03($24)

b) LDS Traversal Kernel

(32)
ORNED
(20)

c¢) Data Dependencies

Figure 1: Linked Data Structure (LDS) Traversal

pendencies. In LDS traversal a series of pointer dereferences
is required to generate future element addresses. If the ad-
dress of node i is stored in the pointer p, then the address of
node i+1 is *(p+x), where x is the offset of the next field.
The address *(p+x) is not known until the value of p is
known. This is commonly called the pointer-chasing prob-
lem. In this scenario, the serial nature of the memory access
can make it difficult to hide memory latencies longer than
one iteration of computation.

The primary contribution of this paper is the develop-
ment of a new model for data movement in linked data
structures that reduces the impact of data dependencies.
By abandoning the conventional pull approach of initiat-
ing all memory requests (demand fetch or prefetch) by the
processor or upper level of the memory hierarchy, we can
eliminate some of the delay in traversing linked data struc-
tures. The following section elaborates on the new model
and a proposed implementation.

3. THE PUSH MODEL

Most existing prefetch techniques issue requests from the
CPU level to fetch data from the lower levels of the mem-
ory hierarchy. Since pointer-dereferences are required to
generate addresses for successive prefetch requests (recur-
rent loads), these techniques serialize the prefetch process.
The prefetch schedule is shown in Figure 2(a), assuming
each recurrent load is a L2 cache miss. The memory la-
tency is divided into six parts (rl: sending a request from
L1 to L2; al: L2 access; r2: sending a request from L2
to main memory; a2: memory access; x2: transferring a
cache block back to L2; x1: transferring a cache block back
to L1). Using this timing, node i+1 arrives at the CPU
(rl+al+r2+a2+x2+x1) cycles (the full memory access la-
tency) after node i.

In the push model, pointer dereferences are performed
at the lower levels of the memory hierarchy by executing

rl+al+r2+a2+x2+x1

? . f . rl x1
node 1 node 1 arrives, node 2 arrives,
prefetch node 2 prefetch node 3

a) Traditional Prefetch Data Movement 1 L2
a
time r2 X2
a2
il a1l r2| a2 | x2] xl‘ —/ Main
[[[[[\ a2 Memory
‘ a2 XZ‘ x1
node 1 Val \ node 2 arrives ¢) Memory System Model

access node 2
in main memory

access ré‘e 3

in main memory

b) Push Model Data Movement

Figure 2: Data Movement for Linked Data Structures

traversal kernels in micro-controllers associated with each
memory hierarchy level. This eliminates the request from
the upper levels to the lower level, and allows us to overlap
the data transfer of node i with the RAM access of node
i+1. For example, assume that the request for node i ac-
cesses main memory at time t. The result is known to the
memory controller at time t+a2, where a2 is the memory
access latency. The controller then issues the request for
node 2 to main memory at time t+a2, thus overlapping this
access with the transfer of node 1 back to the CPU.

This process is shown in Figure 2(b) (Note: in this simple
model, we ignore the possible overhead for address transla-
tion. Section 4 examines this issue). In this way, we are able
to request subsequent nodes in the LDS much earlier than
a traditional system. In the push architecture, node i+1
arrives at the CPU a2 cycles after node i. From the CPU
standpoint, the latency between node accesses is reduced
from (rl4+al+4r2+a2+x2+x1) to a2. Assuming 100-cycle
overall memory latency and 60-cycle memory access time,
the total latency is potentially reduced by 40%. The actual
speedup for real applications depends on (i) the contribution
of LDS accesses to total memory latency, (ii) the percentage
of LDS misses that are L2 misses and (iii) the amount of
computation in the program that can be overlapped with
the memory latency.

In the push model, a controller—called a prefetch engine—
is attached to each level of the memory hierarchy, as shown
in Figure 3. The prefetch engines (PFE) executes traver-
sal kernels independent of CPU execution. Cache blocks
accessed by the prefetch engines in the L2 or main mem-
ory levels are pushed up to the CPU and stored either in
the L1 cache or a prefetch buffer. The prefetch buffer is
a small, fully-associative cache, which can be accessed in
parallel with the L1 cache. The remainder of this section
describes the design details of this novel push architecture.

Prefetch

refetch rei
Engine

Prefetch
Buffer

A
... L2 Bus
\ 4
prefetched blocks
Engine
... Memory Bus

prefetched blocks

Main
prefetch regq Prefetch
Memory Engine

Figure 3: The Push Architecture

3.1 A Push Model Implementation

The function of the prefetch engine is to execute traver-
sal kernels. In this paper we focus on a prefetch engine
designed to traverse linked-lists. Support for more sophisti-
cated data structures (e.g., trees) is an important area that
we are currently investigating, but it remains future work.

Consider the linked-list traversal example in Figure 1.
The prefetch engine is designed to execute iterations of ker-
nel loops until the returned value of the recurrent load (in-
struction 3: list=list—forward) is NULL. Instances of the
recurrent load (3a,3b,3c,.. etc) form a dependence chain
which is the critical path in the kernel loop. To allow the
prefetch engine to move ahead along this critical path as fast
as possible, the prefetch engine must support out-of-order
execution. General CPUs implement complicated register
renaming and wakeup logic [14; 22] to achieve out-of-order
execution. However, the complexity and cost of these tech-
niques is too high for our prefetch engine design.

thread 1:
recurrent-based load

thread 2: 2a 2b
traversal-basedload || L_1 L_| | ...

Figure 4: Kernel Execution

To avoid complicated logic, the prefetch engine executes
a single traversal kernel in two separate threads, as shown
in Figure 4. The first thread executes recurrent-based loads,
which are dependent on recurrent loads, (e.g., inst. 1: p =
list—patient and inst. 3: list = list—forward). This thread
executes in order and starts a new iteration once a recurrent
load completes. The other thread executes traversal-based
loads, which are loads that depend on traversal loads, such
as inst. 2 (p—time++). Because traversal loads from differ-
ent iterations, (e.g., la and 1b) are allowed to complete out
of order, since they can hit in different levels of the memory
hierarchy, traversal-based loads should be able to execute
out of order.

The internal structure of the prefetch engine is shown
in Figure 5. There are four main hardware structures in
the prefetch engine: 1) Recurrent Buffer (RB), 2) Producer-
Consumer Table (PCT), 3) Base Address Buffer (BAB), and
4) Prefetch Request Queue. The remainder of this section
describes its basic operation.

The Recurrent Buffer (RB) contains the type, PC, and
offset of recurrent-based loads. The type field indicates if
the corresponding load is a recurrent load. Traversal-based
loads are stored in the Producer-Consumer Table (PCT).
This structure is similar to the Correlation Table in [19], it
contains the load’s offset, PC and the producer’s PC. The
PCT is indexed using the producer PC.

We initialize the prefetch engine by down-loading a traver-
sal kernel to the RB and PCT through a memory mapped
interface. Prior to executing an LDS access (e.g., list traver-
sal), the program starts the PFE by storing the root address
of the LDS in the Base Address Buffer (BAB). We accom-
plish this by assuming a “flavored” load that annotates a
load with additional information, in this case that the data
being loaded is the root address of an LDS. When the PFE
detects that the BAB is not empty and the instruction queue
is empty, it loads the first element of the BAB into the Base
register and fetches the recurrent-based instructions from
the RB into the instruction queue. At each cycle, the first
instruction of the instruction queue is processed, and a new
prefetch request is formed by adding the instruction’s offset
to the value in the Base register. The prefetch request is
then stored in the prefetch request queue (PRQ) along with
its type and PC.

When a traversal load completes, its PC is used to search
the PCT. For each matching entry, the effective address of
the traversal-based load is generated by adding its offset

to the result of the probing traversal load. In this way,
the prefetch engine allows the recurrent-based and traversal-
based threads to execute independently.

We assume that each level of the memory hierarchy has
a small buffer that stores requests from the CPU, PFE, and
cache coherence transactions (e.g., snoop requests) if appro-
priate. By maintaining information on the type of access,
the cache controller can provide the appropriate data re-
quired for the PFE to continue execution. For example, if
the access is a recurrent prefetch, the resulting data (the
address of the next node) is extracted and stored into the
BAB. If the access is a traversal load prefetch, the PC is
used to probe the PCT and the resulting data is added to
the offset from the PCT entry. Before serving any request,
the controller checks if a request to the same cache block
already exists in the request buffer. If such a request exists,
the controller simply drops the new request.

Our data movement model also places new demands on
the memory hierarchy to correctly handle cache blocks that
were not requested by the processor. In particular, when all
memory requests initiate from the CPU level, a returning
cache block is guaranteed to find a corresponding MSHR
entry that contains information about the request, and pro-
vides buffer space for the data if it must compete for cache
ports. In our model, it is no longer guaranteed that an arriv-
ing cache block will find a corresponding MSHR. One could
exist if the processor executed a load for the corresponding
cache block. However, in our implementation, if there is
no matching MSHR the returned cache block can be stored
in a free MSHR or in the request buffer. If neither one is
available, this cache block is dropped. Dropping these cache
blocks does not affect the program correctness, since they
are a result of a non-binding prefetch operation, not a de-
mand fetch from the processor. Note that the push model
requires the transferred cache blocks to also transfer their
addresses up the memory hierarchy. This is similar to a co-
herence snoop request traversing up the memory hierarchy.

3.2 Interaction Among Prefetch Engines

Having discussed the design details of individual prefetch
engines, we now address the interaction between prefetch en-
gines at the various levels. Recall, that the root address of
a LDS is conveyed to the prefetch engine through a special
instruction, which we call Idroot. If the memory access of a
ldroot instruction is a hit in the L1 cache, the loaded value
is stored in the BAB of the prefetch engine in the fist level.
This triggers the prefetching activity in the L1 prefetch en-
gine.

If a Idroot instruction or the prefetch for a recurrent load
causes a L1 cache miss, the cache miss is passed down to
the L2 like other cache misses but with the type bits set to
RP (recurrent prefetch). If this miss is satisfied by the L2,
the cache controller will detect the RP type and store the
result in the BAB. The prefetch engine in the L2 level will
find out that the BAB is not empty and start prefetching. If
the L1 cache miss is a result of a recurrent load prefetch, the
L1 PFE stops execution and the L2 PFE begins execution.
Data provided by the L2 PFE is placed in the prefetch buffer
to avoid polluting the L1 data cache.

The interaction between the L2 PFE and the memory
level PFE is similar the the L1/L2 PFE interaction. The L2
PFE suspends execution when it incurs a miss on a recur-
rent load, and the memory PFE begins execution when it

Recurrent Buffer (RB)

Instruction Queue

type| pc | offset type| pc | offset

NR 1 ol

RP | 3 03 [[

producer-consumer table (PCT)

Base Address Buffer
$Base (BAB)

head ‘

Producer Self| Offset 9
1 2 02 S

>Jl prefetch request queue (PRé)

(type, pc, addr)

TLB

addr

type p¢ data

Request
Buffer

Request from

Upper Level

Figure 5: The Prefetch Engine

observes a non-empty BAB. Since the data provided by the
memory PFE passes the L2 cache, we deposit the data in
both the L2 cache and the prefetch buffer. The L2 cache is
generally large enough to contain the additional data blocks
and not suffer from severe pollution effects.

4. EVALUATION

This section presents simulation results that demonstrate
the effectiveness of the push model for a set of four list-based
benchmarks. First, we describe our simulation framework.
This is followed by an analysis of a microbenchmark for
both the push model and the conventional pull model for
prefetching. We finish by evaluating the two models for
four macrobenchmarks and examining the impact of address
translation overhead.

4.1 Methodology

To evaluate the push model we modified the SimpleScalar
simulator [3] to also simulate our prefetch engine implemen-
tation. SimpleScalar models a dynamically scheduled pro-
cessor using a Register Update Unit (RUU) and a Load/Store
Queue (LSQ) [22]. The processor pipeline stages are: 1)

Fetch: Fetch instructions from the program instruction stream,

2) Dispatch: Decode instructions, allocate RUU, LSQ en-
tries, 3) Issue/Execute: Execute ready instructions if the
required functional units are available, 4) Writeback: Sup-
ply results to dependent instructions, and 5) Commit: Com-
mit results to the register file in program order, free RUU
and LSQ entries.

Our base processor is a 4-way superscalar, out-of-order
processor. The memory system consists of a 32KB, 32-byte
cache line, 2-way set-associative first level data cache and a
512KB, 64-byte cache line, 4-way set associative second level
cache. Both are lock-up free caches that can have up to eight
outstanding misses. The L1 cache has 2 read/write ports,
and can be accessed in a single cycle. We also simulate a 32-
entry fully-associative prefetch buffer with four read/write

ports, that can be accessed in parallel with the L1 data
cache. The second level cache is pipelined with an 18 cycle
round-trip latency. Latency to main memory after an L2
miss is 66 cycles. The CPU has 64 RUU entries and a 16
entry load-store queue, a 2-level branch predictor with a
total of 8192 entries, and a perfect instruction cache.

We simulate the pull model by using only a single prefetch
engine attached to the L1 cache. This engine executes the
same traversal kernels used by the push architecture. How-
ever, prefetch requests that miss in the L1 cache must wait
for the requested cache block to return from the lower levels
before the fetch for the next node can be initiated.

4.2 Microbenchmark Results

We begin by examining the performance of both prefetch-
ing models (push and pull) using a microbenchmark. Our
microbenchmark simply traverses a linked list of 32,768 32-
byte nodes 10 times, see Figure 6. Therefore, all LDS loads
are recurrent loads. We also include a small computation
loop between each node access. This allows us to evaluate
the effects of various ratios between computation and mem-
ory access. To eliminate branch effects, we use a perfect
branch predictor for these microbenchmark simulations.

for (i = 0; 1 < 10; i++)
node = head;
while (node)
for (j = 0; j < iters; j++)
sum = sum+tj;
node = node->next;
endwhile
endfor

Figure 6: Microbenchmark Source Code

Figure 7 shows the speedup for each prefetch model over
the base system versus compute iterations on the x-axis.
The thick solid line indicates the speedup of a perfect mem-
ory system where all references hit in the L1 cache. In gen-
eral, the results for the push model (thin solid line) match
our intuition, large speedups (over 100%) are achieved for
low computation to memory access ratios, and the benefits
decreases as the amount of computation increases relative
to memory accesses. However, the increase in computation
is not the only cause for decreased benefits: cache pollution
is also a factor.

180%

160% \\ 777777 Pull I
. 140% A\ \C Push i
& 120% Perfect MemoryH
S 100% LN
3 80% \ N
() \ P \
g 60% \ ~—
40% —
20% ="
0% TT/\/\\\\\\H\H\\\H\\\H\H\\\HH\HH\HH\\‘\‘\A\

VA g A Qg

Computation per Node Access (iterations)

Figure 7: Push vs. Pull: Microbenchmark Results

The dashed line in Figure 7 represents the pull model.
We see the same shape as the push model, but at a different
scale. It takes much longer than the push model for the pull
model to reach its peak benefit. This is a direct consquence
of the serialization caused by pointer dereferences; the next
node address is not available until the current node is fetched
from the lower levels of the memory hierarchy.

We consider three distinct phases in Figure 7. Initially,
the push model achieves nearly 100% speedup. While this
is not close to the maximum achievable, it is significant.
These speedups are a result of cache misses merging with
the prefetch requests (see Figure 8). In contrast, the pull
model does not exhibit any speedup for low computation per
node. Although Figure 8 shows that 100% of the prefetch
requests merge with cache misses, the prefetch is issued too
late to produce any benefit.

As the computation per node access increases, the prefetch
engine is able to move further ahead in the list traversal,
eventually eliminating many cache misses. This is shown
in Figure 8 by the increase in prefetch buffer hits and de-
crease in miss ratio. Although the miss ratio and prefetch
merges plateau, performance continues to increase due to
the prefetch merges hiding more and more of the overall
memory latency. Eventually, there is enough computation
that prefetch requests no longer merge, instead they result
in prefetch hits. This is shown by the spike in prefetch hits
(the dashed line) in Figure 8, and occurs at the same iter-
ation count as the maximum speedup shown in Figure 7.

Further increases in computation cause the prefetch en-
gine to run too far ahead, thus causing pollution. As new
cache blocks are brought closer to the processor, they replace
older blocks. For sufficiently long delays between node ac-
cesses, the prefetched blocks begin replacing other prefetched
blocks not yet accessed by the CPU. This conclusion is sup-

Push Model
100%
Miss Ratio

80% Prefetch Merge —

A ------ Prefetch Hit
60% _I
40% \-A\
20%
S

LN N R L U

Computation per Node Access (iterations)

Pull Model
100% Miss Ratio
Prefetch Merge|
80% +—t+——F"" """ " Prefetch Hit = |+
60% \
40% : \";
20% : X
17 MR S ———

VA g G AL S

Computation per Node Access (iterations)

Figure 8: Microbenchmark Prefetch Performance

ported by the decrease in prefetch buffer hits shown in Fig-
ure 8 and an increase in the L2 miss ratio shown in Figure 9.

Although the L1 miss ratio returns to its base value,
we continue to see significant speedups. These performance
gains are due to prefetch benefits in the L2 cache. Recall,
that we place prefetched cache block into both the L2 and
prefetch buffer. Even though the prefetch engine is so far
ahead that it pollutes the prefetch buffer, the L2 still pro-
vides benefits. Figure 9 shows that the global L2 miss ratio,
remains below the base system. However, the miss ratio
increases, hence the speedup decreases, as the computation
per node increases because of L2 cache pollution.

20%

Base

| |- Pull

A% Push -
. L/ s

I'd’

0% HHH\\TT\/\HH\H\HHHHH\’\’HHHHHHHHH

Computation per Node Access (iterations)

Figure 9: Push vs. Pull: Microbenchmark L2 Cache Global
Miss Ratio

The results obtained from this microbenchmark clearly

show some of the potential benefits for the push model.
However, there are some opportunities for further improve-

ment, such as developing a technique to “throttle” the prefetch

engine to match the rate of data consumption by the proces-
sor, thus avoiding pollution. We leave investigation of this
as future work.

4.3 Macrobenchmark Results

While the above microbenchmark results provide some
insight into the performance of the push and pull models,
it is difficult to extend those results to real applications.
Variations in the type of computation and its execution on
dynamically scheduled processors can make it very difficult
to precisely predict memory latency contributions to overall
execution time.

To address this issue, we use four list-based macrobench-
marks: em3d, health, and mst from the Olden pointer-
intensive benchmark suite [18] and Rayshade [9]. Em3d
simulates electro-magnetic fields. It constructs a bipartite
graph and processes lists of interacting nodes. Health imple-
ments a hospital check in/out system. The majority of cache
misses come from traversing several long link lists. Mst finds
the minimum spanning tree of a graph. The main data struc-
ture is a hash table. Lists are used to implement the buckets
in a hash table. Rayshade is real-world graphics application
that implements a raytracing algorithm. Rayshade divides
space into grids and objects in each grid are stored in a
linked-list. If a ray intersects with a grid, the entire object
list in that grid is traversed.

223%227%
50% —
45% 21% |
40% 1 |OPULL |
35% - OPUSH —
30% —
25% —
20% 6% —
15% 11%) |

10% :17 - -
5% - -
0% 0%
oo N

Health Mst Ema3d

Reduction in Execution Time

Rayshade

Figure 10: Push vs. Pull: Macrobenchmark Results

Figure 10 shows the speedup for both push and pull
prefetching using our benchmarks on systems that incur a
one cycle overhead for address translation with a perfect
TLB. We examine the effects of TLB misses later in this
section. From Figure 10 we see that the push model out-
performs the pull model for all four benchmarks. Rayshade
shows the largest benefits, with speedups of 227% for the
push model, and 223% for the pull model. Health achieves
41% improvement in execution time for the push model
while achieving only 11% for the pull model. Similarly, for
the push model, em3d and mst achieve 6% and 16%, respec-
tively, while neither shows any benefit using the pull model.

We note that the results for our pull model are not di-
rectly comparable to previous pull-based prefetching tech-
niques, since we do not implement the same mechanisms
or use the exact same memory system parameters. Recall,

that we execute a simple traversal kernel on the L1 prefetch
engine to issue prefetch requests. This kernel executes inde-
pendent of the CPU, and does not synchronize in any way.
Most previous techniques are “throttled” by the CPU ex-
ecution, since they prefetch a specific number of iterations
ahead. Furthermore, our kernel may prefetch incorrect data.
For example, this can occur in mst since the linked list is
searched for a matching key and the real execution may not
traverse the entire list. Similarly, in em3d each node in the
graph contains a variable size array of pointers to/from other
nodes in the graph. Our kernel assumes the maximum ar-
ray size, and hence may try to interpret non-pointer data as
pointers and issue prefetch requests for this incorrect data.

To gain more insight into the behavior of the push archi-
tecture, we analyze prefetch coverage, pollution, and prefetch
request distribution at different levels of the memory hier-
archy. Prefetch coverage measures the fraction of would-be
read misses serviced by the prefetch mechanism. To deter-
mine the impact of cache pollution, we count the number
of prefetched blocks replaced from the prefetch buffer be-
fore they are ever referenced by the CPU. Finally, the re-
quest distribution indicates where in the memory hierarchy
prefetch requests are initiated.

Prefetch Coverage

We examine prefetch coverage by categorizing successful prefetch

requests according to where in the memory hierarchy the
would-be cache miss “meets” the prefetched data. The three
categories are partially hidden, hidden L1, and hidden L2.
Partially hidden misses are those would-be cache misses that
merge with a prefetch request somewhere in the memory hi-
erarchy. Hidden L1 misses are those L1 misses now satisfied
by the prefetch buffer. Similarly, hidden L2 misses are those
references that were L2 misses without prefetching, but are
now satisfied by prefetched data in the L2 cache. Note, since
we deposit data in the L2 cache and the prefetch buffer,
blocks replaced from the prefetch buffer can still be resident
in the L2 cache.

70%

60% O partially hidden
50% M total hidden L1

40% - — Bl total hidden L2
30% -

20% -
10% ~
0% e
Health Mst Em3d

Rayshade

Figure 11: Prefetch Coverage

Figure 11 shows the prefetch coverage for our bench-
marks. Our results show that for health and mst, the major-
ity of load misses are only partially hidden, 47% and 35%,
respectively. These benchmarks do not have enough com-
putation to overlap with the prefetch latency. Rayshade is
the other extreme, with no partially hidden misses, but 60%
of L2 misses are eliminated. Em3d shows very little benefit,
with only a small number of L2 misses eliminated.

Prefetch Buffer Pollution

To eliminate all L1 misses, a cache block must arrive in the
prefetch buffer before the CPU requires the data. Further-
more, the cache block must remain in the prefetch buffer
until the CPU accesses the data. If the prefetch engine runs
too far ahead it may replace data before it accessed by the
CPU.

Figure 12 shows the percentage of blocks placed into the
prefetch buffer that are replaced without the CPU access-
ing the data for the push model. From this data we see
that mst, em3d, and rayshade all replace nearly 100% of
the blocks placed in the prefetch buffer. Health suffers very
little pollution.

120%

2 100%

£

g 80% -
8

o 60% —
@

S 40% —
kS

I 20% —

0% +——— :

Health Mst Ema3d Rayshade

Figure 12: Prefetch Buffer Pollution

These replacements can be caused by the prefetch engine
running too far ahead, and replacing blocks before they are
used, or by prefetching the wrong cache blocks. Recall, that
for mst and em3d our traversal kernel is approximate, and
we could be fetching the wrong cache blocks. This appears
to be the case, since neither of these benchmarks showed
many completely hidden misses (see Figure 11). In con-
trast, rayshade shows a large number of hidden L2 misses.
Therefore, we believe the replacements it incurs are caused
by the prefetch engine running too far ahead, but not so far
ahead as to pollute the L2 cache.

Prefetch Request Distribution

The other important attribute of the push model is the
prefetch request distribution at different levels of the mem-
ory hierarchy. The light bar in Figure 13 shows the per-
centage of prefetch operations issued at each level of the
memory hierarchy and the dark bar shows the percentage
of redundant prefetch operations. A redundant prefetch re-
quests a cache block that already resides in a higher memory
hierarchy level than the level that issued the prefetch.
From Figure 13 we see that health and rayshade issue
most prefetches at the main memory level. Em3d issues
half from the L2 cache and half from main memory. Finally,
mst issues over 30% of its prefetches from the L1 cache,
20% from the L2 and 60% from main memory. Health and
rayshade traverse the entire list each time it is accessed.
Their lists are large enough that capacity misses likely dom-
inate. In contrast, mst performs a hash lookup and may
stop before accessing each node, hence conflict misses can
be a large component of all misses. Furthermore, the hash

Health
100%
Ototal Mredundant
80%
60%
40%
20%
0% L1
L1 L2 Mem
Mst
100%
80% J Ototal Mredundant
6 -
60%
40%
20% -
0% -
L1 L2 Mem
Em3d
100%
Ototal Mredundant
80%
60%
40%
20%
0%
L1 L2 Mem
Rayshade
100%
Ototal Mredundant
80%
60%
40%
20%
0%

L1 L2 Mem

Figure 13: Prefetch Request Distribution

lookup is data dependent and blocks may not be replaced be-
tween hash lookups. In this case, it is possible for a prefetch
traversal to find the corresponding data in any level of the
cache hierarchy, as shown in Figure 13.

Mst also exhibits a significant number of redundant prefetch

operations. Most of the L1 prefetches are redundant, while
very few of the memory level prefetches are redundant. For
health and em3d, 15% and 7%, respectively, of all prefetches
are redundant and issued from the memory level. Rayshade
incurs minimal redundant prefetch requests. Redundant
prefetches can prevent the prefetch engine from running
ahead of the CPU and they compete with the CPU for
cache, memory and bus cycles. We are currently investigat-
ing techniques to reduce the number of redundant prefetch
operations.

Impact of Address Translation

Our proposed implementation places a TLB with each prefetch

engine. However, the results presented thus far assume a
perfect TLB. To model overheads for TLB misses, we assume
hardware managed TLBs with a 30 cycle miss penalty [19].
When a TLB miss occurs at any level, all the TLBs are
updated by the hardware miss handler.

45% O PULL
@ 40% 1
£ OPUSH T
F 35% -

c
S 30% -

3
3 25% -

2 10% 1 -
S

2 5% - { -
T 0% : :

Perfect 32 64 128 256
TLB Size

Figure 14: Impact of Address Translation for Health

For most of our benchmarks, the TLB miss ratios are
extremely low, and hence TLB misses do not contribute sig-
nificantly to execution time. Health is the only benchmark
with a noticeable TLB miss ratio (17% for a 32-entry fully-
associative TLB). Therefore, we present results for only this
benchmark.

Figure 14 shows the speedup achieved for various TLB
sizes, including a perfect TLB that never misses. From this
data we see that smaller TLB sizes reduce the effectiveness
of both push and pull prefetching. However, we see that
the push model still achieves over 30% speedup even for a
32-entry TLB, while the pull model achieves less than 5%.
Increasing the TLB size, increases the benefits for both push
and pull prefetching.

5. RELATED WORK

The early data prefetching research, both in hardware
and software, focused on regular applications. On the hard-
ware side, Jouppi proposed to use stream buffers to prefetch
sequential streams of cache lines based on cache misses [7].
The original stream buffer design can only detect unit stride.

Palacharla et. al [15] extend this mechanism to detect non-
unit stride off-chip. Baer et. al [2] proposed to use a refer-
ence prediction table (RPT) to detect the stride associated
with load/store instructions. The RPT is accessed ahead
of the regular program counter by a look-ahead program
counter. When the look-ahead program counter finds a
matching stride entry in the table, it issues a prefetch. The
Tango system [16] extends Baer’s scheme to issue prefetches
more effectively on 1 processor. On the software side, Mowry
et. al [13] proposed a compiler algorithm to insert prefetch
instructions in scientific computing code. They improve
upon the previous algorithms [5; 8; 17] by performing lo-
cality analysis to avoid unnecessary prefetches.

Correlation-based prefetching is another class of hard-
ware prefetching mechanisms. It uses the current state of
the address stream to predict future references. Joseph et.
al [6] build a Markov model to approximate the miss ref-
erence string using a transition frequency. This model is
realized in hardware as a prediction table where each entry
contains an index address and four prioritized predictions.
Alexander et. al [1] also implement a table-based prediction
scheme similar to [6]. However, it is implemented at the
main memory level to prefetch data from the DRAM array
to SRAM prefetch buffers on the DRAM chip. Correlation-
based prefetching is able to capture complex access patterns
but it has three shortcomings: (i) it cannot predict future
references as far ahead of the program execution as the push
architecture; (ii) the prefetch prediction accuracy decreases
if applications have dynamically changing data structures
or LDS traversal orders, and (iii) to achieve good prediction
accuracy, it requires the prediction table proportional to the
working set size.

Another class of data prefetching mechanisms focuses
specifically on pointer-intensive applications. Data struc-
ture information is used to construct solutions. The Spaid
scheme [10] proposed by Lipasti et. al is a compiler-based
pointer prefetching mechanism. It inserts prefetch instruc-
tions for the objects pointed by pointer arguments at call
sites. Luk et. al [11] proposed three compiler-based prefetch-
ing algorithms. Greedy prefetching schedules prefetch in-
structions for all recurrent loads a single instance ahead.
History-pointer prefetching modifies source code to create
pointers to provide direct access to non-adjacent nodes based
on previous traversals. This approach is only effective for
applications that have static structures and traversal or-
der. This method incurs both space and execution over-
head. Data-linearization prefetching maps heap-allocated
nodes that are likely to be accessed close together in time
into contiguous memory locations so the future access ad-
dresses can be correctly predicted if the creation order is the
same as the traversal order.

Chilimbi et. al [4] present another class of software ap-
proaches to pointer-intensive applications. They proposed
to perform cache conscious data placement considering sev-
eral cache parameters such as the cache block size and asso-
ciativity. The reorganization process happens at run time.
This approach greatly improves the data spatial and tem-
poral locality. The shortcoming of this approach is that
it can incur high overhead for dynamically changing struc-
tures, and it cannot hide latency from capacity misses.

Zhang et. al [23] proposed a hardware prefetching scheme
for irregular applications in shared-memory multiprocessors.
This mechanism uses object information to guide prefetch-

ing. Programs are annotated to bind together groups of data
(e.g., fields in a record or two records linked by a pointer)
either by programmers or the compiler. Groups of data are
then prefetched under hardware control. The constraint of
this scheme is that accessed fields in a record need to be
contiguous in memory. Mehrotra et. al [12] extends stride
detection schemes to capture both linear and recurrent ac-
cess patterns.

Recently, Roth et. al [19] proposed a dependence based
prefetching mechanism (DBP) that dynamically captures
LDS traversal kernels and issues prefetches. In their scheme,
they only prefetch a single instance ahead of a given load and
wavefront tree prefetching is performed regardless of the tree
traversal order. The proposed push architecture allows the
prefetching engine to run far ahead of the processor.

In their subsequent work [20], Roth et. al proposed a
jump-pointer prefetching framework similar to the history-
pointer prefetching in [11]. They provide three implementa-
tions: software-only, hardware-only and a cooperative soft-
ware/hardware technique. The performance of these 3 im-
plementations varies across the benchmarks they tested. For
few of the benchmarks which have static structure, traver-
sal order, and multiple passes to LDS, the jump-pointer
prefetching can achieve high speedup over the DBP mech-
anism. However, for applications that have dynamically
changing behavior, the jump-pointer prefetching is not ef-
fective and sometimes can even degrade performance. The
proposed push architecture can give more stable speedup
over the DBP mechanism and adjust the prefetching strat-
egy according to program attributes.

6. CONCLUSION

This paper presented a novel memory architecture de-
signed specifically for linked data structures. This new ar-
chitecture employs a new data movement model for linked
data structures by pushing cache blocks up the memory hi-
erarchy. The push model performs pointer dereferences at
various levels in the memory hierarchy. This decouples the
pointer dereference (obtaining the next node address) from
the transfer of the current node up to the processor, and
allows implementations to pipeline these two operations.

Using a set of four macrobenchmarks, our simulations
show that the push model can improve execution time by
6% to 227%, and outperforms a conventional pull-based
prefetch model that achieves 0% to 223% speedups. Our re-
sults using a microbenchmark show that for programs with
little computation between node accesses, the push model
significantly outperforms a conventional pull-based prefetch
model. For programs with larger amounts of computation,
the pull model is better than the push model.

We are currently investigating several extensions to this
work. First, is a technique to “throttle” the push prefetch
engine, thus preventing it from running too far ahead of the
actual computation. We are also investigating techniques
to eliminate redundant prefetch operations, and the use of
a truly programmable prefetch engine that may allow us to
eliminate incorrect prefetch requests (e.g., em3d). Finally,
we are investigating support for more sophisticated pointer-
based data structures, such as trees and graphs.

As the impact memory system performance on overall
program performance increases, new techniques to help tol-
erate memory latency become ever more critical. This is par-
ticularly true for programs that utilize pointer-based data

structures with little computation between node accesses,
since pointer dereferences can serialize memory accesses. For
these programs, the push model described in this paper can
dramatically improve performance.

7. REFERENCES

[1] T. Alexander and G. Kedem. Distributed predictive
cache design for high performance memory system.
In Proceedings of the 2th International Symposium
on High-Performance Computer Architectur, February
1996.

[2] J.-L. Baer and T.-F. Chen. An effective on-chip preload-
ing scheme to reduce data access penalty. In Proceeding
of Supercomputing 91, 1991.

[3] D.C. Burger, T. M. Austin, and S. Bennett. Evaluating
future microprocessors-the simplescalar tool set. Tech-
nical Report 1308, Computer Sciences Department,
University of Wisconsin—Madison, July 1996.

[4] T. Chilimbi, J. Larus, and M. Hill. Improving pointer-
based codes through cache-concious data placement.
Technical Report CSL-TR-98-1365, University of Wis-
consin, Madison., March 1998.

[6] E. Gornish, E. Granston, and A. Veidenbaum.
Compiler-detected data prefething in multiprocessor
with memory hierarchy. In Prceedindings of Interna-
tional Conference on Supercomputing, 1990.

[6] D. Joseph and D. Grunwald. Prefetching using markov
predictors. In Proceedings of the 24th Annual Inter-
national Symposium on Computer Architecture, pages
252-263, June 1997.

[7] N. P. Jouppi. Improving direct-mapped cache perfor-
mance by the addition of a small fully-associative cache
and prefetch buffers. In Proceedings of the 17th An-
nual International Symposium on Computer Architec-
ture, pages 364-373, May 1990.

[8] A. C. Klaiber and H. M. Levy. An architecture for
software-controlled data prefetching. In Proceedings of
the 18th Annual International Symposium on Computer
Architecture, pages 43-53, 1991.

[9] C. Kolb. The rayshade wuser’s guide. In
http://graphics.stanford. EDU/ cek/rayshade.

[10] M. H. Lipasti, W. Schmidt, S. R. Kunkel, and R. Roedi-
ger. Spaid: Software prefeteching in pointer- and call-
intensive environments. In Proceedings of the 28th An-
nual International Symposium on Microarchitecture,
June 1995.

[11] C.-K. Luk and T. Mowry. Compiler based prefetch-
ing for recursive data structure. In Proceedings of the
Seventh International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems (ASPLOS VII), pages 222-233, October 1996.

[12] S. Mehrotra and L. Harrison. Examination of a memory
access classification scheme for pointer-intensive and
numeric program. In Proceedings of the 10th Interna-
tional Conference on Supercomputing, pages 133-139,
May 1996.

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

[22]

[23]

T. Mowry, M. S. Lam, and A. Gupta. Design and eval-
uation of a compiler algorithm for prefetching. In Pro-
ceedings of the Fifth International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating System, pages 62-73, October 1992.

S. Palacharla, N. P. Jouppi, and J. E. Smith.
Complexity-effective superscalar processors. In Proceed-
ings of the 24th Annual International Symposium on
Computer Architecture, pages 206-218, June 1997.

S. Palacharla and R. Kessler. Evaluating stream buffers
as a secondary cache replacement. In Proceedings of
the 21st Annual International Symposium on Computer
Architecture, pages 24-33, April 1994.

S. Pinter and A. Yoaz. A hardware-based data prefetch-
ing technique for superscalar processor. In Proceedings
of the 29th Annual International Symposium on Mi-
croarchitecture, pages 214-225, December 1996.

A. K. Porterfield. Software Methods for Improvement
of Cache Performance on Supercomputer Applications.
PhD thesis, Department of Computer Science, Rice
University, 1989.

A. Roger, M. Carlisle, J.Reppy, and L. Hendren. Sup-
porting dynamic data structures on distributed memory
machines. ACM Transactions on Programming Lan-
guages and Sytems, 17(2), March 1995.

A. Roth, A. Moshovos, and G. Sohi. Dependence based
prefetching for linked data structures. In Proceedings
of the Eigth International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS VIII), pages 115-126, October 1998.

A. Roth and G. Sohi. Effective jump-pointer prefetch-
ing for linked data structures. In Proceedings of the 26th
Annual International Symposium on Computer Archi-
tecture, pages 111-121, May 1999.

A. Smith. Cache memories. Computing Surveys,
14(4):473-530, September 1982.

G. Sohi. Instruction issue logic for high performance,
interruptable, multiple functional unit, pipelined com-
puters. IEEE Transactions on Computers, 39(3):349—
359, March 1990.

Z. Zhang and J. Torrellas. Speeding up irregular ap-
plications in shared-memory multiprocessors: Memory
binding and group prefetching. In Proceedings of the
22nd Annual International Symposium on Computer
Architecture, pages 188-200, June 1995.

