Enabling Lightweight Transactions with Precision Time

Pulkit A. Misra

Duke University
pulkit@cs.duke.edu

Jeffrey S. Chase

Duke University
chase@cs.duke.edu

Johannes Gehrke

Microsoft Corporation
johannes@acm.org

Alvin R. Lebeck
Duke University

alvy@cs.duke.edu

Abstract

Distributed transactional storage is an important service in
today’s data centers. Achieving high performance without
high complexity is often a challenge for these systems due
to sophisticated consistency protocols and multiple layers
of abstraction. In this paper we show how to combine two
emerging technologies—Software-Defined Flash (SDF) and
precise synchronized clocks—to improve performance and
reduce complexity for transactional storage within the data
center.

We present a distributed transactional system (called MI-
LANA) as a layer above a durable multi-version key-value
store (called SEMEL) for read-heavy workloads within a data
center. SEMEL exploits write behavior of SSDs to maintain
a time-ordered sequence of versions for each key efficiently
and durably. MILANA adds a variant of optimistic concur-
rency control above SEMEL’s API to service read requests
from a consistent snapshot and to enable clients to make fast
local commit or abort decisions for read-only transactions.

Experiments with the prototype reveal up to 43% lower
transaction abort rates using IEEE Precision Time Protocol
(PTP) vs. the standard Network Time Protocol (NTP). Under
the Retwis benchmark, client-local validation of read-only
transactions yields a 35% reduction in latency and 55%
increase in transaction throughput.

CCS Concepts eoInformation systems — Distributed
storage

Keywords clock-synchronization; non-volatile memory;
distributed storage systems; strong consistency; transactions

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions @acm.org.

ASPLOS °17, April 08-12, 2017, Xi’an, China

(© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4465-4/17/04. .. $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037722

1. Introduction

Large-scale data centers provide the computational infras-
tructure that underlies the increasing use of cloud services.
Today’s data centers exhibit properties of both loosely cou-
pled distributed systems and tightly coupled supercom-
puters. For example, networking infrastructure now mim-
ics early supercomputers with low latency and high band-
width per link, high bisection bandwidth Fat-Tree topolo-
gies [3, 38], and remote memory operations (e.g., RoCE).
We believe that the rapid increase in cloud computing is
driving a trend to move further toward supercomputing-like
capabilities. Nonetheless, the scale and criticality of today’s
systems demands a distributed service architecture that is
resilient to failures even within the data center, including a
replicated storage tier with transactional data consistency.
This paper presents a high-performance, replicated, trans-
actional key-value store that is designed to exploit two
emerging data center capabilities: precision time and ef-
ficient persistent memory that is based on flash or other
NVM/SSD technologies. Our approach to transactional key-
value storage is unique in that it is optimized for low-latency
access within a single data center, where network and persis-
tent memory latencies are increasingly measured in micro or
nano seconds. Synchronized global time is achieved using
the IEEE Precision Time Protocol (PTP) [28], which can ob-
tain server clock skew < 1us within a data center. Originally
developed for distributed control systems, the PTP standard
is increasingly supported in commodity Ethernet compo-
nents. The bounds on clock skew continue to tighten: re-
cent research demonstrates ~ 150ns skew across a data cen-
ter [37]. Crucially, these tolerances are within the access la-
tencies of flash-based SSDs, and are approaching DRAM la-
tencies. Flash write latencies are approximately 50 — 100us;
byte-addressable persistent memory can achieve DRAM la-
tencies (< 100ns) with emerging non-volatile memory tech-
nologies (STTRAM, PCM, etc.), or using battery-backed
DRAM. We show that precision time enables a unique times-

tamp for each update, which can be compared as a basis for
consistency.

Our work uses precision time as the foundation for a
persistent multi-version key-value store—called SEMEL—
and a lightweight transactional system—called MILANA. In
SEMEL, each version of a key’s value is timestamped us-
ing precision time. These timestamps enable a lightweight
primary-backup replication protocol that moves update or-
dering off the critical path (Contribution 1). SEMEL and
MILANA represent solutions for the region in the data center
design space between loosely coupled distributed systems
and tightly coupled coherent shared memory systems.

MILANA adds optimistic concurrency control (OCC [32])
to support serializable ACID transactions over SEMEL (Con-
tribution 2), adapted to a client/server setting based on tech-
niques pioneered in Thor [1]. Each transaction executes on
a single client (e.g., an application server): the client issues
read/write requests to SEMEL storage servers, assigns pre-
cision timestamps for the start and end of the transaction,
and acts as the coordinator to commit or abort the transac-
tion. Thor showed that OCC can improve throughput (con-
currency) and latency relative to the pessimistic alternative
(two-phase locking or 2PL), which also causes blocking
and deadlocks under contention. However, OCC transac-
tions may be forced to abort/rollback under contention due
to timestamp ordering conflicts with other transactions, and
this risk increases with clock skew [1]. Our results show that
in this setting precision time (PTP) achieves a lower rate of
spurious aborts due to false conflicts (and therefore higher
peak throughput) when compared to clock synchronization
using NTP—the current state of the art—and also helps im-
prove fairness among clients. The abort rate is up to 43%
lower in high-contention scenarios.

Moreover, timestamp-based concurrency control enables
use of multi-version approaches [8] to further improve con-
currency and to enable snapshot-isolated read-only transac-
tions with low cost. For example, Google’s Spanner [16]
uses fine-grained timestamp ordering and multi-version stor-
age primarily to support lock-free read-only transactions on
snapshots; Spanner uses 2PL for other transactions and re-
quires a wait time on transactions to tolerate the ms skew
possible in TrueTime.

SEMEL leverages the erase-before-write (remap-on-write)
behavior of flash SSDs to enable cheap multi-version stor-
age. SEMEL and MILANA are based on an extended SSD
Flash Translation Layer (FTL) that writes updated values in
a log-structured fashion on physical storage, maps keys di-
rectly to values at physical locations, and integrates version
management with FTL garbage collection. Our approach
builds on the growing use of software-defined flash (SDF)
to enhance SSD storage while eliminating unnecessary ab-
straction boundary crossings [13, 14, 46, 47, 51]. Previous
work extended the FTL to integrate support for transac-
tions [14, 47, 48], direct key-value storage [41], and snap-

shots [52]. To our knowledge, MILANA is the first system
to leverage the flash remap-before-write behavior for FTL-
integrated multi-version concurrency control (Contribution
3).

SEMEL and MILANA reflect the state of the art in sharded,
replicated, transactional key/value storage, but embody a
unique set of design tradeoffs for low-latency intra-data cen-
ter storage with SSDs and precision time. For example, M1-
LANA is similar to TAPIR [57] in that it uses OCC in con-
junction with an unordered replication protocol, which has
potential for lower latency than ordered consensus (as in
Thor and Spanner). Consensus forces all replicas to agree
on operations in a total order, which is not necessary to pre-
serve transactional consistency.

However, in contrast to TAPIR, SEMEL uses primary/backup

replication. This choice reduces OCC validation costs in M1-
LANA: write validation occurs only on the primary replica
for each affected shard, and read-only transactions validate
locally at the client (Contribution 4). The price of this effi-
ciency is that read-write transactions require an extra round-
trip latency (though not extra messages) to sequence through
the primary. For intra-data center storage the extra round-
trip latency is a small price for cheaper reads, given the
prevalance of read-dominated workloads [5, 44]. TAPIR’s
design—in which all transactions require full consensus—
is suitable for a geo-replicated system, where eliminating
the primary saves a cross-data center round trip. The cross-
data center latency in TAPIR also permits the use of coarse-
grained NTP time synchronization; we show that NTP time
skew is too high for modern low-latency data centers and
that PTP enables use of OCC with low abort rates, even in
high-contention scenarios (Contribution 5).

Our SEMEL implementation utilizing PTP and the Light-
NVM Open-Channel SSD emulation framework [11] reveals
a 20-45% increase in IOPs and up to 7X lower GET latency
on a single machine using unified version and flash man-
agement compared to a naive multi-version KV-store im-
plemented using a standard FTL for read heavy workloads
(50-100% GET ops). Our experiments running Retwis [35]
with MILANA show up to 43% reduction in abort rates using
PTP vs. NTP due to tighter clock synchronization. Further-
more, local client validation in MILANA reduces transaction
latency by 35% and increases throughput by 55% for read-
heavy workloads.

The remainder of this paper is organized as follows.
§2 provides background on PTP and SDF. The design of
SEMEL and MILANA are described in §3 and §4. We eval-
uate our prototype systems in §5. §6 discusses related work
and we conclude in §7.

2. Enabling Technologies
2.1 Precision Time

The Precision Time Protocol (PTP) was originally defined in
the IEEE 1588 standard [28] for use in control systems or for

t:currenttime e:clock skew V:version t,:write latency T: write time

C1: write
T=t+eg

C2: write
T=t+0.5¢

C2: write
T=t+e+1

C2: write
T=t+0.1¢

Time —>

Figure 1: Impact of Clock Skew

precision measurement instrumentation. It achieves < 1us
accuracy in synchronizing real time clocks of servers that are
connected over a Local Area Network (LAN). The protocol
classifies servers into a master or slave hierarchy and defines
synchronization messages that are passed between a master
and a slave clock. Each synchronization message contains
a timestamp of when it was sent or received and through
four back-and-forth messages between a master and a slave,
a slave can determine the network latency and calculate its
offset to the master clock.

Clock synchronization typically occurs every two sec-
onds and the synchronization messages can be timestamped
using hardware or software, with hardware providing the
lowest skew across servers. PTP is supported in current
Linux releases and accessible through user level APIs. Re-
cent proposals improve synchronization skew beyond PTP to
less than 160ns throughout a data center and less than 30ns
for directly connected servers [37].

Using synchronized clocks for optimistic concurrency
control is a natural step since it can help reduce spurious
aborts. Figure 1 shows an example of a shared object up-
dated by two clients C; and Cj, € is the clock skew and
t, 1s the write latency. Since the client with a leading clock
(C1) updates the object first, the lagging client (C) has to
wait for a duration > € before it can successfully update
the shared object. If € >> t,, then there are spurious aborts
even though the device is capable of satisfying a new write
request. Such aborts lead to increased application latencies
and lower throughput. The problem is exacerbated for faster
devices, where the access latency t,, is on the order of 100s
of nanoseconds while the clock skew € may be several mil-
liseconds under clock synchronization protocols like NTP.

SEMEL and MILANA rely on PTP’s precise clock syn-
chronization to relax ordering requirements for replication,
to perform validation aggressively, and also for garbage col-
lection (explained later).

2.2 Software-Defined Flash

A key service in data centers is reliable persistent storage—
historically provided by replicated disk drives. Persistent
memory technologies (battery-backed DRAM, emerging

Physical Block 0
Page Data 00B

ELBA: Logical Block Address i
{PBN: Physical Block Number :

{00B: Out-Of-Band Space 0 LBA=0
1 LBA=16
LBA mapping table 2 LBA=40
LBA PBN Page 3 LBA=64
0 0 0
8 1 0
16 0 1 Physical Block1
2 1 2 Page Data (0]6]:]
0 LBA=8
1 LBA=32
2 LBA=24
3 LBA=56

Figure 2: Flash Translation Layer (FTL) Mapping of Logical
Blocks to Physical Pages & Blocks

non-volatile memories, and flash-based SSDs) enable newer
approaches with dramatically lower latency. These technolo-
gies have characteristic access latency between 100ns and
1us.

A Solid State Drive (SSD) comprises several flash mem-
ory chips and a programmable controller that executes the
Flash Translation Layer (FTL). SSD capacity is increasing
rapidly through the use of vertical stacking. Simultaneously,
increased throughput and decreased latency is achieved by
using new queue-based PCle interfaces (e.g., NVMe), sim-
ilar to those used in high-performance network interfaces
(e.g., Infiniband). SSDs can achieve ~1M IOPs with capac-
ities near 1TB per drive, and latencies of ~ 50 — 100us
at less than $1.00/GB. These advances in SSD design and
implementation further improve their ability to handle high-
throughput big data processing. Flash continues to see in-
creased use within data centers.

Flash memory is organized as an array of blocks where
each block contains some number of pages. Typically pages
are 2-16KB in size and each block contains 128-256 pages.
The page size is the smallest unit for reads and writes. With-
out loss of generality, we consider a single-level flash bit
cell that can be written in only one direction (0 to 1). A
page write operation only sets values to 1, and thus if the
data changes from a 1 to O, the page must first be erased
and then the new data written (erase-before-write). Unfortu-
nately, erase operations on flash occur only at a block granu-
larity (block-grained erase). Moreover, flash has limited en-
durance: each block can be erased only a certain number of
times before the cells wear out.

To accommodate the above characteristics and limita-
tions, the Flash Translation Layer (FTL) of flash-based SSDs
provides a dynamic mapping of logical addresses to physi-
cal locations. The FTL presents a block device interface to
the Operating System (OS) [2] and maps a Logical Block
Address (LBA) to a page in flash memory, as shown in Fig-

ure 2. This level of indirection allows the FTL to remap a
logical block to a new physical page on each write, leav-
ing the old value in place pending garbage collection. The
FTL’s garbage collector may remap existing (current and
valid) pages as needed to free complete blocks to erase. The
FTL also implements wear-leveling: it distributes writes uni-
formly across physical locations, so the flash cells wear at
the same rate.

Historically, the FTL was implemented entirely within
the SSD enclosure and exposed a traditional block abstrac-
tion to software. This structure enables tight control over
garbage collection and wear-leveling, aspects that can in-
fluence warranty guarantees for vendors, and allows close
integration with flash read/write circuitry for read/write op-
erations; however, it can limit flexibility.

The recently proposed Software-Defined Flash (SDF) is a
technique to separate the FTL functionality and enable host
software to participate in flash management [13, 29, 46, 47],
with several vendors providing some form of this capabil-
ity (e.g., CNEX Labs, SanDisk/FusionlO, Radian Memory).
This approach enables optimizations across traditional sys-
tem boundaries, since it eliminates one level of indirection
(i.e., the FTL mapping). Furthermore, customized mapping
techniques that exploit application or system specific infor-
mation can provide new functionality and/or improve perfor-
mance. We exploit this same opportunity to develop our own
FTL, as described in §3.

Although our approach generalizes to other storage tech-
nologies, it is designed to leverage remap-on-write storage
devices that naturally preserve multiple versions of each key
as it is updated. We show how to build high-performance, re-
liable, low-cost, scale-out storage from these technologies.

3. SEMEL: A Replicated Multi-version
Key-Value Store

This section presents SEMEL, a replicated multi-version key-
value store that exploits precision time and remap-on-write
storage. SEMEL provides safety guarantees for ordering of
operations to individual keys (coherence). §4 shows how to
support transactional atomicity and consistency for opera-
tions on multiple keys, layered above SEMEL.

The SEMEL design targets an intra-data center client/server
storage model. The persistent memory (SSDs) reside on
storage servers. The key space is sharded among the stor-
age servers, and each shard is replicated for availability and
fault tolerance. The clients of SEMEL are application servers.
Each client has a unique ID and runs a SEMEL library that
exposes the key/value storage API and issues read and write
operations to the storage servers. The client library coordi-
nates with a global master to map each key to a data shard
and to the shard’s primary replica using standard techniques
(e.g., consistent hashing [31]). The master maintains the
shard maps based on its global view of participating servers.

The master can be implemented using standard techniques
(e.g., Apache Zookeeper [27]).

Values for each key are stored as a sequence of ver-
sions timestamped by the client that issued the write. Ver-
sions are ordered by the version number, which is a V' =
(timestamp, clientI D) tuple. The clientID induces a total
order over simultaneous writes from different clients, and
also supports linearizability (§3.3). SEMEL uses these times-
tamps to maintain a coherent view across all clients for each
key. We do not expect timestamp wraparound to be an is-
sue if we use 64-bit timestamps. Assuming ~ 100ns reso-
lution for timestamps, a 64-bit timestamp does not overflow
for nearly 60 thousand years.

The application API to SEMEL client library is defined
below. We use t.yrrent to denote a client’s view of the
current time.

¢ put(key, value): Create a new version for the given key.
e get(key) — value: Return a version with timestamp <
tcuw‘ent-

¢ delete(key): Delete all versions of the key.

The client library assigns a timestamp tcyrrent to all get
and put requests. This timestamp is used for creating a new
version V' = (teurrent, clientI D) of a key on a put request.
For a get request, SEMEL uses t.yrent to read the youngest
version with timestamp < t.yprent. MILANA (§4) extends
the SEMEL client to issue reads for a specific timestamp
other than #.y.ent as required for the transaction protocol.

3.1 Multi-version FTL with Software-Defined Flash

A standard flash FTL writes each modified page to a freshly
erased block and remaps the page (§2.2). Therefore, flash
SSDs may naturally provide multiple versions of a given key
with little additional overhead [52].

SEMEL leverages the Open-Channel SSD framework [11,
12] to extend the FTL for multi-version key-value storage. A
key-value store implemented using traditional SSDs requires
two mapping steps: Key — LBA — (PBN, Page). SDF
enables modifying the FTL to collapse this two-step transla-
tion into a single translation [26, 29, 41, 58], so that it maps
a key directly to a physical address with a single map table
access.

Mapping table: The mapping table in SEMEL SDF main-
tains multiple versions of a key as a linked list. Each ver-
sion is assigned a 64-bit create timestamp; the linked list is
sorted in descending order of create timestamps of the ver-
sions. SEMEL writes new values in a log-structured fashion
on flash. Figure 3 shows the mapping table and data layout
in SEMEL. For small key-value pairs, SEMEL packs multi-
ple pairs into a single page. The mapping table maintains
the page and the offset within the page where the version is
stored.

SEMEL SDF assumes that adequate server DRAM is
available to store the entire mapping table in main mem-

‘key 1‘ key len ‘ version 1 ‘ value len ‘ value ‘

Key 1, Version 1 Tail
Lookup table in Host DRAM

| [P Key 1, Version 2 Log order
'
i i | Key 3, Version 2
T Page 1
Head

Figure 3: Mapping Table and Data Layout in SEMEL

ory. However, if main memory usage is a concern, it can use
a two-level mapping strategy, similar to the one proposed in
DFTL [25]. For example, we could extend the design to re-
tain only frequently accessed keys in main memory, destag-
ing cold mappings to a bounded-size second-level table on
flash. This extension is future work.

Garbage collection: Keeping versions around longer than
necessary on flash-based systems may cause wasteful remap-
ping (moving) during garbage collection. Ideally we want to
balance remapping cost with the desire to provide historical
versions within a certain threshold (window size), e.g., keep
all versions that are less than 5 seconds old. The window
size can be tunable to keep older versions as needed, e.g.,
for read-only analytics workloads. SEMEL utilizes water-
marking [20], which establishes a lower bound on the client
clocks. Each client periodically broadcasts the timestamp of
its last acknowledged operation to all storage servers and
the minimum of all these timestamps is the watermark in
SEMEL. Since NTP/PTP clocks are monotonic, no client
issues a new operation with a timestamp below the water-
mark. Therefore, the garbage collection algorithm needs to
keep only the youngest write with a timestamp less than the
watermark; it is safe to discard all prior versions.

3.2 Lightweight Inconsistent Replication

Replication protocols are used in distributed storage systems
to provide fault tolerance and availability. Many systems use
consensus protocols (state-machine replication), i.e., vari-
ants of Viewstamped Replication [45] or Paxos [34]. In con-
sensus protocols, a leader drives operations in sequence to
the replicas. Consensus is expensive in part because each
operation commits only after a majority of replicas accept it,
and the ordering requirement prevents a replica from accept-
ing an operation until it has accepted all prior operations.
SEMEL uses primary/backup replication with a desig-
nated primary for each shard, and exploits tightly synchro-

nized clocks to relax the ordering requirement and commit
each update as soon as a majority of replicas receive (and
acknowledge) it. Since the replicated SEMEL operations are
timestamped writes to independent versions of independent
data items, there is no need to maintain ordering: the order-
ing is explicit in the version timestamps, which are recovered
along with the data.

TAPIR [57] is based on a similar inconsistent replica-
tion approach that decouples replication from ordering (see
4.6 for a comparison against TAPIR). Inconsistent replica-
tion reduces latency because each replica can execute and
acknowledge an unordered operation as soon as it receives
it, even if it is missing earlier operations. Such an approach
does not violate consistency after failover since all acknowl-
edged updates can be recovered if a majority of replicas are
available, and a correct ordering can be constructed based on
version numbers. We explain recovery in §4.5.

3.3 Linearizability with Global Clocks

SEMEL leverages precise clocks to enable a simple and gen-
eral timestamping approach to linearizable RPCs on objects.
RPC calls on an object execute serially at the primary for the
object’s shard. The timestamp of a write request persists with
the new object version, even across primary failover. The
version stamps allow the server to ensure idempotence for
retransmitted requests; the client ID distinguishes requests
from different clients with the same timestamp. The server
executes reads on the named version and rejects writes with
timestamps older than the current version, guaranteeing at-
most-once semantics. Thus writes execute in a serial times-
tamp order that is consistent with the real-time ordering.
SEMEL also permits snapshot reads in the past, which are
not linearizable, but they allow higher concurrency and it is
a client’s choice to use them.

SEMEL’s approach to linearizable RPC is similar in
spirit to RIFL [36], which also timestamps requests at the
client and persists a completion record containing each re-
quest’s timestamp with the object. The key difference is that
SEMEL’s request timestamps are global and synchronized
across the clients. Precise clocks enable us to simplify the
ordering protocol. For example, it becomes safe to garbage-
collect old versions and their timestamps at any time. If a
client replays a completed request after the server discards
its version, a simple timestamp comparison blocks it from
overwriting an earlier request on the same object: the client
receives a rejection for the retransmitted request (not idem-
potent), but at-most-once semantics are preserved.

SEMEL also guarantees idempotence. The watermarking
scheme (§3.1) ensures that the server retains each version
at least until the client receives a reply to the write that
created it. A client never retransmits a request for which it
has received a reply. Therefore, if a client retransmits a write
request, then the SEMEL server can always identify it as a
duplicate and repeat its earlier response.

When precision timestamps are available, ordering with
global clocks is simpler than approaches based on leases
and/or causal information [23, 36, 42]. The key tradeoff is
that clients with lagging clocks may see their requests re-
jected under contention, forcing them to retry more often.
The SEMEL approach is suitable when the expected clock
skew is less than the request cost, which is the case for oper-
ations on flash-based SSDs with PTP-based precision times-
tamps. Note that ordering with global clocks depends on low
clock skew only for performance, and not for correctness.

4. MILANA: A Transactional K-V Store

SEMEL provides a Key-Value (K-V) interface to operate on
single objects without any support for atomic updates to
multiple objects i.e., ACID transactions. This limitation is
common to many early K-V stores [15, 19, 33], because
transactions were thought to be incompatible with their scal-
ability goals. Recent work has shown that ACID transactions
can be a practical extension to these systems, and that many
application services benefit from them [6, 16].

This section shows how to use SEMEL’s timestamped val-
ues to support transactions in a software layer above SEMEL.
Our transaction system—called MILANA—supports trans-
actions that update keys in multiple shards atomically us-
ing a classical two-phase commit (2PC) protocol. MILANA
leverages SEMEL’s precision timestamps for Optimistic
Concurrency Control (OCC) [32] adapted to a client/server
setting [1]. OCC is an alternative to locking (two-phase lock-
ing or 2PL): OCC enhances concurrency relative to 2PL,
and is not prone to 2PL’s blocking and deadlocks. OCC
systems validate each transaction 7' before commit by com-
paring 1’s timestamped data accesses—1"s read set and
write set—to those of other transactions to identify any
access conflicts that violate a serializable ordering. Con-
flicting transactions are aborted and then restarted at the
client. Other client/server OCC transaction systems include
Thor [1], Centiman [20], and TAPIR [57].

MILANA benefits directly from PTP because low clock
skew reduces the incidence of false aborts in client/server
OCC [1]. For example, a false abort occurs if a late-arriving
transaction (e.g., a commit request from a client with a lag-
ging clock) conflicts with an already-committed transaction
with a later timestamp. As explained previously, PTP is par-
ticularly important for storage services based on low-latency
persistent memory, e.g., flash-based SSDs and emerging
NVM technologies. MILANA exploits PTP to improve per-
formance, but it is not required for correctness.

To implement OCC, MILANA assigns precision (PTP)
timestamps begin (tspegin) and commit (t5commat) t0 each
transaction 7' at the client; all read operations for 7' are
issued at the SEMEL layer with 1”s begin timestamp and
all write operations create a new version with 1”s commit
timestamp. MILANA also leverages SEMEL’s multi-version
flash SSD store to support snapshot reads: MILANA satisfies

T’s reads for a key K by returning a version that is current
as of 17s tspeqin, €ven if a writer has written a new version
of K with a later timestamp. This approach reduces false
conflicts and further improves concurrency and throughput.
MILANA is optimized for read-heavy workloads, which
typically dominate within a data center [5, 44]. In particular,
MILANA servers return sufficient version information to en-
able a client to perform local validation for read-only trans-
actions (§4.3). Local validation allows a read-only transac-
tion 7' to commit if and only if the values in 7”s read set are
from a consistent snapshot: each value for a key K in 1”s
read set is the youngest committed version of K with times-
tamp < Spcgin, and no key K in the read set has a prepared
version with timestamp < tSpe4ipn. Local validation ensures
a serializable transaction ordering for read-only transactions,
but it does not necessarily provide external consistency. M1-
LANA provides both serializability and external consistency
for read-write transactions, which validate on the servers.

4.1 Transaction Protocol

MILANA adds an extended transaction API to the SEMEL
primary servers, and an enhanced client library to use it. A
MILANA primary maintains a transaction table recording
the status of transactions that have prepared but for which
commits have not yet been acknowledged: updates to this
table are logged in persistent memory as they occur and are
replicated to the backup servers using the SEMEL replication
protocol. If the primary fails, a new primary recovers the
transaction table before continuing (§4.5).

MILANA uses the version stamps provided by SEMEL,
V = (timestamp,clientID). This approach provides
monotonically increasing timestamps with a total order.
We assign each transaction 1" two timestamps tSpegin and
tScommat at T’s begin and commit time respectively. 1”s
1Spegin 1 assigned to all GET (read) requests and tScommit
is assigned to all PUT (write) requests.

In addition, a MILANA primary server also maintains
in DRAM a tslatestRead’ tsprepared and tslatestComm.itted
timestamp for each active key. ¢SjqtestRead 1S SEt ON a get re-
quest iftsget > tSiatestRead- tsprepared and tSiatestCommitted
timestamps are set after a successful validation and commit,
respectively. None of these values are persisted; §4.5 ex-
plains how to recover them.

Here is the application API to the MILANA client library.
Timestamp £yren: represents the client’s local view of the
current time as given by PTP.

¢ beginTransaction(): Start a new transaction 7. Assign a
begin timestamp to T" (tSpegin = tcurrent), and initialize
an empty read and write set for 7.

e abortTransaction(): Discard the read and write set main-
tained for the current transaction and remove all state.

¢ commitTransaction() — Success / Fail: Assign commit
timestamp tScommit = teurrent fOr the current transac-

Primaries: A1, B2, C3

. Client Al1B1C1 A2B2C2 A3B3C3
Begln'
Transaction
Read A
Read B
Write A,B,C —>

Phase 1:
Prepare

1
1 1
1 1
1 1
1 1
I 1
1 1
1 1
|| Prepare A, B, C 5t
1 1
1 Phase 2: :
: Commit 1
1
| |
1 1
I 1
1
1
1
1

CommitA, B, C KL |

Rack Rack Rack

Figure 4: Two Phase Commit

tion and initiate the commit protocol, which either suc-
ceeds or fails.

¢ put(key, value): Buffer the key-value pair; add key to the
current transaction’s write set.

e get(key) — value: Return a consistent value for a key;
add key to the current transaction’s read set.

MILANA executes transactions in the usual manner for
client/server transaction systems with OCC [20, 36, 57],
following Thor [1]. As a transaction executes, it maintains
the read and write set in client memory, satisfies reads
of values in the write or read set from the cache, and
buffers all writes. To commit a read-write transaction, the
client chooses the commit timestamp from its local time
(tScommit = teurrent), and initiates and coordinates the
two-phase commit (2PC) protocol; the 2PC participants in-
clude the servers for all keys in either set. The client pushes
modified values for keys in the write set to their servers on
a commit request, and not before. Each server validates the
transaction for serializability before accepting it (§4.2).

MILANA differs from earlier systems in that its multi-
version store (SEMEL) allows it to support snapshot read-
only transactions with local validation. For any transaction
T, the client issues reads for versions that are valid at a point
in time: 7”s begin timestamp {Spegin. A MILANA client
validates and commits read-only transactions locally if it
succeeds in reading a consistent snapshot at time {Spegin

(§4.3).

4.2 Two-Phase Commit: Write Validation

Figure 4 shows an example transaction with a standard two
phase commit (2PC) protocol. On a commit request for a
read-write transaction 7, the client library initiates 2PC and
acts as the coordinator. It first sends a Prepare() request to
the primary of each participant shard, passing each primary
all keys in T”s read and write sets for shards that the primary

Algorithm 1 MILANA Primary Validation Algorithm
1: procedure VALIDATE(transaction)

2: for each (key, version) € transaction.readSet do
3: if key.prepared 7 NONE then
4: return ABORT
5: else if key.latestCommitted # version then
6: return ABORT
7: end if
8: end for
9: new Version = transaction.commitTimestamp
10: for each (key, version) € transaction.writeSet do
11: if key.prepared # NONE then
12: return ABORT
13: else if key.latestRead > new Version then
14: return ABORT
15: else if key.latestCommitted > new Version then
16: return ABORT
17: end if
18: end for

19: return SUCCESS
20: end procedure

controls. It also passes a list of other affected shards for
possible use in recovery (§4.5).

Each primary uses Algorithm 1 to validate 7’s keys. T’
fails validation if it has conflicts that violate transactional se-
rializability. It then propagates the validation decision (SUC-
CESS/ABORT) along with the write set (on successful vali-
dation) and shard list to the backup replicas, waits for f (out
of 2f) backups to respond, and then reports the decision as
its vote to the client/coordinator. If a primary votes to com-
mit 7" then T' is prepared at that primary.

The client accumulates the votes from all primaries and
determines the outcome: 7' commits if and only if all pri-
maries vote to commit, else 71" aborts. The client reports the
outcome to the application and then asynchronously notifies
all primaries of the outcome.

4.3 Local validation

As mentioned earlier, a MILANA client performs local val-
idation for read-only transactions. Local validation elimi-
nates two round trips at validation time: client to primary
and primary to backups.

As a transaction 7T runs, the client issues a read (get)
to the primary server for each key K read by 7', and sat-
isfies subsequent reads to K from its cache. The client is-
sues gets with T”s begin timestamp tspqin. On a get, the
primary returns the youngest committed version of K with
a timestamp K.tScommit < T.tSpegin, and a boolean that
indicates if there is a prepared version of K with a times-
tamp K.tSprepared < T.tSpegin. Note that K.tscommir <
K tsprepared < T.tSpegin. The primary also records the read
timestamp ?5pegin in DRAM if it is > K.tSi4testRead-

Local validation works because a MILANA primary
aborts any late-arriving transaction S that attempts to com-
mit a new value for a key K with an earlier timestamp
Stscommit < K.tSiatest Read (s€€ Algorithm 1). Therefore,

if K did not have a prepared version when it was read, then
it is guaranteed that there can be no prepared version with a
timestamp less than 7”s begin timestamp (¢5pegin). Thus the
client has all the information needed to locally validate T": it
can commit 7" if and only if none of the keys in 7"”s read set
had a prepared version at T”s read time (£5pegin)-

Local validation is aided by both SDF and PTP. SDF pro-
vides a lightweight mechanism to maintain multiple versions
of a key, thus enabling snapshot reads. PTP’s low clock skew
makes local validation practical from a performance stand-
point. For a given clock skew e, if a client with a leading
clock reads a key K, then a client with a lagging clock has
to wait up to € duration before it can commit a transaction
that updates K. For NTP, € is on the order of milliseconds,
while PTP reduces it to microseconds.

It is future work to combine local validation with aggres-
sive caching. Our current approach requires the client to no-
tify a primary as each key is added to the read set, reducing
the potential benefit from inter-transaction caching of values
at the client. In principle, clients can choose between ag-
gressive caching and local validation: any transaction 7" that
is marked as read-write in advance may read from its cache,
but then 7" must validate remotely.

4.4 Version Management

MILANA leverages SEMEL’s watermarking-based garbage
collection to manage versions and satisfy long-running read-
only transactions. Each MILANA client periodically broad-
casts the timestamp ¢4 of its latest decided (committed or
aborted) transaction to all primaries. The minimum over
the t4s becomes the watermark t,,. Since PTP time in-
creases monotonically, no client can have a transaction begin
time that is less than the watermark. Therefore, the SEMEL
garbage collector only needs to keep the youngest version
with a timestamp < ¢,, and can discard all prior versions.

Consider an active long-running read-only transaction 7’
with a begin timestamp ¢Spe4in. Then the watermark ¢, <
tSpegin. Therefore, a MILANA server retains at least the
youngest version of any key K with a timestamp < t5pcgin,
so T' can read a version from a consistent snapshot at its
tSpegin. The watermarking scheme dynamically tunes the
number of versions kept for all keys and is a function of
the duration of transactions: fewer versions are kept when
transactions are short, and the threshold increases as longer
transactions are added to the mix.

4.5 Recovery

This section describes what happens if a client or stor-
age server (e.g., a primary) fails during the process of
committing a transaction. MILANA assumes fail-stop (non-
byzantine) failures.

Client Failure. 1f the client fails during 2PC, then the par-
ticipants (primaries) time out waiting for a commit or abort
decision for a prepared transaction 7. T is blocked until its

commit/abort status is known. This situation does not affect
any transactions operating on key sets that are disjoint from
T’s read/write sets. However, the participating primaries are
forced to abort any transaction that attempts to read/write
any of the keys in 7”s read or write set, until 7’s com-
mit/abort status is known. In such a case, one of the partic-
ipating primaries is designated as a backup coordinator for
T'. The backup coordinator can use the Cooperative Termi-
nation Protocol (CTP) [9] to determine if 7" should commit.
The backup coordinator queries the other participating pri-
maries for the status of 7', and takes appropriate action. The
states are Received Commit, Received Abort, Prepared, Sent
Commit, Sent Abort and the actions can be any of the follow-
ing:

1. If any primary received a commit or abort then 7" should
be committed or aborted since the client made a decision
only after receiving a response from all the primaries.

2. If any primary did not receive a prepare request for T,
then all primaries can agree to abort 7" because the client
does not commit a transaction until it receives a response
from all primaries for its shards.

3. If any primary responded with ABORT to the prepare
request, then all primaries abort 7'.

4. If all primaries responded SUCCESS for the prepare re-
quest then the backup coordinator commits 7.

Replica Failure / Recovery. If a backup replica of a partic-
ipant shard fails during 2PC, it does not block any transac-
tion as long as a majority of replicas for a shard are available
to store transactions. However if a primary of a participant
shard fails then it would block all transactions involving that
shard. A new primary must be elected (failover) in order to
unblock any running transactions and resume service.

Distributed transactions require a protocol to ensure
atomicity and consistency of keys and shards across failures
of servers and clients. Many storage systems that provide
transactional semantics and fault tolerance use both a trans-
action protocol and a replication protocol, which enforce
a serial ordering in two places: transactions across shards
and updates among replicas. This redundancy can add la-
tency and reduce throughput. Since the transaction protocol
enforces ordering among the transactions and consequently
the updates, the replication protocol does not need to also
enforce ordering. This observation was previously exploited
to reduce write transaction latency in TAPIR [57] by allow-
ing inconsistent replication.

SEMEL and MILANA replicate using a primary-backup
approach: all the updates to a shard flow through the primary.
As aresult, the MILANA primary has the consistent view (an
up-to-date transaction table) needed to validate transactions
without involving the backups, reducing validation costs and
abort rates. Since the backups play no role in validating
or executing transactions, their only purpose is to provide

TXN 3: R,W(C)
Timestamp: t3
TXN 1: R,W(A,B) TXN 2: R,W(A,B)
Timestamp: t1 Timestamp: t2
BACKUP 1 BACKUP 2

TXN 1, TXN 3 TXN 2

TXN 3: R,W(C)
Timestamp: t3
TXN 2: R,W(A,B)
Timestamp: t2
TXN 1: R,W(A,B)
Timestamp: t1

TXN 2 TXN 1, TXN 3

PRIMARY

Figure 5: MILANA Relaxed Backup Updates

fault tolerance, as in SEMEL, and not consistency, which is
handled by the MILANA code on the primary.

Once the primary validates a transaction, it can propagate
updates and prepare records to the replicas in any order, as
long as a new primary can rebuild the transaction table dur-
ing failover. Figure 5 shows how MILANA relaxes backup
update ordering and how this can tolerate transient failures.
In this example there are three storage servers, a primary and
two backups. The primary requires only one of the two back-
ups to acknowledge a prepare and commit of a transaction.
In this case, backup 1 acknowledges prepare and commit of
transactions 1 and 3, while backup 2 acknowledges prepare
and commit of transaction 2. In another scenario, backup 1
acknowledges prepare of transactions 1,2 and 3, and backup
2 acknowledges the commit for these transactions. In both
cases, traditional replication would be forced to signal an er-
ror, and possibly abort transactions since the backups did not
receive updates in sequence order. MILANA eliminates these
scenarios by reconstructing the correct overall order during
failure recovery.

Since SEMEL does not enforce strict global ordering for
all updates during replication, therefore in MILANA the new
primary must be brought to a consistent state before it can
start servicing transaction requests. The new primary can
always reach a consistent state if there are f + 1 replicas
available (out of 2f + 1), which are needed for a majority
quorum. For f + 1 available replicas, there must always
be at least one replica that has seen any given transaction
committed or prepared by the previous primary. Therefore
the new primary has access to all the transactions and can
rebuild the data versions and transaction table by merging
the updates from all the replicas, as shown in Algorithm 2.
If a transaction prepare or commit record is not present on at
least one replica at recovery, then the previous primary could
not have obtained a majority for the operation, and therefore

Algorithm 2 MILANA Recovery Merge Algorithm

1: procedure MERGELOG(transactions, table = NULL)
2: for each T € transactions do

3: if T.status == COMMITTED then

4: table.insert(T)

5: else if T.status == PREPARED then

6: if T.participants == 1 then

7: table.insert(T)

8: else

9: decision = queryParticipant(T, participants)
10: if decision € COMMIT, PREPARED then
11: table.insert(T)
12: end if
13: end if
14: end if
15: end for
16: return table

17: end procedure

could not have acknowledged the request. In this case, 2PC
recovery restores the state of these transactions, as detailed
above (CTP).

The new primary can then apply all the successfully com-
mitted transactions without any validation. It can also ap-
ply a successfully prepared transaction that included a sin-
gle shard because that would have been committed. For a
prepared transaction involving multiple shards, the new pri-
mary must contact the primary of the other shards to deter-
mine whether the transaction committed. The transaction is
committed or aborted if any shard responds with a COMMIT
or ABORT, respectively. If all participants respond with a
prepared status then the transaction is still outstanding and
should be committed and a response sent to the client.

After creating the transaction table, the new primary
propagates the table to the backups to bring them to a consis-
tent state. It then populates t5p,epared and t8i4testCommitted
values for each key. These values can be inferred from pre-
pare requests obtained from other replicas during recovery
and from the version stamps included with each write (see
Figure 3), respectively.

The new primary cannot populate tS;4¢estread fOr keys as
these values are not persisted nor are the backups informed
about the latest read timestamp of a key while servicing a
get request. Validating new transactions without these values
can violate serializability. Consider the following scenario:
a read-only transaction 7y issues a get request for key K
with a timestamp ¢, a primary returns a version of K with
a timestamp to and 7, commits. Now a failover occurs
and a new primary allows a read-write transaction 7} to
commit that creates a new version of K with timestamp
t1 (to < t1 < to). This violates serializability because 7T,
(already committed) should have read T}’s write.

MILANA uses leases [24] to avoid this scenario. A pri-
mary in MILANA obtains a periodically renewed lease from
at least f backups to process any get request with a timestamp
< tlease- After recovery, the new primary waits for its local

clock to advance past ¢;.,se before servicing transaction re-
quests for its shard. As an optimization, we can combine this
mechanism with leases used for avoiding spurious failovers
in primary/backup based replicated state machine protocols
[40].

In all failure scenarios (client, primary, backup replica
or some combination of the three) a decision can be made
on any outstanding transaction and service can be resumed
as long as a majority of replicas (f + 1) of all shards are
available.

4.6 Comparison with TAPIR

There are some similarities between SEMEL/ MILANA and
TAPIR [57]. Like SEMEL, TAPIR is based on an inconsis-
tent replication approach that decouples replication from or-
dering for lowering write latencies. The SEMEL inconsistent
replication protocol differs from TAPIR in that SEMEL uses
primary/backup replication with a designated primary for
each shard, rather than having the client propagate the op-
eration to symmetric replicas, as in TAPIR. Both MILANA
and TAPIR build on top of inconsistent replication to pro-
vide transactional semantics and use OCC for ordering op-
erations. To reduce read latencies, TAPIR clients read data
from the nearest replica during a transaction. This approach
also helps balance the read load across replicas. In contrast,
all reads in MILANA are serviced by the primary but this re-
quirement can be relaxed for read-write transactions, which
can read data from the nearest replica and validate at the pri-
mary before commit.

Validation in TAPIR succeeds only after a majority of
replicas for each affected shard agree to validate the trans-
action. TAPIRs approach of eliminating the primary saves a
round-trip latency for each prepare. This may be a substan-
tial saving if the primary resides in a different data center,
but it requires all replicas to maintain additional state and
validate both read-only and read-write transactions. This is
less energy-efficient since additional compute and memory
resources are needed, and also consumes precious memory
/ storage bandwidth on all replicas. In contrast, MILANA
clients validate read-only transactions locally, which elim-
inates two round trips. For read-write transactions, once val-
idation on a primary is complete, the updates and prepare
records can propagate to backups in any order. Since the
backups play no role in validating transactions, their only
purpose is to provide fault tolerance: validation imposes no
memory or compute cost on the backups.

In summary, TAPIRs design is suitable for a geo-replicated
system, where eliminating the primary saves a cross-data
center round trip. In contrast, MILANA targets intra-data
center storage and its approach reduces total validation costs:
every transaction validates on a single node and not on all
replicas as in TAPIR. The tradeoff is that all read-write
transactions require an extra round trip (from primary to
backups), but no extra messages are sent.

5. Evaluation

We present preliminary results for our prototype imple-
mentations of SEMEL and MILANA. We use the Open-
Channel SSD framework [11] for our SDF implementation.
In software-only mode, the framework emulates the inter-
nals of a NVMe SSD and supports timing simulation of I/O
operations. We extend the timing-only simulation with func-
tional emulation by adding support for storing data values
and IOCTLs that provide a get, put and erase functionality
for flash blocks. We also added the capability to specify la-
tencies for read page, write page and erase block operations.
These operations are simulated by adding a timer interrupt
in the kernel and the request is acknowledged after the timer
expires.

The performance of SDF suffers due to emulation limita-
tions: crossing the kernel boundary for submitting each I/O
request and lack of batched interrupts for request comple-
tion. An open-channel compatible NVMe SSD does not suf-
fer from these limitations since the NVMe standard provides
user-space queues for submitting requests and also supports
batching interrupts to reduce overhead.

Experimental Setup: We use a set of Linux virtual ma-
chines from a single ExoGENI [7] site for both clients and
servers. The client VMs have 2 cores, clocked at 2.6 GHz
and 6 GB of DRAM. The system clocks on client servers are
synchronized using PTP software timestamping or NTP. The
storage server VMSs have 8§ cores, clocked at 2.6 GHz and 32
GB of DRAM. The cores of all storage VMs are pinned to
allocate from a specific NUMA zone on the host. Each stor-
age VM is configured with an emulated SSD, backed by 12
GB DRAM, with a hardware queue depth of 128. The SSD
has a page size of 4KB and there are 32 pages in a block. A
page read, write time is 50 ps and 100 ps respectively and
it takes 1 ms to erase a block. We use Ubuntu 14.04 with
kernel 4.6 on all VMs and our code is compiled using gcc
version 4.9 with -O3 flag enabled.

In all our experiments, we set the key size to 16B and a
(key,value,version) tuple is 512B. Although our imple-
mentation supports variable-sized keys and values, we de-
cided to use a fixed size for evaluation since it allows effi-
cient packing of data. As a flash page is 4KB in size, we
employ a packing logic in the FTL that waits for up to 1
ms (tunable) to pack data of multiple keys into a page (see
Figure 3 for data layout). We run each experiment for 15
minutes to ensure that garbage collection is running in the
background (for all runs with non-zero put request %).

5.1 SEMEL Evaluation

To elucidate the advantages of implementing multi-versioning
within the FTL, we implement a single-version generic
FTL and a separate multi-version KV store on top of a
generic FTL. This multi-version KV layer implements its
own lookup, request handling and garbage collection logic
that is separate from that of the FTL. The multi-version layer

Table 1: Single SSD Multi-version FTL Performance

Throughput Average Latency (us)

Get % | Kilo Reqs/Sec Get Put

VFTL | MFTL | VFTL | MFTL | VFTL | MFTL

100 351 456 68.1 59.9

75 295 430 363.1 62.9 568.5 | 872.8

50 217 277 516.6 70.3 673.8 | 859.0

25 215 189 435.6 71.7 659.8 | 895.8

Table 2: Retwis Configuration

Transaction Type | Num GETs | Num PUTs | Workload %
Add User 1 2 5
Follow User 2 2 10
Post Tweet 3 5 35
Get Timeline rand (1,10) 0 50

operates at 4KB granularity and uses a log-based approach
to write data to the SSD. We refer to the single-version
generic FTL as SFTL, the split multi-version layer on top of
a generic FTL as VFTL and the unified multi-version FTL
as MFTL. To ease garbage collection, SFTL, MFTL and the
multi-version KV layer in VFTL reserve 10% of available
capacity for remapping data.

We first measure the throughput and latency for KV oper-
ations by emulating a single SSD for both MFTL and VFTL.
For these experiments, we populate the device with 2 million
keys and use a micro-benchmark to issue KV requests for
varying get request percentages. Table 1 shows our results.
As expected, MFTL delivers up to 45% higher throughput,
and up to 7x lower latency compared to VFTL. For 25%
get rate, VFTL performs better since it has a lower pack-
ing delay. A key-value pair is 512B in size, thus our packing
logic waits for up to 1 ms to pack data of multiple keys (puts
or remapped keys) into a page. Since VFTL has less avail-
able space compared to MFTL (10% capacity reserved at
two levels), it performs more garbage collection, has more
data (keys) to remap and therefore, incurs less packing de-
lay. For 25% get rate, VFTL remaps 15% more data than
MFTL.

We also evaluated the performance of SEMEL in a dis-
tributed setup and the results are qualitatively similar to the
single SSD numbers.

5.2 MILANA Evaluation

We evaluate MILANA by exploring the impact of multi-
versioning and precise time on transaction abort rates. Our
first experiment evaluates the impact of multi-versioning vs.
using a single version FTL (MFTL vs. SFTL). We use a sin-
gle VM for this experiment to eliminate clock skew. The VM
hosts a storage layer and runs varying number of clients that
issue transactions to the storage layer. We populate the stor-
age layer with 2 million keys. The clients run the Retwis

SFTL (o = 0.8)
SFTL (o = 0.9)

MFTL (o = 0.8)
=¥MFTL (a0 = 0.9)

Transaction Abort Rate (%)

Number of Clients

Figure 6: Transaction abort rate for varying number of
clients

benchmark [35] with the transaction mix shown in Table 2.
Each client has one outstanding transaction and all transac-
tions are executed sequentially. We run this experiment for
varying number of clients and to simulate key-sharing, we
also vary the Retwis Contention parameter (c).

Figure 6 shows transaction abort rates versus number of
clients for a single and multi-version FTL. From the results
we see that with increased key contention, a multi-version
FTL helps reduce abort rates since tardy read-only transac-
tions are able to read from a consistent snapshot and commit
whereas these transactions are aborted on a single-version
FTL. Abort rates using VFTL are qualitatively similar to
MFTL and omitted for clarity.

To evaluate the impact of clock skew on transaction abort
rates, we use 3 storage (1 primary and 2 backups) and 5
client VMs and synchronize clocks on the client VMs us-
ing either PTP software timestamping mode or NTP. The
NTP daemon is free to choose the best master based on
NTP’s criterion (lowest jitter). We populate the storage VMs
with 2 million keys. Each client VM runs 4 independent
instances of the Retwis benchmark (20 instances in total).
Each instance executes one transaction at a time and retries
an aborted transaction with the same set of keys and without
any wait.

Figure 7 shows transaction abort rates versus the amount
of contention in the Retwis benchmarks using MILANA with
a DRAM backend, VFTL and SEMEL’s MFTL. From these
results we see that PTP provides superior performance for all
storage backends due to the tighter clock synchronization.
For NTP the DRAM backend incurs the highest abort rates,
as expected, since the faster write time requires lower clock
skew across clients. VFTL also incurs slightly higher abort
rates compared to MFTL due to lower write latency (see
Table 1). NTP shows an average skew of 1.51ms among
clients, while software timestamped PTP has average skew
of 53.2 us.

To evaluate throughput and latency, we deploy Milana
over 3 shards where each shard has 3 replicas. We populate
the system with 6 million keys and ran the Retwis workload

—+—DRAM-NTP

#-DRAM-PTP
< 100

MFTL-NTP
—MFTL-PTP

~<VFTL-NTP
-o-VFTL-PTP

80
60
40
20

Transaction Abort Rate (%

0 » — } t t } t {
0.6 0.7 0.8 0.9 1
Retwis Contention Parameter (a)

T

Figure 7: PTP vs. NTP: MILANA Transaction Abort Rates

—-DRAM MFTL —<VFTL
~DRAM w/ LV ->~MFTLw/ LV -o-VFTLw/ LV
2.5

2

Latency (ms)

0t } } } } } {
0 5000 10000 15000 20000 25000 30000
Throughput (transactions / sec)

Figure 8: Retwis Transaction Latency vs. Throughput

with 75% read-only transactions (5%, 10%, 10% and 75%
breakdown - Table 2) for an increasing number of clients. We
perform this evaluation for all 3 storage backends (DRAM,
VFTL and MFTL) and also measure the impact of local
validation (LV).

Figure 8 shows the average transaction latency vs. through-
put for the 3 storage backends. From the results we see that
MILANA with local validation is able to achieve up to 55%
higher throughput and 35% lower latency. Local validation
enables a MILANA client to independently make a commit or
abort decision for a read only transaction, without affecting
consistency. This saves two round-trip times for validation
(§ 4.3) and helps reduce transaction latency. These results
also show that MFTL achieves 15% higher throughput and
10% lower latency compared to VFTL. VFTL w/ local val-
idation achieves higher throughput than MFTL w/o local
validation, showing the importance of local validation.

5.3 Comparison of Local Validation Techniques

This experiment compares Centiman’s local validation ap-

proach [20] with that of MILANA. Centiman uses a watermark-

based technique that allows a client to locally validate a read-
only transaction, if it read a consistent snapshot of keys with
timestamp < watermark. Otherwise, a Centiman client re-
verts to remote validation. Centiman’s approach works well
for low contention scenarios. But under high contention,
more key-sharing between transactions increases the prob-

—+—Milana executed ~Centiman executed

—+-Milana committed -¥Centiman committed
17000
16000
15000
14000
13000
12000

11000 t t
0.4 0.5 0.6 0.7 0.8
Retwis Contention Parameter (a)

&

»

Throughput (txns / Sec)

Figure 9: Comparison of Local Validation Techniques

ability of a read-only transaction reading a version younger
than the watermark and failing the local validation check.
Centiman can counteract this by faster dissemination of wa-
termarks, but this increases coordination overhead.

For this experiment, we use 3 storage and 5 client VMs.
The storage VMs are used for creating 3 shards, each VM
stores data on SSD (MFTL). We populate the shards with
6 million keys. To eliminate impact on throughput, we use
the same number of validators (3) with Centiman (one per
shard) and these validators run on the storage VMs. We do
not use replication in MILANA since Centiman’s validators
do not replicate. On each client VM, we run 6 independent
instances of the Retwis benchmark (30 instances in total)
with 75% read-only transaction workload and vary « to sim-
ulate key contention. Clients disseminate watermark after
every 1,000 transactions. The clocks on client VMs are syn-
chronized using PTP software timestamping.

Figure 9 shows the results. Under low contention (o =
0.4), Centiman achieves a similar throughput as MILANA.
However, the throughput drops under increasing contention
as Centiman’s local validation check fails thereby forcing a
remote validation. Centiman locally validates 89% of read-
only transactions for & = 0.4 and this value drops to 25%
for « = 0.8. One the other hand, MILANA can perform
local validation for all read-only transactions and therefore
achieves 20% higher throughput under high contention set-
tings. Both systems observe similar abort rates.

6. Related Work

There is a long history of work exploring distributed sys-
tems, data center services and flash storage systems. This
section places our work in context relative to a subset of dis-
tributed transactional storage systems and flash-based stor-
age systems.

There are numerous client-server distributed systems,
such as key-value services; however, many of these sys-
tems lack support for updating multiple objects atomi-
cally [15, 19, 33] or restrict partitioning [6] due to the com-
plexity of supporting distributed transactions.

Thor [1] introduced loosely synchronized clocks for OCC
and performed validation on the storage servers. Our ap-
proach differs by maintaining multiple versions of a key,
which helps avoid conflicts between concurrent read and
write transactions and performs local validation at the client
for all read-only transactions.

TAPIR [57] and Spanner [16] along with some of the dif-
ferences from our work were discussed previously. A main
difference is our focus on intra data center operation vs. inter
data center. Centiman [20] uses OCC to support intra-data
center distributed transactions but validations are performed
on a different set of servers called validators. This helps in
a multi-tenant data center where different applications can
have their own validators. However this approach involves
increased coordination and suffers from limited availability
since transactions are made durable on a single client before
they are committed. It optimizes for local validation of read
only transactions using watermarks but needs remote valida-
tion under high-contention settings.

Other intra-data center systems focus on in-memory com-
putation [21, 22, 30, 36, 43, 49, 54]. RamCloud [36, 49]
is a key-value store that provides exactly once semantics
like SEMEL and transactional semantics like MILANA. How-
ever, it does not maintain multiple versions of a key. FaRM
[21, 22] is optimized for performance over RDMA, it main-
tains multiple versions of an object and supports strictly se-
rializable distributed transactions. Neither of these systems
have MILANA’s inconsistent replication.

Calvin [53] buffers transaction requests and creates a
transaction schedule from the received requests. All replicas
then execute transactions deterministically using the defined
schedule. However this approach restricts the type of trans-
actions since it needs the read and write set of a transaction
to be pre-declared in the transaction request. MILANA does
not have this requirement.

Hyder [10] uses a shared-storage made up of flash chips
to store data. Clients record transactions on the flash storage
and also broadcast their intent to all the other clients, which
allows clients to then determine if a transaction can commit.
The broadcast can be a scalability issue and our approach
differs since we allow clients or storage servers to scale in-
dependently and we try to minimize coordination wherever
possible.

Flash based KV stores have been proposed in prior
works [4, 17, 18, 39, 41]. Other systems eliminate the FTL
indirection [26, 29, 41, 50, 58]. Each of these systems
has some aspects included in SEMEL; however SEMEL dif-
fers from these works by maintaining multiple versions of
a key and providing transactional semantics for updating
multiple keys. Previous systems that maintain multiple ver-
sions [52, 55, 56] require a snapshot activation to access
prior versions. Several studies [13, 14,29, 41, 46, 47, 51, 59]
propose a cooperative hardware and software based ap-
proach to exploit the performance of non-volatile memories.

SEMEL and MILANA leverage the functionalities accorded
by these designs.

7. Conclusion

As cloud services continue to proliferate, the desire for effi-
cient and easy to use persistent storage increases. This paper
presents MILANA, a lightweight transactional system lay-
ered on top of SEMEL, a persistent multi-version key-value
storage service. We exploit precise intra-data center time
and software-defined flash to implement a distributed trans-
actional persistent key-value storage service. Precision time
enables lightweight multi-version optimistic concurrency
and simplified replication protocols. For flash-based stor-
age, MILANA can leverage software-defined flash to unify
version and flash management.

Evaluations of our prototype implementations reveal that
SEMEL achieves 20%-50% higher IOPs than a traditional
separate version and flash management approach. Further-
more, by using PTP, MILANA reduces abort rates by up to
439% over NTP for transactions with high-contention, due
to the tighter clock synchronization across servers. We also
demonstrate that MILANA’s use of local client validation re-
duces latency by 35% and increases throughput by 55%.

The trend of data centers to exhibit properties of both
tightly coupled supercomputers and loosely coupled dis-
tributed systems presents unique opportunities to re-examine
cloud service implementations. SEMEL and MILANA are ex-
amples of these new services that exploit emerging hardware
features. Future directions include examining the potential
interactions of SDF/Flash storage and PTP with RDMA and
instruction set support for hardware transactional memory,
and developing other services such as: file systems, dis-
tributed lock services, distributed shared memory for in-
memory computations, and distributed flash management.

Acknowledgements

We thank Victor Orlikowski for virtual machine support,
Matias Bjgrling for support with the Open-Channel SSD
framework, and the reviewers for their valuable time and
feedback. This work supported in part by the National Sci-
ence Foundation (CNS-1616947) and equipment donations
from Intel and Mellanox.

References

[1] Atul Adya, Robert Gruber, Barbara Liskov, and Umesh Ma-
heshwari. Efficient optimistic concurrency control using
loosely synchronized clocks. In Proceedings of the 1995 ACM
SIGMOD International Conference on Management of Data,
SIGMOD ’95, pages 23-34. ACM, 1995.

[2] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D.
Davis, Mark Manasse, and Rina Panigrahy. Design tradeoffs
for ssd performance. In USENIX 2008 Annual Technical Con-
ference, ATC’08, pages 57-70. USENIX Association, 2008.

[3] Mohammad Al-Fares, Alexander Loukissas, and Amin Vah-
dat. A scalable, commodity data center network architec-
ture. In Proceedings of the ACM SIGCOMM 2008 Conference
on Data Communication, SIGCOMM ’08, pages 63—74, New
York, NY, USA, 2008. ACM.

[4

—

David G. Andersen, Jason Franklin, Michael Kaminsky, Amar
Phanishayee, Lawrence Tan, and Vijay Vasudevan. Fawn:
A fast array of wimpy nodes. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles,
SOSP ’09, pages 1-14. ACM, 2009.

[5

—

Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang,
and Mike Paleczny. Workload analysis of a large-scale key-
value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on
Measurement and Modeling of Computer Systems, SIGMET-
RICS 12, pages 53-64, New York, NY, USA, 2012. ACM.

[6] Jason Baker, Chris Bond, James C Corbett, JJ Furman, An-
drey Khorlin, James Larson, Jean-Michel Leon, Yawei Li,
Alexander Lloyd, and Vadim Yushprakh. Megastore: Provid-
ing scalable, highly available storage for interactive services.
In CIDR, volume 11, pages 223-234, 2011.

Ilya Baldin, Jeff Chase, Yufeng Xin, Anirban Mandal, Paul
Ruth, Claris Castillo, Victor Orlikowski, Chris Heermann, and
Jonathan Mills. ExoGENI: A Multi-Domain Infrastructure-
as-a-Service Testbed, pages 279-315. Springer International
Publishing, Cham, 2016.

[7

—

[8

—

Philip A. Bernstein and Nathan Goodman. Multiversion con-
currency control - theory and algorithms. ACM Transactions
on Database Systems, 8(4):465-483, December 1983.

[9

—

Philip A. Bernstein, Vassco Hadzilacos, and Nathan Good-
man. Concurrency Control and Recovery in Database Sys-
tems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1987.

[10] Philip A. Bernstein, Colin W. Reid, and Sudipto Das. Hyder
- A transactional record manager for shared flash. In CIDR
2011, Fifth Biennial Conference on Innovative Data Systems
Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings, pages 9-20, 2011.

[11] Matias Bjgrling, Javier Gonzédlez, and Philippe Bonnet.
Lightnvm: The linux open-channel ssd subsystem. In
15th USENIX Conference on File and Storage Technologies
(FAST). USENIX, 2017.

[12] Matias Bjrling. Operating System Support for High-
Performance Solid State Drives. PhD thesis, Denmark, 2016.

[13] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner,
Arup De, Joel Coburn, and Steven Swanson. Providing safe,
user space access to fast, solid state disks. In Proceedings
of the Seventeenth International Conference on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS XVII, pages 387-400, New York, NY, USA, 2012.
ACM.

[14] Joel Coburn, Trevor Bunker, Meir Schwarz, Rajesh Gupta,
and Steven Swanson. From aries to mars: Transaction sup-
port for next-generation, solid-state drives. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems

Principles, SOSP *13, pages 197-212, New York, NY, USA,
2013. ACM.

[15] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,
Adam Silberstein, Philip Bohannon, Hans-Arno Jacobsen,
Nick Puz, Daniel Weaver, and Ramana Yerneni. Pnuts: Ya-
hoo!’s hosted data serving platform. Proc. VLDB Endow.,
1(2):1277-1288, August 2008.

[16] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew
Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat, An-
drey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean
Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal
Szymaniak, Christopher Taylor, Ruth Wang, and Dale Wood-
ford. Spanner: Google’s globally-distributed database. In Pro-
ceedings of the 10th USENIX Conference on Operating Sys-
tems Design and Implementation, OSDI’12, pages 251-264.
USENIX Association, 2012.

[17] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flashstore:
High throughput persistent key-value store. Proc. VLDB En-
dow., 3(1-2):1414-1425, September 2010.

[18] Biplob Debnath, Sudipta Sengupta, and Jin Li. Skimpystash:
Ram space skimpy key-value store on flash-based storage. In
Proceedings of the 2011 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’11, pages 25-36.
ACM, 2011.

[19] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gu-
navardhan Kakulapati, Avinash Lakshman, Alex Pilchin,
Swaminathan Sivasubramanian, Peter Vosshall, and Werner
Vogels. Dynamo: Amazon’s highly available key-value store.
In Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, SOSP 07, pages 205-220.
ACM, 2007.

[20] Bailu Ding, Lucja Kot, Alan Demers, and Johannes Gehrke.
Centiman: Elastic, high performance optimistic concurrency
control by watermarking. In Proceedings of the Sixth ACM
Symposium on Cloud Computing, SOCC ’15, pages 262-275.
ACM, 2015.

[21] Aleksandar Dragojevi¢, Dushyanth Narayanan, Orion Hod-
son, and Miguel Castro. Farm: Fast remote memory. In Pro-
ceedings of the 11th USENIX Conference on Networked Sys-
tems Design and Implementation, NSDI’ 14, pages 401414,
Berkeley, CA, USA, 2014. USENIX Association.

[22] Aleksandar Dragojevi¢, Dushyanth Narayanan, Edmund B.
Nightingale, Matthew Renzelmann, Alex Shamis, Anirudh
Badam, and Miguel Castro. No compromises: Distributed
transactions with consistency, availability, and performance.
In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP 15, pages 54-70, New York, NY, USA,
2015. ACM.

[23] C.J. Fidge. Timestamps in message-passing systems that pre-
serve the partial ordering. Proceedings of the 11th Australian
Computer Science Conference, 10(1):5666, 1988.

[24] C. Gray and D. Cheriton. Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. In Proceed-
ings of the Twelfth ACM Symposium on Operating Systems

Principles, SOSP 89, pages 202-210, New York, NY, USA,
1989. ACM.

[25] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. Dftl:
A flash translation layer employing demand-based selective
caching of page-level address mappings. In Proceedings of the
14th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
X1V, pages 229-240, New York, NY, USA, 2009. ACM.

[26] Jian Huang, Anirudh Badam, Moinuddin K. Qureshi, and
Karsten Schwan. Unified address translation for memory-
mapped ssds with flashmap. In Proceedings of the 42Nd
Annual International Symposium on Computer Architecture,
ISCA 15, pages 580-591. ACM, 2015.

[27] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Ben-
jamin Reed. Zookeeper: Wait-free coordination for internet-
scale systems. In Proceedings of the 2010 USENIX Con-
ference on USENIX Annual Technical Conference, USENIX-
ATC’10, pages 11-11. USENIX Association, 2010.

[28] IEEE. Ieee standard for a precision clock synchronization
protocol for networked measurement and control systems.
IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002), pages
1-269, 2008.

[29] William K. Josephson, Lars A. Bongo, Kai Li, and David
Flynn. Dfs: A file system for virtualized flash storage. Trans.
Storage, 6(3):14:1-14:25, September 2010.

[30] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Us-
ing rdma efficiently for key-value services. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM 14,
pages 295-306, New York, NY, USA, 2014. ACM.

[31] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy,
Matthew Levine, and Daniel Lewin. Consistent hashing
and random trees: Distributed caching protocols for reliev-
ing hot spots on the world wide web. In Proceedings of the
Twenty-ninth Annual ACM Symposium on Theory of Comput-
ing, STOC *97, pages 654-663, New York, NY, USA, 1997.
ACM.

[32] H. T. Kung and John T. Robinson. On optimistic methods
for concurrency control. ACM Transactions on Database
Systems, 6(2):213-226, June 1981.

[33] Avinash Lakshman and Prashant Malik. Cassandra: A decen-
tralized structured storage system. SIGOPS Operating Sys-
tems Review, 44(2):35-40, April 2010.

[34] Leslie Lamport. Paxos made simple. ACM Sigact News,
32(4):18-25, 2001.

[35] Costin Leau. Spring data redis retwis-j, 2013. http:
//docs.spring.io/spring-data/data-keyvalue/
examples/retwisj/current/.

[36] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita,
and John Ousterhout. Implementing linearizability at large
scale and low latency. In Proceedings of the 25th Symposium
on Operating Systems Principles, SOSP °15, pages 71-86,
New York, NY, USA, 2015. ACM.

[37] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weath-
erspoon. Globally synchronized time via datacenter networks.
In To appear in Proceedings of ACM SIGCOMM, August
2016.

[38] Charles E. Leiserson. Fat-trees: Universal networks for
hardware-efficient supercomputing. [EEE Trans. Comput.,
34(10):892-901, October 1985.

[39] Hyeontack Lim, Bin Fan, David G. Andersen, and Michael
Kaminsky. Silt: A memory-efficient, high-performance key-
value store. In Proceedings of the Twenty-Third ACM Sympo-
sium on Operating Systems Principles, SOSP ’11, pages 1-13.
ACM, 2011.

[40] Barbara Liskov and James Cowling. Viewstamped replication
revisited. Technical Report MIT-CSAIL-TR-2012-021, MIT,
July 2012.

[41] Leonardo Marmol, Swaminathan Sundararaman, Nisha Ta-
lagala, Raju Rangaswami, Sushma Devendrappa, Bharath
Ramsundar, and Sriram Ganesan. Nvmkv: A scalable and
lightweight flash aware key-value store. In 6th USENIX Work-
shop on Hot Topics in Storage and File Systems (HotStorage
14), Philadelphia, PA, June 2014. USENIX Association.

[42] Friedemann Mattern. Virtual time and global states of dis-
tributed systems. In Parallel and Distributed Algorithms,
pages 215-226. North-Holland, 1989.

[43] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using
one-sided rdma reads to build a fast, cpu-efficient key-value
store. In Proceedings of the 2013 USENIX Conference on
Annual Technical Conference, USENIX ATC’13, pages 103—
114, Berkeley, CA, USA, 2013. USENIX Association.

[44] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scaling
memcache at facebook. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 385-398, Lombard, IL,
2013. USENIX.

[45] Brian M. Oki and Barbara H. Liskov. Viewstamped replica-
tion: A new primary copy method to support highly-available
distributed systems. In Proceedings of the Seventh Annual
ACM Symposium on Principles of Distributed Computing,
PODC ’88, pages 8—17. ACM, 1988.

[46] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong
Wang, and Yuanzheng Wang. SDF: Software-defined Flash
for Web-scale Internet Storage Systems. In Proceedings of the
19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
"14, pages 471-484, New York, NY, USA, 2014. ACM.

[47] Xiangyong Ouyang, David Nellans, Robert Wipfel, David
Flynn, and Dhabaleswar K. Panda. Beyond block i/o: Re-
thinking traditional storage primitives. In Proceedings of the
2011 IEEE 17th International Symposium on High Perfor-
mance Computer Architecture, HPCA 11, pages 301-311,
Washington, DC, USA, 2011. IEEE Computer Society.

[48] Vijayan Prabhakaran, Thomas L. Rodeheffer, and Lidong
Zhou. Transactional flash. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementa-
tion, OSDI’08, pages 147-160, Berkeley, CA, USA, 2008.
USENIX Association.

[49]

(501

(51]

[52]

(53]

[54]

Stephen M. Rumble, Ankita Kejriwal, and John Ousterhout.
Log-structured memory for dram-based storage. In Pro-
ceedings of the 12th USENIX Conference on File and Stor-
age Technologies, FAST’ 14, pages 1-16, Berkeley, CA, USA,
2014. USENIX Association.

Mohit Saxena, Michael M. Swift, and Yiying Zhang.
Flashtier: A lightweight, consistent and durable storage cache.
In Proceedings of the 7th ACM European Conference on Com-

puter Systems, EuroSys "12, pages 267-280. ACM, 2012.

Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran,
Trevor Bunker, Arup De, Yanqin Jin, Yang Liu, and Steven
Swanson. Willow: A user-programmable ssd. In Proceedings
of the 11th USENIX Conference on Operating Systems Design
and Implementation, OSDI’ 14, pages 67-80, Berkeley, CA,
USA, 2014. USENIX Association.

Sriram Subramanian, Swaminathan Sundararaman, Nisha Ta-
lagala, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-
Dusseau. Snapshots in a flash with iosnap. In Proceedings
of the Ninth European Conference on Computer Systems, Eu-
roSys ’ 14, pages 23:1-23:14. ACM, 2014.

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng,
Kun Ren, Philip Shao, and Daniel J. Abadi. Calvin: Fast dis-
tributed transactions for partitioned database systems. In Pro-
ceedings of the 2012 ACM SIGMOD International Conference
on Management of Data, SIGMOD 12, pages 1-12. ACM,
2012.

Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo
Chen. Fast in-memory transaction processing using rdma and
htm. In Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP °15, pages 87-104, New York, NY,

[55]

[56]

(571

(58]

[59]

USA, 2015. ACM.

Zev Weiss, Sriram Subramanian, Swaminathan Sundarara-
man, Vinay Sridhar, Nisha Talagala, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. MjOlnir: Collect-
ing trash in a demanding new world. In Proceedings of the
3rd Workshop on Interactions of NVM/FLASH with Operat-
ing Systems and Workloads, INFLOW ’15, pages 4:1-4:10.
ACM, 2015.

Zev Weiss, Sriram Subramanian, Swaminathan Sundarara-
man, Nisha Talagala, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. Anvil: Advanced virtualization for
modern non-volatile memory devices. In Proceedings of the
13th USENIX Conference on File and Storage Technologies,
FAST’ 15, pages 111-118. USENIX Association, 2015.

Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind
Krishnamurthy, and Dan R. K. Ports. Building consistent
transactions with inconsistent replication. In Proceedings of
the 25th Symposium on Operating Systems Principles, SOSP
’15, pages 263-278. ACM, 2015.

Yiying Zhang, Leo Prasath Arulraj, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. De-indirection for
flash-based ssds with nameless writes. In Proceedings of the
10th USENIX Conference on File and Storage Technologies,
FAST’12, pages 1-1. USENIX Association, 2012.

Yiying Zhang, Jian Yang, Amirsaman Memaripour, and
Steven Swanson. Mojim: A reliable and highly-available non-
volatile memory system. In Proceedings of the Twentieth
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS 15,
pages 3—18, New York, NY, USA, 2015. ACM.

