
Mechanisms for Cooperative Shared Memory*

David A. Wood, Satish Chandra, Babak Falaafi, Mark D. Hill, James R. Larus,

Alvin R. Lebeck, James C. Lewis, Shubhendu S. Mukherjee, Subbarao Palacharla, Steven K. Reinhardt

wwt@cs.wise.edu

Computer Sciences Department

University of Wisconsin-Mad~n

1210 Weat Dayton Street

Madison, WI 53706 USA

Abstract

This paper explores the complexity of implementing

directory protocols by examining their mechanisms—

primitive operations on directories, caches, and net-

work interfaces. We compare the following protocols:

DirlB, Dir4B, Dir4NB, DirnNB [2], DirlS W [9] and

an improved version of Din S W (Dirl S W +). The

comparison shows that the mechanisms and mecha-

nism sequencing of Dirl S W and Din S W+ are simpler

than those for other protocols,

We also compare protocol performance by running
eight benchmarks on 32 processor systems. Simula-
tions show that Dirl S W+’s performance is compara-
ble to more complex directory protocols. The signifi-

cant disparity in hardware complexity and the small

difference in performance argue that Din S W + may

be a more effective use of resources. The small per-

formance difference is attributable to two factors: the

low degree of sharing in the benchmarks and Check-

In/Check-Out (CICO) directives [9].

Keywords: Shared-memory multiprocessors,

memory systems, cache coherence, directory proto-

cols, and hardware mechanisms.

*This work is supported in part by NSF PYI Awarda CCF&
9157366 and MIPS-8957278, NSF Grant CCFL9101O35, Univ.
of Wisconsin Graduate School Grant, Wisconsin Alunmi R.s-
search Foundation Fellowship and donations from A.T.&T.
Bell Laboratories and Digital Equipment Corporation. Our
Thinking Machines CM-5 was purchased through NSF Institu-
tional Infrastmcture Grant No. CDA-9024618 with matching
funding fkom the Univ. of Wisconsin Graduate School.

1 Introduction

Directory protocols are a technique used to imple-

ment cache coherence on large-scale shared-memory
parallel computers [2]. Directory protocols logically

associate a directory entry with each aligned block in

main memory. This entry records that the block is

idle (no cached copies), one writable copy exists, or

one or more read-only copies exist. We only consider

writ~invalidate protocols that invalidate outstanding

copies of a block in other processors when a proces-
sor wishes to write into it. To facilitate invalidations,
each directory entry also contains logical pointers to

some or all of the processor(s) that hold copies of

the block. Agarwal et al. [2] use the notation Dir~B

to denote protocols that explicitly record the i pro-

cessors that share a block and rely on broadcasts to

invalidate more than i processors. DiriNB denotes

protocols that avoid broadcast by preventing more

than i processors from sharing a block.

We examine Dir*NB, Dir4B, Dir4NB, DirlB,

DirlS W, and Dirl S W+. The Stanford DASH project

and IEEE Scalable Coherent Interface (SCI) imple-

ment Dirn NB [13, 8]. DASH usea a bit vector point-

ing to a maximum of 16 clusters, while SCI uses a

linked-list whose head is stored in the directory and

other list elements are associated with blocks in a

maximum of 64K processor caches.

Dir4B and Dir4NB were inspired by empirical

data suggesting that, in many sharing patterns, the

number of readers is lower than four, regardless of the
system size [17]. MIT Alewife’s [4] LimitLESS direc-

tory contains four hardware pointera and uses soft-

ware to record additional pointers. LimitLESS’s soft-

ware can implement Dir4B, Dir4 NB, Dirn NB, and

other alternatives.

DiqB, and our protocols, DirlS W and DirI S W+,

record only one writer or reader. The limited state

reduces implementation complexity, but can cause
many broadcasts. Dim SW [9] (reviewed in Section 2)

0884-7495/93 $3.00 @ 1993 IEEE
156

and Dirl SW + (introduced in Section 3.6.3) count

the readers so they can return the directory to idle

when all readers return the block, thereby avoiding

an unnecessary broadcast. Programmers or compilers

can also produce more desirable sharing patterns by

reasoning about the shared-memory communication

in a program with the Check-In/C’heck-Out (CICO)

programming model. Furthermore, CICO primitives

also serve aa memory system directives that improve

performance. We review this approach—cooperative

shared memory--in Section 2 [9].

Many directory protocols are complex and require

considerable hardware, which reduces the attractive-

ness of shared-memory machines. A directory proto-

col policy describes its response to program events,

such as loads and stores, and the interactions among

directories and caches on different processors. At the

next lower level of abstraction, these policies are im-

plemented with mechanisms-operations on direct~

ries, caches, and network interfaces-such as updat-
ing a directory pointer, replacing a cache block, and

sending a point-to-point message. Describing a direc-
tory protocol at the mechanism level exposes dispar-
ities in protocol complexity that are not apparent at

the policy level. Most protocols, for example, have

policy transitions from many readers to one writer

and from one writer to another writer. The shared-

exclusive transition is more complex to implement

than the exclusive-exclusive transition. The differ-

ence becomes clear at the mechanism level. Most

systems synthesize the shared-exclusive transition by
sending a sequence of invalidate and acknowledge-

ment messages. An implementation must (a) se-

quence through a large number of message sends,

(b) count the acknowledgements, (c). ensure concur-

rent requests to the same directory entry are serial-

ized, and (d) guarantee that the interaction of these

messages with messages for the node’s processor,

cache, and other directory entries cannot cause net-

work deadlock. On the other hand, for an exclusive-

exclusive transition, the directory only sends a single

invalidation, which greatly simplifies these consider-
ations.

The first contribution of this paper is to explore

the complexity of DirlB, DiraB, DirGNB, Dirn NB

[2], and DirIS W [9] at the mechanism level of ab-

straction (Section 3). The mechanisms and mech-

anism sequencing of Dirl S W are significantly sim-

pler than these other protocols because the shared-t-

exclusive transition is not handled by hardware (MIT

LimitLESS is more complex that DirlS W, but much
simpler than the other protocols). Dirl SW’s mecha-

nisms can also be used to implement a protocol with

higher performance. We call the best extended pro-

tocol Dirl S W+.

However, this comparison is an academic exer-

cise if simpler protocols perform poorly. Several pa-

pers have examined directory protocol performance.

Agarwal et al. [2] presented event counts for four-

processor VAX traces less than two million instruc-

tions long (half-million per processor). Weber and

Gupta [17] used five benchmarks, more processors
(up to 16), and longer traces (4 million instruc-

tions). A major contribution of their paper is a
classification of shared objects (into read-only, mi-
gratory, synchronization, mostly-read, and frequently

read/written). In addition, for migratory data, they

suggested flushing data from a cache. Their sec-

ond paper [7] switched to the MIPS architecture,

ran the applications to completion (up to 2-48 mil-

lion references—instruction counts not given), and

extended results to 32 processors. This change may

be due to longer traces and different synchronization

assumptions. Lenoski et al. [13] presented speedup
measurements from the Stanford DASH prototype

running three applications. Since prototypes of other
directory systems were unavailable, the paper could
not compare DASH against alternatives. Chaiken [5]

compared LimitLESS against DirdNB and Dir~ NB,

using several applications on 16 and 64 processors

with 7 to 30 million references per application. His

principal result was that LimitLESS’s performance

is comparable to Dim NB and better than Dir4NB

(even though he assumes read-only data is handled

separately). Hill et al. [9] measured the performance
of Dirl S W by recording event counts, but did not

compare their results with other protocols.

The second contribution of this paper is a compar-

ison of directory protocol performance that extends

previous work in three ways (Section 4). First, our

results come from executing billions, not millions, of

instructions. Second, we evaluate performance with

execution time, not event counts. Third, we present

results for Dirl B, Dir4NB, Dir4B, Dim NB, Dirl S W,

and Dirl S W + together. Our simulations show that

DirlS W +‘s performance is similar to more complex

directory protocols for seven of eight benchmarks on

a system of 32 processors (Dim NB preforms better on

mp%i due to unscalable, unsynchronized sharing). If

this result holds for other applications and larger sys-

tems, the significant disparity in hardware complex-

ity and the small difference in performance argue that

DirlS W + may be a more effective use of resources.

The small performance difference between Dirl S W+

and the more complex protocols is attributable to two
factors. First, as Weber and Gupta’s measurements

show, the number of outstanding shared copies is typ-

ically close to one and rarely much greater [17]. This

157

small amount of sharing means that directory pro-

tocols that track many outstanding copies provide

functionality that is not fully utilized and their ad-
ditional hardware rarely improves performance. Sec-
ond, CICO memory system directives reduce sharing
even further.

After the principal results in Sections 3 and 4, Sec-

tion 5 discusses the implication of technology trends

Ms@8_X
M~Ge_S [(w+]

Msg_Put [ctr-]

Ms@e_S

and directions for future work, while Section 6 draws
Figure 1: Base DirlSW Protocol

conclusions.

2 CICO and Dirl S W

This section reviews cooperative shared memory,
CICO and Dim S W, originally presented in Hill et al.
[9]. The Check-In/Check-Out (CICO) programming
performance model allows a programmer both (1) to

reason about the communications caused by shared-

memory references and (2) to pass performance di-

rectives to the memory system. Neither the program-

ming model or the directives are specific to DirI S W.

Elsewhere, we demonstrate that the annotations can

be used to improve program performance by increas-

ing cache reuse and reducing program sharing [12].

This paper examines the effect on directory protocol

behavior of using CICO annotations as memory sys-

tem directives. We do not discuss the cooperative

prefetch mechanism.

In CICO, programmers bracket uses of shared data

with a checkout annotation markhg the expected

first use and a checkin annotation terminating the

expected use of the data. In programs conforming

to the model, processors coordinate access to exclu-

sive (writable) cache blocks to avoid expensive invali-

dates. The primary effect of using CICO annotations

as memory system directives is to have checkin)s

flush cache blocks back to memory.

The base DirlS W protocol associates two state

bits, a trap bit, and a pointer/counter with each

block in memory. A directory entry can be in one

of three states: Dir-X, DirS, and Dirldle. State

DirX implies that the directory has given an exclu-

sive copy of the block to the processor pointed to by
the pointer/counter. State Dir= implies that the di-
rectory has given out N shared copies, where N is
the number in the pointer/counter. State Di.r_Idle
implies that the directory owns the only valid copy of

the block.

Figure 1 illustrates state transitions for the base

DZ?I SW protocol. Msg.GetX (Msg_Get-!3, respec-
tively) is a message to the directory requesting an ex-

clusive (shared) copy of a block. HsgYut is a message

relinquishing a copy. Processors send a ltsg_Get X

(l!sg-Get~) message when a local program references
a block that is not in the local cache or performs an
explicit checkmut. In the common case, a directory
responds by sending the data. A processor sends a
Itsg&ut message on an explicit checkin or a cache
replacement of the block.

Several state transitions in Figure 1 set a trap bit

and trap to a software trap handler running on the

dhectory processor (not the requesting processor), as

in MIT LimitLESS [4]. The trap bit serializes traps

from multiple references to a block. The software trap

handler reads directory entries from the hardware and
sends explicit messages to other processors to com-

plete the request that trapped and then restarts the

program that faulted. maps only occur on memory

accesses that violate the CICO model. Thus, pro-

grams conforming to this model run at full hardware

speed. Traps on blocks in state DirJ interact with

one processor, while traps in state Di r~ must broad-

cast to recall all read-only copies. While broadcast

cannot be used in infinitely large systems, it is ac-

ceptable in finite systems if the frequency of broad-

cast times the cost of the broadcast is small.

3 Directory Mechanisms

The hardware baee of cache-coherent shared memory

is similar to a message-passing machine. Each pro-

cessor node contains a microprocessor, a cache, and

a memory module. Nodes are connected with a fast

point-to-point network. Shared memory differs be-
cause each memory module is addressed in a global
address space and each processor node contains ad-

ditional hardware to implement a directory protocol.
Moreover, many directory protocols are complex and

require considerable hardware, which reduces the at-
tractiveness of shared-memory machines.

A directory protocol can be decomposed into

three levels of abstraction. Policy describes its
response to program events, such as loads and

stores, and the interactions among directories and

caches on different processors. At the next lower

158

level of abstraction, policies are implemented with

mechanisms-operations on directories, caches, and

network interfaces—such as updating a directory
pointer, replacing a cache block, and sending a point-

t~point message. Mechanisms are further decom-

posed into primitive operations on a particular hard-

ware implementation, which is the lowest level of ab-

straction. For example, Dirl S W requires a mech-

anism to increment the directory’s pointer/counter
and has a policy to increment this counter on a

Msg.Get3 message that finds a block in state Dir&i.

This mechanism may, in turn, be implemented as

an atomic sequence of primitive hardware operations

that read, add one to, and write the counter.

Policy and mechanisms can be implemented in ei-

ther hardware or software. Most directory protocols

implement both policy and mechanisms in hardware.

However, both LimitLESS [4] and DirlS W [9] imple-

ment policy with a combination of software and hard-

ware.

Previous work has concentrated on developing new

protocols, that is, policies. This section focuses,

instead, on the mechanisms required to implement

these protocols. Describing a directory protocol at

the mechanism level exposes disparities in protocol

complexity that are not apparent at the policy level.

Most protocols, for example, have policy transitions

from many readers to one writer and from one writer

to another. When examined at the mechanism level,

the shared-exclusive transition is clearly harder to im-

plement than the exclusive-exclusive transition. Most

systems synthesize the shared-exclusive transition by
sending a sequence of invalidate and acknowledge-

ment messages. An implementation must (a) se-

quence through a large number of message sends,

(b) count the acknowledgements, (c) ensure concur-

rent requests to the same directory entry are serial-

ized, and (d) guarantee that the interaction of these

messages with messages for the node’s processor,

cache, and other directory entries cannot cause net-

work deadlock. On the other hand, for an exclusive-

exclusive transition, the directory only sends a single

invalidation, which greatly simplifies these consider-
ations. By examining protocols’ mechanisms, we can

compare the cost and complexity of implementing dif-
ferent protocols and explore the appropriate bound-

ary between hardware and software.

3.1 Message-Passing Hardware

All parallel machines provide message-passing mech-
anisms. Message-passing machines, such as the Intel
Paragon, simply expose these mechanisms directly to

the programmer. Shared-memory machines, such as

Stanford DASH and the Kendell Square KSR1, use

these mechanisms to implement shared memory but
hide the underlying mechanisms from the program-

mer. We believe that future shared-memory systems

will expose the underlying message passing, as done in

MIT Alewife [4]. Some statically-partitionable codes

achieve maximum performance through explicit mes-

sage passing. Agarwal, et al., have demonstrated that

other codes achieve better performance with a com-
bination of shared-memory and message-passing than

by using one or the other alone [11].

Consequently, we assume bsse hardware includes

support to explicitly send and receive messages. Mes-

sages contain a 4-bit message type and are sent to an

explicitly-specified destination node p. The messages

are large enough to contain at least one cache block

and an address. The network interface is memory-

mapped and resides on the memory bus. A limited

DMA capability allows contiguous data to be fetched

(stored) directly from (to) memory. When a message

arrives at a destination node, it can either wait for an

explicit receive operation (i.e., polling) or interrupt

the processor and invoke a software trap handler.

The network interface and routers constitute a sig-

nificant fraction of a parallel machine’s design. Our

focus in this paper is supporting shared memory with-

out greatly increasing the overall design effort.

3.2 General Directory Mechanisms

This section identifies the primary directory mecha-

nisms needed to implement other protocols: DiriB,

Diri NB, and DirfllVl? (collectively called DiriX).

Rather than formally describing the protocols, we ab-

stract these mechanisms from several recently pro-

posed machines that use these protocols or minor

variants of them. Where the published literature

lacks details, we made reasonable design choices. We

also concentrate exclusively on directory mechanisms

since these protocols require identical cache mecha-

nisms.

The DiriX directory protocols require numerous
additions to the underlying message-passing mecha-

nisms, as Table 1 illustrates. The fundamental change
is that some messages, based on the message type, in-

voke directory operations. The basic directory mech-

anisms are:

1. Send a single point-to-point message from a di-

rectory controller to a processor cache controller.

2. Read/write a pointer field.

3. Increment/decrement/zero a counter.

4. Test for counter equal to zero.

159

MsgP DiriX Dm s w Mechanisms

Message Receive

● ● ● poll

● ● ● interrupt

● ● directory

Meazage Send

● ● ● explicit send

c ● implicit send

● ● ● dezt = P

● ● dest = PTR

i (NB) 1 max. messages

I n’ (Bj I I
I Update State

I ● I ● I new-tate

I Update PTR/CTR

● ● Op = Incr

● ● op = Deer

● ● OD= Zero

I ● I c I = Set

I Tczt PTR/C%

I ● I 4

I
CTR = O

● PTR = p

● PTR is valid

I Sequence through PTR/CTR

● test

● update

● send

i < n (NB) Select victim for replacement

Daecriptlon

Wait for procezsor to poll for massage
Interrupt processor and invoke software trap handler

Invoke directorv oDeration

Send message to processor

Memory mapped interface for explicit sends

Integrated support for directory controller

Send message to node p
Send message to node in pointer/counter

Maximum messages sent in response to single message

Update directory state field with new value

New state value

Update directory entry pointer/counter

Increment counter by one

Decrement counter by one

Reset counter to zero

Set pointer to source node id

Test if counter equals O

Test if pointer points to node p

Test if field contains a valid pornter

Sequence through pointer/counter fields

Test pointer/counter field”

Update pointer/counter field

Send message to node in pointer field

Select pointer field to be invalidated

Table 1: Mechanisms Summary

This table summarizes the mechanisms need for underlyingmezzag-passing hardware (MsgP), the general directory protocols DiTiX,
and our protocol Dim SW. The parameters for each mechanism are listed below it. A ● in the appropriate column indicates when a

particular protocol requires a mechanism. A directory is invoked in response to a message originating at a processor cache controller

(possibly the local one).

When DiriX protocols send invalidation messages,

they must keep track of acknowledgements in order

to maintain sequential consistency (or weaker mod-

els). Although a counter is not strictly required (one
could invalidate a pointer at each acknowledgement

and teat for no valid pointers), a counter is far easier

to implement.

In general, DiriX protocols also need the following

mechanisms:

1. Identify valid pointer fields.

2. Compare pointer fields against a node ID.

3. Sequence through the pointera.

Diri NB protocols, i < n, use a replacement policy
to select a victim when the i + 1st shared copy is
requested. This policy, in turn, requires an additional

mechanism.

The mechanisms for DirnNJ3 protocols are slightly

different because they can employ bit vectors instead

of explicit pointers.

1.

2.

Decode node ID and test/set/clear bit in vector.

Sequence through bit vector.

All DiriX protocols for i > 1 require the ability
to sequence through either a set of pointers or a bit

vector and send multiple invalidations.

3.3 Dhy S W Mechanisms

The Din SW column of Table 1 lists the subset of di-
rectory mechanisms required by DiQ S W. Diq S W re-

quires mechanisms to update state, send a single mes-
sage, and test and update a single pointer/counter
field. However, because Din SW has only a single

pointer/counter field, it does not need the sequenc-

ing logic used by DiriX (i > 1). Similarly, Dirl S W

sends at most one message in response to an incoming

request; protocol transitions requiring multiple mes-

sages are handled by software.

1s0

3.4 Design Cost

In our view, the ultimate measure of directory pro-

tocol complexity is design cost—how long a protocol

takes to implement. Unfortunately, differences in de-

sign teams, tools, and project goals prevent any con-

crete comparison of design cost.

For this resson, this section considers indirect mea-

sures of design cost that arise from sequencing direc-

tory mechanisms. A key goal of Dirl S W was to re-

duce the cost and complexity of shared-memory hard-

ware by using a protocol where the most frequent

policy transitions can be implemented with simple,

short sequences of mechanisms (e.g., a single invali-

date message). More complex sequencing—involving

many messages—is done by system software (trap

handlers). Avoiding complex hardware sequencing

eliminates the complexity that arises from transient

states, ensuring new policy requests are serialized,

and avoiding network deadlock.

One indirect measure of protocol complexity that

hss some value is the number of state/event pairs that
must be handled in hardware, where events can be

messages or processor actions (e.g., loads and stores).

This measure is useful, because it quantifies the num-

ber of cases that the designer must consider and test

for correctness. By this measure, DirlS W is fun-

damentally simpler than any of the DiriX protocols

(with the exception of Din NB) because it does not

require sequencing, sends at most one message in

response to any message, and requires only a sim-

ple datapath. Since much of this simplicity comes

from pushing the complexity into software trap han-
dlers, other hardware/software protocols such as Lim-

it LESS, share this advantage.

All DiriX protocols for i > 1 require the ability

to sequence through either a set of pointers or a bit

vector and send multiple invalidations. To implement

this mechanism ss an atomic sequence, all invalidm
tions must be sent before receiving any other mes-

sages. Unfortunately, deadlock avoidance then be-
comes a major consideration. If the maximum num-

ber of messages is bounded by a small constant, as in

Diri NB, deadlock can be avoided with sufficient out-

put buffering. The directory controller simply waits

until its output FIFO has room for i messages be-

fore sending the first. However, this is not a scalable

solutionl for protocols that may send large numbers

of messages, such as DiriB and Dirn NB, since the

maximum number of messages is proportional to sys-

tem size.

1Tfil~ s~lution Cm be used for any system with a fi~e~ max-

imum size, provided each node has output btiering at least as

large as this size.

The alternative is to make this mechanism non-

atomic, and process incoming messages bet ween
sends. This facilitates deadlock avoidance, however,
the sequencer’s state becomes an additional, transient

part of the cache block’s state, greatly increasing the

number of state/message interactions. In addition,

multiple cache blocks may need to be sequenced si-

multaneously (in order to avoid deadlock), requiring

some form of preemptive scheduling. Although this

complexity can be managed, architects must expend

considerable effort designing, building, and testing

complex hardware rather than improving the perfor-

mance of simpler hardware.

3.5 Manufacturing Cost

Comparing the manufacturing cost of mechanisms is

relatively straight-forward. Manufacturing cost is ul-

timately measured in dollars, but is commonly esti-

mated with other measures such as transistor count,

bits of memory, datapath width, etc. For directory

protocols, the dominant cost is memory overhead:

number of bits of state stored per block of memory.

All protocols need a small number of bits (e.g., 3 or 4)

to represent the block’s state. The DiriX protocols

other than Dirn NB require i pointers of logzn bits

each; Dirn NB protocols require n bits, By contrast,

Dirl S W requires only one log2n-bit pointer/counter

field. Consider a system that supports up to 1024

nodes and has 32-byte cache blocks. If we assume 4
bits can describe the state of each block, then Dir4NB

incurs a 16% memory overhead (44 bits/256 bits),

DirnNB incurs a 402% overhead, while DirlS W in-

curs only 5% overhead.

After memory, the next greatest cost is the direc-

tory datapath. For the DiriX protocols other than

Dim NB, the comparison of a node ID with i pointer

fields requires either a wide datapath with i compara-

tors or a sequential search. A Dirn NB implementa-
tion will require an n-bit datapath and priority de-

coder. By contrast, the Dirl S W state machine re-

quires only a logzn-bit datapath with the ability to

increment, decrement, test for zero, and select the

ALU result, the message source ID, or a small con-
stant for writing into the pointer/counter.

The absence of sequencing in the Dirl S W mech-

anisms also allows a regular structure: in response

to each message, the state associated with the cache

block is read, modified, and written back, and option-

ally a single message is sent. Beyond its inherent sim-

plicity, this remlarity leads naturally to a ~ipelined
implementation with increased thro-ughput. -

other schemes can also be pipelined, as for
pie, in the Stanford DASH [14], the increased

While
exam-
datap-

161

ath complexity requires additional designer

could otherwise be spent elsewhere.

3.6 Improvements to Din SW

time that

The base DirlS W protocol described above performs

as well as any feasible directory coherence protocol

for programs that exactly follow the CICO program-

ming model (see Section 2). However, rigidly adher-

ing to this model is not possible or desirable for all

programs. This section examines several extensions

to the Dirl S W protocol that improve its performance

for programs that do not conform precisely to CICO.

With one exception, these extensions use exactly the
same mechanisms as base Dirl S W and require minor

changes to the policy implemented in hardware and

software. The new mechanism, which is very simple,

sets the counter in a directory entry to the value 1.

3.6.1 Di?’1 S W+NPT: No Pairwise Traps

The base Dirl S W protocol traps to software when-

ever a CICO violation occurs; that is, whenever the

directory receiving a Msg.Get message cannot imme-

diately respond with the requested data. However,

the Dirl S W mechanisms permit directory hardware
to send a single message to an arbitrary processor in

response to a message from another processor. The

NPT extension modifies the hardware policy to di-

rectly send an invalidation message and forward the

block to the requesting processor when the nsg~ut

message arrives. This extension moves a common,
but more complex policy from software to hardware,

which may reduce execution time.

3.6.2 lXrl SW+ROl: One Shared Copy

The Dirl S W mechanisms permit a protocol to main-
tain either a pointer to a processor node or a counter.

The base DirlS Wprotocol maintains a pointer for ex-

clusive copies and a count of shared copies. However,

many of the shared-to-exclusive state transitions oc-

cur when only a single shared copy is outstanding:

over 50% for 6 of the 8 applications, and over 85%

for 4 of them. An obvicw extension of Dipl S W ie ta

add a new state DirS_One that maintains a pointer

to a single shared copy. The benefit of this change

is that it reduces the number of traps that broadcast

an invalidate to all processors.

3.6.3 DiTISW+ROl+NPT: lXTISW+

This extension, called Dirl S W +, combines the

changes from Section 3.6.2 and Section 3.6.1. In this

Name

bames

ocean

sparse

pthor

cholesky

water

mp3d

tomcatv

I Cycles

Input Data Set I (billions)

2048 bodies, 10 iter. 3.3

98 x 982 days

256 x 256 dense

5000 elem, 50 cycles

bcsstk15

256 mols, 10 iter

50000 mols, 50 iter

1024 X 1024.10 iter

1.5
2.5

20.9
21.0

9.8
24.6

8.5

Table 2: Application Programs

This table describes the benchmarks used in this paper. Sparse

is a locally-written program that solves AX = B for a sparse

matrix A. Tomcatv is a parallel version of the SPEC bench-

mark. All other benchmarks are from the SPLASH benchmark

suite [16].

protocol, the trap handler is only invoked to broad-
cast an invalidation for a block that was shared by

more than one processor.

4 Directory Performance

This sections presents our experimental methods,
compares the performance of Dirl S W variants, and

compares the best Din SW variant with alternative

protocols.

4.1 Methods

The measurements in this paper came from the
eight explicitly parallel programs listed in Table 2

running on the Wisconsin Wind Tunnel (WWT), a
virtual prototype for cache-coherent, shared-memory

computers [15]. WWT runs parallel shared-memory

programs on a parallel message-passing computer (a

Thinking Machines CM-5) and uses a distributed,
discrete-event simulation to concurrently calculate

the programs’ execution times on a proposed target

machine.

The simulated parallel computer (the target sys-

tem) used in this paper consists of 32 processor nodes,

each containing a processor, shared-memory mod-

ule, caehe~ and network Interface. Processors exe-

cute SPARC binaries. The execution time for each

instruction is tied. Instruction fetches and stack ref-

erences require no additional cycles beyond the basic

instruction time. Other memory locations are cached

in a node’s cache. A cache hit takes no additional

cycles, while a cache miss invokes a coherence pro-

tocol that sends messages, accesses a directory entry,

etc. Each message, cache or directory transition has a

cost. Caches and directories process messages in first-

162

Cache

Block size

TLB

Page size

Message latency

Barrier latency

Cache miss

Cache invalidate

check-out

checkfin

Directory

Trap

256 KB, 4-way set-associative

32 bytes

64 entries, fidly associative,

FIFO replacement

4 KB

100 cycles remote, 10 cycles to self

100 cycles from last arrival

19 cycles + 5 if block is replaced

+ 8 if replaced block was exclusive copy

3 cycles + 5 if block is invalidated

+ 8 if invalidated block was exclusive copy

Same as cache miss, plus 1 cycle

for check-out issue
Same as cache invalidate, plus 1 cycle

for checkin issue

10 cycles + 8 if cache block is received

+ 5 if message is sent

+ 8 if cache block is sent

255 cycles + 5 for each message sent + 8

for each block sent

(directory hardware locked out

for first 55 cycles)

Table 3: Baseline System Assumptions

come-first-serve order. Queuing delay is included in

the cost of a cache miss. ‘Netw;rk topology and con-

tention are ignored, and all messages are assumed a

fixed latency. Table 3 lists the baeic system parame-

ter values.

4.2 Din SW Variants

This section discusses the performance of Diq S W

variants on 32 processors for the benchmarks in Ta-

ble 2. The variants are: no-pairwise-traps (NPT),

one-shared-copy (RO1), and CICO directives. We ex-

amine all eight combinations (23). Figure 2 displays

execution times for seven cases, normalized to the

execution time of the base caee (without NPT, RO1,

and CICO). Since the normalized execution times are

less than 1.0, the extensions all improve performance

relative to base Difi S W. However, the extensions af-

fect the benchmarks by varying amounts. They mat-

ter little to water and tomcatv, for example, because

both perform little communication relative to their

computation. (The same effect is apparent for the

other protocols compared in Figure 3 of Section 4.3.)

For mp3d, however, NPT and CICO reduce execution

time by 52% and 21%, respectively, by mitigating the

effect of this program’s unsynchronized sharing in its

cell data structure.
To get more insight from the many numbers in

Figure 2, we use an analysis of variance to charac-

Factor Var. Mean 9070
Due Effect Confidence
(%) (%) Interval J

Benchmarks 67.45 n/a n/a 1
NPT 24.29 -15.86 [-21.77, -9.96]
RO1 0.14 -1.19 [-7.10, 4.71]
NPT+RO1 0.04 -0.68 [-6.59, 5.22]
/CICO 6.05 -7.92 [-13.82, -2.02]
NPT/CICO 1.94 4.48 [-1.42, 10.38]
RO1/CICO 0.08 0.90 [-5.01, 6.80]
NPT+RO1/CICO 0.00 0.01 [-5.89, 5.92]

Table 4: Analysis of Variance of Dirl S W Extensions

These numbers were collected from a full factorial experi-
ment using the benchmarks for replication and NPT, RO1,
and CICO as factora [10, Chapter 18]. Column “Variation
Due” lists the percent of performance variation in the 64 runs

(8* 23) caused by benclunark, factors, and interactions be-

tween factors. The resuits show that the benchmark, NPT,

and CICO are the most important factors. Column “Mealm

Effect” gives the relative change in normalized execution time

caused by factors and interaction terms. NPT and CICO re-

duce ru&ing time the most. (The benchmark row is marked

“n/a” because a replication factor is assumed to have no sys-

tematic effect.) The final column gives the 90~o confidence
intervale for each factor and interaction term. The range of

all intervale extends up and down from the mean effect by
tro,95:2sti(8_1)1*SSE/(23 * 8 *23 * (8 - l)), where SSE is the,. ... —
sum of the sq&res of the residuals (errors)-the difference be-

tween an actual value and the corresponding prediction using

the mean effect. Use of the t-distribution is meaningful if these

differences are distributed normally with zero mean. A normal

quantil-quantile plot of the 64 residuals (not shown) reveah

that this assumption is approximately true.

terize mean behavior. This aggregation is meaning-

ful only if the eight benchmarks are representative

of some interesting workload. Table 4 reports re-

suits and the table’s caption describes the analysis

of variance method in more detail. The results show

that most of the variation between runs is caused by

the benchmarks themselves. Nevertheless, NPT ancl

CICO caused statistically significant variation. The

mean relative improvement from NPT was 16Y0, whils

CICO yielded 8%.

Using CICO primitives ae memory system direc-

tives affects sharing behavior and improves perfor-

mance. Table 5 examines the effect on sharing

behavior of using CICO check-in’s to flush cache

blocks (rather than allowing them to be replaced or

invalidated).2 A check in improves performance if it

enables another processor to find a block at the direc-

tory instead of requiring additional messages be sent

2 we *O ex~ned Che=k=ut ‘S but found their effect tO b~~

small.

163

:= CSr,SW+NPT
_ Oir,SW+ROl
~ Oir,SW+NPT+ROl
m C4r,SWiClC0
m Oir,SW+NPTfVCO
_ Oir,SW+RO1/CICO

isw Oir,SW+NPT+RO1/CICO

!ij i! Benchmarks
z

Figure 2: Performance of Dirl S W Extensions

This figure shows the time to run the benchmarks with and without na-pairwise-traps (NPT), one-shared-copy (RO1), and CICO,
relative to the time to run the same program under base ZWl WV without CICO.

Benchmark Inclhections Counter
Avoided (~o) Productive

check-in’s (Yo)

barnes 84 52

ocean 45 14

sparse 99 51

pthor 61 61

cholesky 94 27

water 97 6

rnp3d 74 58

tomcatv 100 65

Table 5: CICO Effects

This table displays the effect on each benchmark’s sharing be-

havior of using check-in’s to flush cache blocks (rather than

allowinx them to be redated or invalidated). Cohmm “lndirec-

tion Avoided” shows the relative reduction in the frequency

of indirection. An indirection occurs when a processor can-

not obtain a block from the directory, but must send mee-
sages to one or more processors. Colmnn “Counter-productive

checkin’s” gives the fraction of checkin for which the same

processor is the next user of a checked-in block.

to other processors. The results show that checkdn

reduces the frequency of indirection by 45 Yo–1OOYO.

A checkin hurts performance if the same processor

is the next user of the block, which we found to occur

in 6Y0–65Y0 of the checkin’x.

Together, NPT and CICO ran programs 19%

faster, implying NPT makes CICO less important.

With NPT, CICO has a more modest impact on in-

direction to previously exclusive blocks (e.g., migra-

tory data). Without NPT or CICO, migrating a block

costs four network traversals and two traps. Adding

NPT or CICO eliminates the traps, while CICO also

reduces the network traversals to two. Thus, at best,

adding CICO to NPT improves performance by a fac-

tor of two. In practice, the effect is much smaller,

because programs do not spend much time migrating

data.

Finally, we would like to estimate how the effects

of NPT and CICO vary from benchmark to bench-

mark. To do this, we calculate 9070 confidence inter-
vals assuming the residuals—the performance not ex-
plained by average effects-are normally distributed
with mean zero. This calculation-explained further

in the caption of Table 4—reveals [–2270, – 10Yo] for

NPT and [–14%, –2%] for CICO. With eight bench-

marks and not-exactly-normally distributed residu-
als, our confidence intervals are best taken wit h a

grain of salt.

In summary, NPT and CICO improve performance

of almost all programs, while RO1 helps a little. Since

164

1.54 MS *.M ~,.::::::............ Oir,B
_ 0ir4NB
m Oir.B
m C4r,,NB
m Oir,SW+
_ Oir=NB/CICO
= Ok, SW+lCICO

Figure3: Performance of Other Protocols

This figure displays the normalized execution times (with respect to base Dirl S W without CICO) for several protocols. Three rum

of DirA NB are broken bars, because their normalized execution was much longer than Din S W%.

NPT and RO1 use the same mechanisms as the base

protocol, we incorporated them in a new protocol

called Dirl SW +.

4.3 Comparison to Other Protocols

This section compares Dirl S W + without and with

CICO, denoted DinS W + and DirlS W ‘/CICO,
against several other protocols. Figure 3 displays

normalized execution time for the eight bench-

marks running on 32 processors under several pro-

tocols. The principal result is that Dirl S W + and

Dirl S W +/CICO perform comparably to Di%aIV&

well within 10Ye-even when Dinz NB uses CICO, ex-

cept for mp3d with its unscalable, unsynchronized

sharing. The data also show that Dir4 NE is an un-

stable protocol, at least, when no special mechanism
handles read-only data.

These conclusions do not seem to be sensitive to

the key system parameters of network and directory

latency. (We also measured runs with 64 processors,

but do not report these results because they did not

differ qualitatively.) Table 6 shows the normalized

execution time results from varying interconnection
network latency from 100 processor cycles (the de-

fault) to 400 cycles. A 400-cycle network slowed all

protocols by about a factor of two, but it has little ef-

fect on the performance difference between Di~2Nlt

and Dirl S W +.

Increasing the latency of a directory operation tc)

100 cycles approximates the effect of using an auxil-

iary processor, rather than a finite state machine, to

perform directory operations. Increasing the direc-

tory cost from 10 to 100 cycles slowed the benchmarks

by an average of 4090 with no obvious trends favoring

one protocol over another. Finally, we looked at per-

formance with larger values for both network and di-

rectory latency. With the slower network, increasing

directory latency only decreased performance slightly

(15%).

5 Discussion

While quantitative results are useful, it is important
to step back and look at what they mean. The data

shows that:

●

●

165

Memory system directives, such as CICO, can

alter program behavior to make simple directory

hardware more attractive.

Elucidating the mechanisms underlying a coher-
ence protocol can lead to new protocols that per-

Directory Network Dirsz NB Dirj S W+ Dirl SW+/CICO

Access Cost Latency Mean Deviation Mean Deviation Mean Deviation

10 100 0.7261 0.2155 0.7756 0.1759 0.7503 0.1829

10 400 1.3285 0.3286 1.3777 0.3210 1.3348 0.2914

100 100 1.0096 0.2035 1.0803 0.1535 1.0332 0.1452

100 400 1.5403 0.4142 1.5857 0.4076 1.5179 0.3636

Table 6: Varying System Assumptions

This table displays the arithmetic mean and Stmdard deviation of the normalized execution times (with respect to base Dirl S W
without CICO) for eight benchmarks under several protocols with different assumptions of directory cost and network latency. The

arithmetic mean listed for each specific system is proportional to the execution time of the eight benchmarks on that system, provided

each benchmarks ran for the same amount of time under the base case.

form better without significantly increasing im-

plementation complexity.

For the system assumptions and benchmarks,

most protocols performed similarly. The sig-

nificant disparity in hardware complexity and

the small difference in performance argue that

Dirl S W + may be a more effective use of re-

sources.

Although our results have immediate import, they

also apply to future computers. These machines are

moving toward large-scale (~ lK-processors) systems

of fast microprocessors (~ 1 GIPS). The network la-

tencies of these machines (measured in processor cy-

cles) will be much larger than today’s machines. The

data in Table 6 for 400 cycle network latency shows

that larger networks do not affect Dirl S W more than

other protocols such as Dir~ NB (assuming that pro-

grams infrequently cause broadcasts).

A perhaps more important implication of the data

is that performance in machines with long network

latencies is not sensitive to directory latency. This

suggests that moving protocol sequencing to software

running on a node’s main processor, an auxiliary pro-
cessor (as in the Intel Paragon), or a processor in

the network interface may be practical [1]. The ob-
vious drawback of this approach is that a processor

sequences a protocol slower than a hardware finite

state machine. A secondary drawback is that slower

directories increase directory contention. The data

shows that increasing directory latency from 10 to
100 cycles degrades execution time by 1570. This
degradation can be mitigated or reversed by reducing
directory contention (e.g., with greater interleaving)
and by using protocols that send fewer messages.

On the other hand, software sequencing offers many

advantages and opportunities:

. System design time can be reduced because less
hardware must be designed. In addition, field-

upgrades of protocols are possible. Thus, the de-

sign time and hardware for shared-memory ma-

chines could be similar to message-passing com-

●

●

●

●

~UKL.2h

Protocols can adapt to dynamic program behav-

ior since buffering and analyzing recent behavior

is practical in software.

Protocols can be statically tailored by compilers,

program libraries, or application programs to be-

have differently for different objects [3]. For ex-

ample, update protocols could distribute widely-

used data (e.g., the vector z in z := Az + b) and

help in synchronization (a barrier wakeup) [6].

Protocols can support higher-level operations

such as fetching an entire row of a matrix or a

scatter-gather operator.

Collecting information for performance monitor-

ing is much easier.

Regrettably, we leave evaluation of these ideas to
future work. Our benchmarks were written for small
scale systems. Running these programs on more than

32 or 64 processors exposes bottlenecks and yields

poor speedup. We plan to use the CICO program-

ming model [12] to construct programs that manage

communication more effectively and use these pro-

grams to evaluate these ideas.

6 Conclusions

Shared memory offers many advantages, such as a
uniform address space and referent ial transparency,
that are difficult to replicate in today’s massively-

parallel, messag~passing computers, The key to ef-

fective, scalable, shared-memory parallel computers is

to address the software and hardware issues together.

1s6

This paper explored the complexity of implement-

ing directory protocols by examining their mecha-

nisms—primitive operations on directories, caches,

and network interfaces. We compare the follow-

ing protocols: DiQB, Dir4B, DirdNB, DirnNB [2],

Dirl SW [9] and an improved version of Difi S W

(DirlS W +). The comparison shows that the mech-

anisms and mechanism sequencing of Difi S W and

Dirl SW + are simpler than those for other proto

COIS. Simulation results for eight benchmarks on 32-

processor systems show that Diq S W+’s performance

is comparable to more complex directory protocols.

The small performance difference between Din SW+
and the more complex protocols is attributable to two

factors: the small degree of sharing in programs and

CICO directives. The significant disparity in hard-

ware complexity and the small difference in perfor-

mance argue that Darl SW+ may be a more effective

use of resources.

As network latencies increase, the performance ef-

fect of directory operation overhead decreases, which

provides the opportunity to sequence directory op-

erations in a processor rather than a state machine.

This change, in turn, permits high-level directory op-

erations that have the potential to hide more of the

increased communication cost. Evaluating these al-

ternatives for kiloprocemor systems will require new

benchmarks and an evaluation platform that simulate

more processors than current machines contain.

7 Acknowledgements

Dave Douglas, Danny Hillis, Roger Lee, and Steve

Swartz of Thinking Machines provided invaluable ad-
vice and assistance in building the Wisconsin Wind

Tunnel. Glen Ecklund and Alain Kagi helped develop

the Wisconsin Wind Tunnel and applications. Singh

et al. [16] wrote and distributed the SPLASH bench-

marks.

References
[1]

[2]

[3]

Anant Agarwrd, Beng-Hong L)m, David Kranz, and John Ku-
biatowicz. APRIL: A Processor Architecture for Multipr&
cescing. In Proceedings of the 17th Annual International
Syrnpoeiutn on Computer Architecture, pages 104-114, June
1990.

Anant Agarwal, Richard Simoni, Mark Horowitz, and John
Henneasy. An Evrduation of Directory Schemes for Cache Co-
herence. In Proceedings oj the 15th Annual International
Symposium on Computer Architecture, pages 2S0-2S9, 198S.

John K. Bennett, John B. Carter, and WWY Zwanepoel.
Munin: Distributed Shared Memory Based on Type-Specific
Memory Coherence. In Second ACM SIGPLAN Sympo-
sium on Principles & Practice oj Parallel Programming
(PPOPP), pages 168-176, February 1990.

[4]

[6]

[6]

[n

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[1s]

[lq

David Chaiken, John Kubk+towice, and Anant AgarwaL Ltm-
itLESS Direztoriea: A Scalable Cache Coherence Scheme. In
Proceedings oj the Fourth International Conference on Ar-
chitectural Support jor Programming Languages and Oper.
sting Sy8tems (A SPLOS IV), pagea 224-234, April 1991.

David Lare Chaiken. Cache Coherence Protocole for Large-
Scate Multiprocessors. Technical Report MIT/LCS/TR-4S9,
MIT Laboratory for Computer Science, September 1990.

hums R. Goodman, Mary K. Vernon, znd Philip J. Woest.
Efltcient Synchronization Primitive for Large-Scale Cache-
Coherent Multiprocessors. In Proceedings of the Third Inter-
national Conference on Architectural Support jor Program-
ming Languagea and Operating Systems (A SPLOS III),
pages 64-77, April 1989.

Anoop Gupta and Wolf-Dietrich Weber. Cache Invalidation
Patterns in Shared-Memory Multiprocessors. IEEE 2’hansac-
tions on Computers, 41(7):794-810, July 1992.

David B. Gustavson. The Scalable Coherent Interface and Re-
lated Standards Projects. IEEE Micro, 12(2):10-22, February
1992.

Mark D. H1ll, James R. Lams, Steven K. Rehhardt, and
David A. Wood. Cooperative Shared Memory: Software and
Hardware for Scalable Multiprocessor. In Proceedings oj the
Fifth International Conference on Architectural Support jor
Programming Languages and Operating Systems (ASPLOS
V), pages 262-273, October 1992.

Raj Jain. The Art of Computer Systems Performance Anal-
~sis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling. John Wiley & Sons, 1991.

David Kranz, Kirk Johnann, Anant Agarwal, Kublatow-
itca, and Beng-Hong L!m. Integrating Message-Peesing and
Shared-Memory: Early Experience. In Fourth ACM SIG-
PLAN Symposium on Principles & Practice of Parallel Pro-
gramming (PPOPP), May 1993. To appear.

Jzmes R. Larus, Satiah Chrmdra, and David A Wood. CICO:
A Shared-Memory Programming Performance Model. Sub-
mitted for publication., January 1993.

Daniel Lenoski, James Laudon, Kourosh Gharachorloo,
Wolf-Dietricb Weber, Anoop Gupta, John Hennessy, Mark
Horowitz, and Monica Lam. The Stanford DASH Multipro-
cessor. IEEE Computer, 25(3):63-79, March 1992.

Daniel E. LenoskL The Design and Analyaia of DASH: A
Scalable Directory-Based Multiprocessor. PhD thesis, Stan-
ford Univemity, February 1992. CSL-TFL92-507.

Steven K. R&hard, Mark D. Hill, James R. Lams, Alvin R.
Lebeck, James C. Lewis, , and David A. Wood. The Wisconsin
Wbid Tunnel: Vktual Prototyping of Parallel Computers. In
Proceedings of the 1999 ACM SIGMETRICS Conference on
Measuring and Modeling of Computer Systems, page ?, May
1993. To appear.

Jeawinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta.
SPLASH: Stanford Parallel Applications for Shared Memory.
Computer Architecture News, 20(1):544, March 1992.

Wolf-Dletrich Weber and Anoop Gupta. Analysis of Cache
Invalidation Patterns in Multiprocessors. In Proceedings of
the Third International Conference on Architectural Sup-
port for Programming Languages and Operating Systems
(ASPLOS III), pages 243-256, April 19S9.

167

