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This paper discusses implementations of fine-grain mem-
ory access control, which selectively restricts reads and
writes to cache-block-sized memory regions. Fine-grain
access control forms the basis of efficient cache-coherent
shared memory. This paper focuses on low-cost im-
plementations that require little or no additional hard-
ware. These techniques permit efficient implementation
of shared memory on a wide range of parallel systems,
thereby providing shared-memory codes with a portabil-
ity previously limited to message passing.

This paper categorizes techniques based on wh~ere ac-

cess control is enforced and where access conflicts are han-

dled. We incorporated three techniques that require no

additional hardware into Blizzard, a system that supports

distributed shared memory on the CM-5. The first adds

a software lookup before each shared-memory rxference

by modifying the program’s executable. The second uses

the memory’s error correcting code (ECC) as cache-block

valid bits. The third is a hybrid. The software technique

ranged from slightly faster to two times slower than the

ECC approach. Blizzard’s performance is roughly compa-

rable to a hardware shared-memory machine. These re-

sults argue that clusters of workstations or personal com-

puters with networks comparable to the CM-5’s will be

able to support the same shared-memory interfaces as su-

percomputers.
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1 Introduction

Parallel computing is becoming widely available with

the emergence of networks of workstations as the

parallel “minicomputers” of the future [1]. Un-

fortunately, current systems directly support only

message-passing communication. Shared memory is

limited to page-based systems, such as TreadMarks

[17], which are not sequentially consistent and which

can perform poorly in the presence of fine-grain data

sharing [11].

These systems lack fine-grain access control, a key

feature of hardware shared-memory machines. Ac-

cess control is the ability to selectively restrict reads

and writes to memory regions. At each memory ref-

erence, the system must perform a lookup to deter-

mine whether the referenced data is in local memory,

in an appropriate state. If local data does not sat-

isfy the reference, the system must invoke a protocol

action to bring the desired data to the local node.

We refer to the combination of performing a lookup

on a memory reference and conditionally invoking an

action as access control. Access control granularity

is the smallest amount of data that can be indepen-

dently controlled (also referred to as the block size).

Access control is fine-grain if its granularity is similar

to a hardware cache block (32-128 bytes).

Current shared-memory machines achieve high per-

formance by using hardware-intensive implementa-

tions of fine-grain access control. However, this addi-

tional hardware would impose an impossible burden

in the cost-conscious workstation and personal com-

puter market. Efficient shared memory on clusters

of these machines requires low- or no-cost methods

of fine-grain access control. This paper explores this

design space by identifying where the lookup and ac-

tion can be performed, fitting existing and proposed

systems into this space, and illustrating performance
trade-offs with a simulation model. The paper then

focuses on three techniques suitable for existing hard-

ware. We used these techniques to implement three

variants of Blizzard, a system that uses the Tempest
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interface [32] to support distributed shared memory

on a Thinking Machines CM-5. The first variant,

Blizzard-S, adds a fast lookup before each shared-

memory reference [22] by modifying the program’s

executable [21]. The second, Blizzard-E, employs the

memory’s error-correcting code (ECC) bits as block

valid bits [30]. The third, Blizzard-ES, combines the

two techniques.

Blizzard’s performance-running six programs

written for hardware cache-coherent shared-memory

machines—is consistent with our simulation results.

Blizzard-S’s (software) performance ranged from

slightly faster than Blizzard-E to twice as slow, de-

pending on a program’s shared-memory communica-

tion behavior. To calibrate Blizzard’s absolute perfor-

mance, we compared it against a Kendall Square Re-

search KSR- 1 shared-memory machine. For one pro-

gram, Blizzard-E outperforms the KSR-1; for three

others, it is within a factor of 2.4–3.6; and two appli-

cations ran 6-7 times faster on the KSR-1.

These results show that clusters of workstations

or personal computers can efficiently support shared

memory when equipped with networks and network

interfaces comparable to the CM-5’s [23]. Blizzard

also demonstrates the portability provided by the

Tempest interface. Tempest allows clusters to sup-

port the same shared-memory abstraction as super-

computers, just as MPI and PVM support a common

interface for coarse-grain message passing.

The paper is organized as follows. Section 2 exam-
ines alternative implementations of fine-grain access

control. In particular, Section 2.5 presents a simula-

tion of the effect of varying access control overheads.

Section 3 describes Blizzard. Finally, Section 4 con-

cludes the paper.

2 Access Control Alternatives

Fine-grain access control performs a lookup at each

memory reference and, based on the result of the

lookup, conditionally invokes an action. The refer-

enced location can be in one of three states: Read-

Write, ReadOnly, or Invalid. Program loads and

stores have the following semantics:

load( address) =

if (lookup (address) @ {ReadOnly, Read Write})

invoke-action( address)

perform-load( address)

st ore( address) =

if (lookup( address) # Read Write)

invoke-action( address)

perform-store( address)

Act ion
Lookup Dedicated Primary Auxiliary

Hardware Processor Processor

Software Orca (object)

Blizzard-S

TLB IVY (page)

II I I

Snoop DASH Typhoon

t , I 1

1Location of action depends on protocol state.

Table 1: Taxonomy of shared-memory systems.

Fine-grain access control can be implemented in

many ways. The lookup and action can be performed

in either software, hardware, or a combination of the

two. These alternatives have different performance,

cost, and design characteristics. This section classifies

access control techniques based on where the lookup

is performed and where the action is executed. Ta-

ble 1 shows the design space and places current and

proposed shared-memory systems within it.

The following sections explore this taxonomy in

more detail. Section 2.3 discusses the lookup and ac-

tion overheads of the systems in Table 1. Section 2.4

discusses how the tradeoffs in the taxonomy affect a

wide range of shared-memory machines. Section 2.5

presents a simulation study of the effect of varying

access control overheads.

2.1 Where is the Lookup Performed?

Either software or hardware can perform an access

check. A software lookup avoids the expense and de-

sign cost of hardware, but incurs a fixed overhead at

each lookup. Hardware typically incurs no overhead

when the lookup does not invoke an action. Lookup

hardware can be placed at almost any level of the

memory hierarchy-TLB, cache controller, memory

controller, or a separate snooping controller. How-
ever, for economic and performance reasons, most

hardware approaches avoid changes to commodity

microprocessors.

Software. The code in a software lookup checks a

main-memory data structure to determine the state

of a block before a reference. As described in Sec-
tion 3.2, careful coding and liberal use of memory

makes this lookup reasonably fast. Our current im-

plementation adds 15 instructions before each shared-

memory load or store. Static analysis can detect and
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potentially eliminate redundant tests. However, the

asynchrony in parallel programs makes it difficult to

predict whether a cache block will remain accessible

between two instructions.

Either a compiler or a program executable editing

tool [21] can insert software tests. We use the latter

approach in Blizzard so every compiler need not reim-

plement test analysis and code generation. Compiler-

inserted lookups, however, can exploit application-

level information. Orca [2], for example, provicles ac-

cess control on program objects instead of blocks.

TLB. Standard address translation hardware pro-

vides access control, though at memory page gran-

ularity. Nevertheless, it forms the basis of sev-

eral distributed-shared-memory systems—for exam-

ple, IVY [26], Munin [4], and TreadMarks [17].

Though unimplemented by current commodity pro-

cessors, additional, per-block access bits in a TLB en-

try could provide fine-grain access control. The “lock

bits” in some IBM RISC machines, including the 801

[7] and RS/6000 [29], provide access control on 128-

byte blocks, but they do not support the three-state

model described above.

Cache controller. The MIT Alewife [6] and

Kendall Square Research KSR-1 [18] shared-memory

systems use custom cache controllers to implement

access control. In addition to detecting misses in

hardware cache(s), these controllers determine when

to invoke a protocol action. On Alewife, a local direc-

tory is consulted on misses to local physical addresses

to determine if a protocol action is required. Misses

to remote physical addresses always invoke an action.

Due to the KSR-1’s COMA architecture, any refer-

ence that misses in both levels of cache requires proto-

col action. A trend toward on-chip second-level cache

controllers [15] may make modified cache controllers

incompatible with future commodity processors.

Memory controller. If the system can guarantee

that the processor’s hardware caches never contain

Invalid blocks and that ReadOnly blocks are cached

in a read-only state, the memory controller can per-

form the lookup on hardware cache misses. This ap-

proach is used by Blizzard-E, Sun’s S3.mp [28], and

Stanford’s FLASH [20].

As described in Section 3.3, Blizzard-E uses the

CM-5’s memory error-correcting code (ECC) to im-

plement a cache-block valid bit. While effective, this

approach has several shortcomings. Read Only access

is enforced with page-level protection, so stores may

incur an unnecessary protection trap. Also, modi-

fying ECC values is an awkward and privileged op-
eration. The Nimbus NIM6133, an MBUS memory

controller co-designed by Nimbus Technology, Think-

ing Machines, and some of the authors [27], adch-essed

these problems. The NIM6133 supports Blizzard-like

systems by storing a 4-bit access control tag with each

32-byte cache block. The controller encodes state

tags in unassigned ECC values, which requires no

additional DRAM. On a block write, the controller

converts the 4-bit tag to a unary l-of-16 encoding.

For each 64-bit doubleword in the block, it appends

the unary tag, computes the ECC on the resulting

80-bit value, and stores the 64 data bits plus ECC

(but not the tag). On a read, the controller concate-

nates 16 zeros to each 64-bit doubleword. The ECC

single-bit error correction then recovers the unary tag

value. Because the tag is stored redundantly on each

doubleword in the block, double-bit error detection is

maintained. Tag manipulations are unprivileged and

the controller supports a ReadOnly state.

S3.mp has a custom memory controller that per-

forms a hardware lookup at every bus request.

FLASH’s programmable processor in the memory

controller performs the lookup in software. It keeps

state information in regular memory and caches it on

the controller,

Custom controllers are possible with most current

processors. However, future processors may inte-

grate on-chip memory controllers (aa do the TI Mi-

croSPARC and HP PA71OOLC).

Bus snooping. When a processor supports a

bus-based coherence scheme, a separate bus-snooping

agent can perform a lookup similar to that performed

by a memory controller. Stanford DASH [24] and

Wisconsin Typhoon [32] employ this approach. On

DASH, as on Alewife, local misses may require pro-

tocol action based on local directory state and re-

mote misses always invoke an action. Typhoon looks

up access control state for all physical addresses in

a reverse-translation cache with per-block access bits

that is backed by main-memory page tables.

2.2 Where is the Action Taken?

When a lookup detects a conflict, it must invoke an

action dictated by a coherence protocol to obtain an

accessible copy of a block. As with the lookup itself,

hardware, software, or a combination of the two can

perform this action. The protocol action software can

execute either on the same CPU as the application

(the “primary” processor) or on a separate, auxiliary

processor.

Hardware. The DASH, KSR-1, and S3.mp sys-

tems implement actions in dedicated hardware, which

provides high performance for a single protocol.

While custom hardware performs an action quickly,

research has shown that no single protocol is op-
timal for all applications [16] or even for all data

structures within an application [3, 12]. High de-

sign costs and resource constraints also make custom

hardware unattractive. Hybrid hardware/software
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Lookup Action
System

Remote
Bytes/ Where No Action Where Action miss time
Block Performed Action Needed Executed Invocation (approx.)

Alewife 8 cache o 1 / -’10 hardware o 30
prim. proc. 13

KSR-1 128 cache o -10 hardware o 200
DASH 16 snoop o 10 / ’20 hardware o 100

FLASH 128 memory o 4/-14 aux. proc. o -100

Typhoon 32 memory o 3 aux. proc. 2 100

Blizzard-S 32 software 18 18 prim. proc, 25 6000

Blizzard-E r,wl 32 memory o -10 prim. proc. 250 6000

w’ 32 software (OS) 230 230

Blizzard-ES r 32 memory o ’10 prim. proc. 250 6000
w 32 soft ware 18 18 25

Munin 4K TLB o ’50 prim. proc. 2.01 ms ??

TreadMarks 4K TLB o -50 prim. proc. 2600 110,000

1Lookup cost for writes depends on whether there are Read Only blocks on the page (see Section 3.3)

Table 2: Overheads of fine-grain access control for various systems (in processor cycles).

protocols—e.g., Alewife’s LimitLESS [6] and Dirl S W

[13] —implement the expected common cases in hard-

ware and trap to system software to handle complex,

infrequent events.

Primary processor. Performing actions on the

main CPU provides protocol flexibility y and avoids the

additional cost of custom hardware or an additional

CPU. Blizzard uses this approach, as do page-based

DSM systems such as IVY and Munin. However, as

the next section discusses, interrupting an applica-

tion to run an action can add considerable overhead.

Alewife addressed this problem with a modified pro-

cessor that supports rapid context switches.

Auxiliary processor. FLASH and Typhoon

achieve both high performance and protocol flexibil-

ity by executing actions on an auxiliary processor

dedicated to that purpose. This approach avoids a

context switch on the primary processor and may be

crucial if the primary processor cannot recover from

late arriving exceptions caused by an access control

lookup in the lower levels of the memory hierarchy.

In addition, an auxiliary processor can provide rapid

invocation of action code, tight coupling with the

network interface, special registers (e.g., Typhoon’s

home node and protocol state pointer registers), and

special operations (e.g., FLASH’s bit field instruc-

tions). Of course, the design effort increases as the

processor is more extensively customized.

2.3 Performance

Table 2 summarizes the access control overheads

and remote miss times for existing and proposed

distributed-shared-memory $ystems [4, 5, 17, 20, 25,

32, 33]. Values marked withl ‘w’ are estimated.

The left side of Table 2 lis’s the overhead of testing

ia shared memory reference f, r accessibility. Software

lookups incur a fixed overhead, while the overhead of

hardware lookups depends on whether or not action is

required. Hardware typically avoids overhead when

no action is needed by overlapping the lookup and

local data access. When action is required (e.g., a re-

mote miss), the data cannot be used so the lookup

counts as overhead. Alewife, DASH, and FLASH

have two numbers in the “Action Needed” column

because misses to remote physical addresses immedi-

ately invoke an action but misses to local addresses

require an access to local directory state. For Munin

and TreadMarks, this column reflects the overhead

of a TLB miss and page-table walk to detect a page

fault.

Table 2 also lists action invocation overheads. This

overhead reflects the time required from when an ac-

cess conflict is detected to the start of the proto-

col action (e.g., for software actions, the execution

of the first instruction). Dedicated hardware incurs

no overhead since the lookup and action mechanisms

are tightly coupled. FLASH also has no overhead

because the auxiliary processor is already running

lookup code, so the overhead of invoking software is

reflected in the “Action Needed” column, Typhoon’s

overhead is very low because, like FLASH, its auxil-

iary processor is customized for fast dispatch.

Systems that perform lookup in hardware and ex-
ecute actions on the primary processor incur much

higher invocation overheads. A noticeable exception

to this rule is Alewife. Its custom support for fast

context switching can invoke actions in 13 cycles. By

contrast, TreadMarks requires 2600 cycles on a DEC-

Station 5000/240 running Ultrix 4.3 [17]. Of course,
the overhead is the fault of Ultrix 4.3, not Tread-

Marks. With careful kernel coding (on a different

processor), Blizzard-E’s invocation overhead is 250

cycles, including 50 cycles that are added to every
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CM-5 trap by a workaround for a hardware bug.

The final column of Table 2 presents typical round-

trip miss times for these systems. These times are af-

fected by access control overheads and other factors,

such as network overheads and latencies. The sys-

tems in the first group of Table 2 provide low-latency

interconnects that are closely coupled to the dedi-

cated hardware or auxiliary processors. At the other

extreme, TreadMarks communicates through Unix

sockets using heavy-weight protocols. Its send time

for a minimum size message is 3200 cycles (80 ps)

[17]. Blizzard benefits from the CM-5’s low-latency

network and user-level network interface. Blizzard’s

performance would be better if the network supported

larger packets (as, for example, the CM-5E). To effi-

ciently communicate, packets must hold at least a vir-

tual address, program counter, and a memory block

(40 bytes total on Blizzard). Our CM-5 limits pack-

ets to 20 bytes, which requires block data messages to

be split into multiple packets. Our implementation

buffers only packets that arrive out-of-order, which

eliminates buffering for roughly 80% of all packets.

2.4 Discussion

Both the cost of implementing access control and its

speed increase as the lookup occurs higher in the

memory hierarchy and as more hardware resources

(e.g., an auxiliary processor) are dedicated tc~ proto-

col actions. Because of the wide range of possible

implementation techniques, a designer can trade-off

cost and performance in a family ofs ystems.

In the high-end supercomputer market, implemen-

tations will emphasize performance over cost. These

systems will provide hardware support for both the

access control test and protocol action. An auxiliary

processor in the memory system, as in FLASH and

Typhoon, minimizes invocation and action overhead

while still exploiting commodity (primary) proces-

sors. However, this approach requires either a com-

plex ASIC or full-custom chip design, which signifi-

cantly increases design time and manufacturing cost.

In mid-range implementations targeted toward

clusters of high-performance workstations, the cost

and complexity of additional hardware is more impor-

tant because workstations must compete on unipro-

cessor cost/performance. For these systems, sim-

ple hardware support for the test—as in the Nimbus

memory controller—may be cost-effective.

The low end of parallel systems—networks of per-

sonal computers—will not tolerate additiona~l hard-

ware for access control. For these systems, imple-
ment ations must rely on software access cent rol, like

that described in Section 3.2.
These tradeoffs would change dramatically if ac-

cess control was integrated into commodity proces-

sors. For example, combining an RS/6000-like TLB

with Alewife’s context switching support would per-

mit fast access control and actions at low hardware

cost. Unfortunately, modifying a processor chip is

prohibitively expensive for most, if not all, parallel

system designers. Even the relatively cost-insensitive

supercomputer manufacturers are resorting to com-

modity microprocessors [19] because of the massive

investment to produce competitive processors. Com-

modity processor manufacturers are unlikely to con-

sider this hardware until fine-grain distributed shared

memory is widespread. The solutions described in

this paper and employed by Blizzard provide accept-

able performance on existing hardware to break this

chicken and egg problem.

2.5 Access Control Overheads

This section describes a simulation that studies the

effect of varying the overhead of access control and

action invocation on the performance of a fine-grain

distributed shared-memory system. Our simulator

is a modified version of the Wisconsin Wind Tunnel

[31] modeling a machine similar to the CM-5. The

target nodes contain a single-issue SPARC processor

that runs the application, executes protocol action

handlers on access faults, and handles incoming mes-

sages via interrupts. As on the CM-5, the proces-

sor has a 64 Kbyte direct-mapped cache with a 32-

byte line size. Instruction cycle times are accurately

modeled, but we assume a perfect instruction cache.

Local cache misses take 29 cycles. Misses in the

fully-associative 64-entry TLB take 25 cycles. Mes-

sage data is sent and received using single-cycle 32-bit

stores and loads to a memory-mapped network inter-

face. Message interrupts incur a 100-cycle overhead

before the interrupt handler starts. Fine-grain ac-

cess control is maintained at 32-byte granularity. The

applications run under the full-map, write-invalidate

Stache coherence protocol with 32-byte blocks [32],

In the simulations of two programs shown in Fig-

ure 1, we varied the overhead of lookups and the over-

head of invoking an action handler. The “ideal” case

is an upper bound on performance. It models a sys-

tem in which access fault handlers and message pro-

cessing run on a separate, infinitely-fast processor.

In particular, the protocol software runs in zero time

without polluting the processor’s cache. However, to

make the simulation repeatable, message sends are

charged one cycle. The ideal case is 2.2–2.8 x faster

than a realistic system running protocol software on

the application processor with hardware access con-
trol that reduces lookup overhead to zero and invoca-

tion overhead near zero. The simulations show that

lookup overhead has a far larger effect on system per-

formance than invocation overhead. For example, in
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Figure 1: Simulation of fine-grain access control overheads.

Barnes, increasing the invocation overhead from O to

1000 cycles decreases performance less than increas-

ing the lookup overhead from O to 5 cycles.

3 Access Control in Blizzard

Blizzard is our system that implements the Tempest

interface on a Thinking Machines CM-5. Tempest

is a communication and memory management inter-

face [32] that can be supported on on a wide range of

systems, ranging from multi-million-dollar supercom-

puters to low-cost clusters of workstations. Tempest

provides four basic mechanisms necessary for both

fine-grain shared memory and message passing [32]:

active messages, bulk data transfer, virtual memory

management, and fine-grain access control. This sec-

tion presents an overview of Blizzard, with a focus on

alternative implementations of fine-grain access con-

trol. Although we implemented these techniques for

Tempest, they could also be used in other distributed-

shared-memory systems.

Blizzard consists of a modified version of the CM-5

operating system and a user-level library. A shared-

memory program is executed by compiling it with

a standard compiler (e.g., gee), linking it with the

Blizzard library and a Tempest-compliant user-level

protocol (e.g., Stache [32]), and running it on a CM-5

with the modified OS.

The next section describes our modifications to
the CM-5 operating system. We then describe the

three implementations of fine-grain access control:

Blizzard-S, Blizzard-E, and Blizzard-ES.

3.1 Kernel Support for Blizzard

The Thinking Machines CM-5 [14] is a distributed-

memory message-passing multiprocessor. Each pro-

cessing node consists of a 33 MHz SPARC micropro-

cessor with a 64 KB direct-mapped unified cache and

a memory management unit, up to 128 MB of mem-

ory, a custom network interface chip, and optional

custom vector units,

Blizzard uses a variant of the “executive interface”

extensions developed for the Wisconsin Wind Tunnel

[30]. These extensions provide protected user-level

memory-management support, including the ability

to create, manipulate, and execute within subordi-

nate contexts. The executive interface also provides

support for fine-grain access control using a mem-

ory tag abstraction. Although the executive interface

provides the required functionality, there are several

important differences discussed below.

First, the executive interface is optimized for

switching contexts on all faults, which incurs a

moderately-high overhead due to SPARC register

window spills, etc. Tempest handles faults in the

same address space and runs most handlers to com-

pletion. This change allowed a much faster imple-
ment ation, in which exceptions (including user-level

message interrupts) are handled on the same stack.

Exceptions effectively look like involuntary procedure

calls, with condition codes and other volatile state

passed as arguments. In the common case, this inter-

face eliminates all unnecessary stack changes and reg-

ist er window spills and restores. Furthermore, han-

dlers can usually resume a faulting thread without

entering the kernel. A kernel trap is only required in

the relatively rare cases when the handler must re-
enable hardware message interrupts or the SPARC

PC and NPC are not sequential.

Second, Tempest requires that active message han-
dlers and access fault handlers execute atomically.

However, we use the CM-5’s user-level message in-

terrupt capability to implement our active message

model. To preserve atomicity, we need to disable

user-level interrupts while running in a handler. Un-

fortunately, the CM-5 does not provide user-level ac-

cess to the interrupt mask, so it requires expensive
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kernel traps to both disable and re-enable interrupts.

Instead, we use a software interrupt masking

scheme similar to one proposed by Stodolsky, et al.

[35]. The key observation is that interrupts occur

much less frequently than critical sections, so we

should optimize for this common case. This approach

uses a software flag to mark critical sections. The

lowest-level interrupt handler checks this %oftware-

disable” flag. If it is set, the handler sets a “deferred-

interrupt” flag, disables further user-level hardware

interrupts, and returns. On exit from a critica,l sec-

tion, code must first clear the software-disable flag

and then check for deferred interrupts. After process-

ing deferred interrupts, the user-level handler traps

back into the kernel to re-enable hardware interrupts.

Stodolsky, et al.’s implementation uses a static vari-

able to store the flags. To minimize overheaci, our

scheme uses a global register.

3.2 Blizzard-S: Software

Blizzard-S implements fine-grain access control en-

tirely in software, using a variant of the Fast-Cache

simulation system [22]. Fast-Cache rewrites an exist-

ing executable file [21] to insert a state table lookup

before every shared-memory reference. The lookup

table is indexed by the virtual address and contains

two bits for each 32-byte block (the size is a compile-

time constant). The state and reference type (i.e.,

load or store) determine the handler. When the

current state requires no action (i.e., a load to a

ReadWrite block) Blizzard-S invokes a special NULL

handler which immediately resumes execution, Oth-

erwise, it invokes a user handler through a stub that

saves processor state. With the table lookup and null

handlers, Blizzard-S avoids modifying the SPARC

condition codes, which are expensive to save and re-

store from user code. Although Blizzard-S reserves

address space for a maximum sized lookup talble, it

allocates the table on demand, so memory overhead

is proportional to the data set size.

The lookup code uses two global registers left un-

used by programs conforming to the SPARC applica-

tion binary interface (ABI). These registers are tem-

poraries used to calculate the effective address, index
into the lookup table, and invoke the handler. The

current implementation adds 15 instructions (18 cy-

cles in the absence of cache and TLB misses) before

all load and store instructions that cannot be deter-

mined by inspection to be a stack reference. Simple

optimizations, such as scavenging free registers and
recognizing redundant tests could lower the average
overhead, but these were not completed in time for

inclusion in this paper.

To avoid inconsistency, interrupts cannot be pro-

cessed between a lookup and its corresponding refer-

ence. Disabling and re-enabling interrupts on every

reference would increase the critical lookup overhead.

Instead, we permanently disable interrupts with the

software flag described above, leaving hardware in-

terrupts enabled, and periodically poll the deferred-

interrupt flag. Because the deferred-interrupt flag is

a bit in a global register, the polling overhead is ex-

tremely low. Our current implementation polls on

control-flow back-edges.

3.3 Blizzard-E: ECC

Although several systems have memory tags and

fine-grain access control, e.g., J-machine [10], most

contemporary commercial machines—including the

CM-5—lack this facility, In Blizzard-E, we synthe-

sized the Invalid state on the CM-5 by forcing uncor-

rectable errors in the memory’s error correcting code

(ECC) via a diagnostic mode [30, 31]. Running the

SPARC cache in write-back mode causes all cache

misses to appear as cache block fills. A fill causes

an uncorrectable ECC error and generates a precise

exception, which the kernel vectors to the user-level

handler. The Wisconsin Wind Tunnel [31] and Tape-

worm II [36] both use this ECC technique to simulate

memory systems.

This technique causes no loss of reliability. First,

uncorrectable ECC faults are treated in the normal

way (e.g., panic) unless a program specified a han-

dler for a page. Second, the ECC is only forced

“bad” when a block’s state is Invalid, and hence the

block contains no useful data. Third, the Tempest

library and kernel maintain a user-space access bit

vector that verifies that a fault should have occurred.

The final possibility is that a double-bit error changes

to a single-bit error, which the hardware automati-

cally corrects. This is effectively solved by writing

bad ECC in at least two double-words in a memory

block, so at least two single bit errors must occur.

Unfortunately, the ECC technique provides only

an Invalid state. Differentiating ReadOnly and Read-

Write is more complex. Blizzard-E uses the MMU to

enforce read-only protection. If any block on a page

is ReadOnly, the page’s protection is set read-only.

On a write-protection fault, the kernel checks the ac-
cess bit vector. If the block is Read Only, the fault is

vectored to the user-space Blizzard-E handler. If the

block is Read Write, the kernel completes the write

and resumes the application. Despite careful coding,

this path through the kernel still requires w230 cycles.

Protection is maintained in two ways. First, this

check is only performed if the user has installed an
access bit vector for the page. This ensures that

write faults are only processed in this fashion on

Blizzard-E’s shared-data pages. Second, the kernel

uses the SPARC MMU’S “no fault” mode to both
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Benchmark Brief Description Input

Appbt Computational fluid dynamics 32s, 10iters
Barnes Barnes-Hut N-body simulation 8192 bodies
Mp3d Hypersonic flow simulation 24000 mols, 50 iters
Ocean Hydrodynamic simulation 386 x 386, 8 days
Tomcatv Parallel version of SPEC benchmark 10262, 50 iters
Water Water molecule simulation 256 mols, 10 iters

Table 3: Benchmark descriptions.

Application Blizzard-E Blizzard-S Blizzard-ES Blizzard-P KSR-1

Appbt 137 177 142 732
(1.00) (1.29) (1.04) (5.35) (0.$

Barnes 288
(1.o~ (1.2: (1.o~ (6.05) (0.14;

Mp3d 134 132 147 716
(1.00) (0.98) (1.09) (5.33) (0.1%

Ocean 111 380

(1.0% (1.37) (1.o~ (4.67) (0.$

Tomcatv 162 478

(1.o~ (2.08) (1.1; (6.12) (1.23

Water

(1.03 (1.4: (1.03 (1.73 (o.2j

Table4: Execution time in CPUseconds and (in parentheses) relative to Blizzard-E.

read the access bit vector and perform the store, al-

lowing it to safely perform these operations with traps

disabled.

3.4 Blizzard-ES: Hybrid

We also implemented a hybrid version of Blizzard

that combines ECC and software checks. It uses ECC

to detect the Invalid state for load instructions, but

uses executable rewriting to perform tests before store

instructions. This version—Blizzard- ES—eliminates

the overhead of a software test for load instructions

and the overhead introduced for stores to Read Write

blocks on read-only pages in Blizzard-E.

3.5 Blizzard Performance

We examined the overall performance of Blizzard for

six shared-memory benchmarks, summarized in Ta-

ble 3. These benchmarks—four from the SPLASH

suite [34] —were written for hardware shared-memory
systems. Page-granularity DSM systems generally

perform poorly on these codes because of their fine-

grain communication and write sharing [9].

We ran these benchmarks on five 32-node systems:

Blizzard-E, Blizzard-S, Blizzard-ES, Blizzard-P, and

a Kendall Square KSR- 1. The first three Blizzard

systems use a full-map invalidation protocol imple-

mented in user-level software (Stache) [32] with a

128-byte block size. Blizzard-P is a sequentially-

consistent, page-granularity version of Blizzard. The

KSR-1 is a parallel processor with extensive hardware

support for shared memory. Table 4 summarizes the

performance of these systems. It contains both the

measured times of these programs and the execution

time relative to that of Blizzard-E.

Blizzard-E usually ran faster than Blizzard-S

(27%-108%), although for Mp3d, Blizzard-S is 2%

faster. Blizzard-E’s performance is generally better

for computation-bound codes, such as Tomcatv, in

which remote misses are relatively rare. Blizzard-S

performs well for programs, such as Mp3d and

Barnes, that have frequent, irregular communication

and many remote misses. Surprisingly, Blizzard-ES

is always worse than Blizzard-E. This indicates that

writes to cache blocks on read-only pages are infre-

quent and that synthesizing Tempest’s four mem-

ory states by a combination of valid bits and page-

level protection is viable. Blizzard-P predictably per-

forms worse than the fine-grain shared-memory sys-

tems (74Y0 to 512% slower than Blizzard-E) because

of severe false-sharing in these codes. Relaxed consis-
tency models would certainly help, but we have not

implemented them.

To provide a reference point to gauge the abso-

lute performance of Blizzard, we executed the bench-

marks on a commercial shared-memory machine, the

KSR-1.1 The KSR-1 ranges from almost 7 times

faster to 20’% slower than Blizzard-E. These results

lKSR operating system version R1.2.1.3 (release) and C

compiler version 1.2.1.3-1.0.2.
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are encouraging given the KSR-1’S extensive hard-

ware support for shared memory and relative perfor-

mance of the processors. The KSR-1 uses a custom

dual-issue processor running at 20 MHz, while the

CM-5 uses a 33 MHz SPARC. Uniprocessor measure-

ments indicate that the CM-5 has slightly higher per-

formance for integer codes, but much lower floiiting-

point performance. (We currently do not support the

CM-5 vector units.)

The variation in KSR-1 performance can be ex-

plained by the ratio of computation to communica-

tion in each program. Appbt, Ocean, and Water are

dominated by computation. On these benchmarks,

Blizzard-E’s performance is within a factor of four of

the KSR-1, which is consistent with the difference in

floating point performance. Tomcatv is also compute-

bound and should behave similarly; we were unable

to determine why it performs poorly on the KSR-l.

Most of TomcatzJ’s computation is on large, private

arrays, and it is possible that the KSR- 1 suffers ex-

pensive, unnecessary remote misses on these a~rrays

due to cache conflicts. Mp3d incurs a large number

of misses due to poor locality [8]. The high miss ratio

explains both Blizzard-E’s poor performance relative

to the KSR-land Blizzard-S’s ability to outperform

Blizzard-E. Barnes also has frequent, irregular com-

munication that incurs a high penalty on Blizzard.

4 Summary and Conclusions

This paper examines implementations of fine-grain

memory access control, a crucial mechanism for effi-

cient shared memory. It presents a taxonomy of alter-

natives for fine-grain access control. Previous shared-

memory systems used or proposed hardware-intensive

techniques for access control. Although these tech-

niques provide high performance, the cost of addi-

tional hardware precludes shared memory from low-

cost clusters of workstations and personal computers.

This paper describes several alternatives for fine-

grain access control that require no additional hard-

ware, but provide good performance. We imple-

mented three in Blizzard, our system that supports

fine-grain distributed shared memory on the Think-

ing Machines CM-5. Blizzard-S relies entirely on soft-

ware and modifies an application’s executable to in-

sert a fast (15 instruction) access check before each

load or store. Blizzard-E uses the CM-5’s memory

error correcting code (ECC) to mark invalid cache-

block-sized regions of memory. Blizzard-ES is a hy-

brid that combines both techniques. The relative per-
formance of these techniques depends on an applica-

tion’s shared-memory communication, but on six pro-
grams, Blizzard-S ran from 2% faster to 108% slower

than Blizzard-E.

We believe that the CM-5’s network interface and

network performance is similar to facilities that will

be available soon for commodity workstations and

networks, so Blizzard’s performance is indicative of

how these techniques will perform on widely-available

hardware in the near future. We ran six applica-

tions, written for hardware shared-memory machines,

and compared their performance on Blizzard and the

KSR-1. The results are very encouraging. Blizzard

outperforms the KSR- 1 for one program. For three

others Blizzard is within a factor of 2.4–3.6 times.

Only two of the six applications run more than four

times faster on the KSR- 1, and none more than seven

times faster, despite its hardware shared-memory

support and faster floating-point performance.

While Blizzard on the CM-5 will not supplant

shared-memory machines, these results show that

programmers need not eschew shared memory in or-

der to run on a wide variety of systems. A portable

interface—such as Tempest—can provide the same

shared-memory abstraction on a cluster of personal

computers as on a supercomputer. The software

approach of Blizzard-S provides an acceptable com-

mon denominator for widely-available low-cost work-

stations. Higher performance, at a higher price,

can be achieved by tightly-coupled parallel super-

computers, either current machines like the KSR-1

and KSR-2 or future machines that may resem-

ble Typhoon or FLASH. The widespread availabil-

ity of shared-memory alternatives will hopefully mo-

tivate manufacturers to develop midrange systems

using Blizzard-Elike technology (e.g., the Nimbus

NIM6133).
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