
The Wisconsin Wind Tunnel:

Virtual Prototyping of Parallel Computers*

Abstract

Steven K. Reinhardt, Mark D. Hill, James R. Larus,

Alvin R. Lebeck, James C. Lewis, and David A. Wood

Computer Sciences Department

University of Wisconsin–Madison

1210 West Dayton Street

Madison, WI 53706 USA

wwt@cs.wise.edu

We have developed a new technique for evaluating

cache coherent, shared-memory computers. The Wis-

consin Wind Tunnel (WWT) runs a parallel shared-

memory program on a parallel computer (CM-5)

and uses execution-driven, distributed, discrete-event

simulation to accurately calculate program execution

time. WWT is a virtual prototype that exploits sim-

ilarities between the system under design (the tar-

get) and an existing evaluation platform (the host).

The host directly executes all target program instruc-

tions and memory references that hit in the target

cache. WWT’S shared memory uses the CM-5 mem-

ory’s error-correcting code (ECC) as valid bits for

a fine-grained extension of shared virtual memory.

Only memory references that miss in the target cache

trap to W WT, which simulates a cache-coherence

protocol. WWT correctly interleaves target machine

events and calculates target program execution time.

WWT runs on parallel computers with greater speed
and memory capacity than uniprocessors. WWT’S

simulation time decreases as target system size in-

creases for fixed-size problems and holds roughly con-

stant as the target system and problem scale.

*This work is supported in part by NSF PYI Awards CCR-

9157366 and MIPS-8957278, NSF Grant CCR-9101O35, Univ.

of Wisconsin Graduate School Grant, Wisconsin Alumni Re.

search Foundation Fellowship and donations from A.T.&T.

Bell Laboratories and Digital Equipment Corporation. Our

Thinking Machines CM-5 was purchased through NSF Institu-

tional Infrastructure Grant No. CDA-9024618 with matching
funding from the Univ. of Wisconsin Graduate School.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and ita date appear, and notice ia given

that copying is by permission of the Association for Computing

Mschinery. To COPY otherwise, or to republish, requires a fee

and/or specific permission.
1993 ACM SlGMETRlCS-5/93 /CA, USA

01993 ACM O-89791 -581 -X1931000510048 . ..$1 .50

1 Introduction

The architecture of a parallel computer is a specifica-

tion of an interface between software and hardware.

The complex interactions in a system of this type

are best studied by running and measuring real ap-

plications. Paper studies, analytic models, and sim-

ulations of abstract workloads can uncover architec-

tural flaws. Nevertheless, running real applications

and system software can expose software and hard-

ware problems that other techniques cannot find and

encourages improvements through successive refine-

ment [10].

The two well-known methods for evaluating par-

allel computer architectures with real workloads are

execution-driven simulation and hardware prototyp-

ing. Call the computer under study the target ma-

chine and the existing computer used to perform the

evaluation the host machine. With execution-driven

simulation, researchers write a host machine program,

called a simulator, that interprets a target machine

program, mimics the operation of the target machine,

and estimates its performance [10]. By contrast, with

hardware prototyping, researchers build a copy (or a

few copies) of the target system, execute target pr~

grams, and measure their performance [21].

Execution-driven simulation and hardware proto-

typing offer largely complementary advantages and

disadvantages. Simulators can be constructed rela-

tively quickly, can be modified easily, and can com-

pare radically different alternatives. However, simu-
lators often are too slow and run on machines without

enough memory to simulate realistic workloads and

system parameters. Parallel target machines exacer-

bate the deficiencies of execution-driven simulation,

since a single host must simulate many processors. A

uniprocessor workstation host with 128 megabytes of

memory, for example, cannot simulate even 64 proces-

sors with 4 megabytes each. Hardware prototypes, on

the other hand, run fast enough to execute real work-

48

Processor Nodm

m$isiil
-

Figure 1: Organization of a parallel computer. Many
parallel computers are composed of processor nodes, each
of which contains a CPU, cache, and 10CSJmemory. The
nodes are connected by an interconnection network (e.g.,
a 2D mesh or fat tree).

loads, but are expensive, require years to construct,

and are difficult to modify,

Our evaluation method combines the advantages

and mitigates the disadvantages of execution-driven

simulation and hardware prototyping by exploiting

the commonality in parallel computers. The common

hardware base (see Figure 1) consists of a collection of

processing nodes connected by a fast network. Each

node cent ains a processor, memory module, network

interface, and often a cache. Of course, computers

differ in network topologies; processor architectures;

and, most important, in the primitives built on the

base hardware. For example, although interconnec-

t ion networks exchange messages, some machines ex-

pose this facility (e.g., Intel Paragon) while others

use it to construct a shared-memory abstraction (e.g.,

Kendall Square KSR-1).

A new approach to exploiting this commonality

underlies our system for evaluating cache-coherent,

shared-memory computers. The Wisconsin Wind

Tunnel (WWT) runs a parallel shared-memory pro-

gram on a parallel message-passing computer (a

CM-5) and concurrently calculates the program’s ex-

ecution time on the proposed system. We call WWT

a virtual prototype because it exploits similarities be-

tween the system under design (the target) and an

existing evaluation platform (the host). In W WT,

the host directly executes all target instructions and

memory references that hit in the target cache. Di-

rect execution means that the host hardware executes

target program operations—for example, a floating-

point multiply instruction runs as a floating-point

multiply [5, 6, 10, 12]. Simulation is only necessary
for target operations that a host machine does not

support. Direct execution runs orders of magnitude

faster than software simulation [10].

A unique aspect of WWT is that it directly exe-

cutes memory references that hit in a target cache.

Other direct-execution simulators test for a cache hit

before every memory reference. WWT uses the CM-5

memory’s error-correcting code (ECC) as valid bits

to build a fine-grained extension of Li’s shared vir-

tual memory [22]. Only the memory references that

miss in the target cache trap to WWT, which simu-

lates a cache coherence protocol by explicitly sending

messages.

WWT, like uniproceasor execution-driven simula-

tors, correctly interleaves target machine events and

calculates target program execution times. Because

WWT runs on a parallel computer, it requires two

new techniques to integrate distributed simulation on

a parallel computer with direct execution of target

processes. First, WWT manages target node interac-

tions by dividing execution into lock-step quanta to

ensure all events originating on a remote node that

affect a node in the current quantum are known at

the beginning of the quantum. Second, WWT orders

all events on a node for the current quantum and di-

rectly executes the process up to its next event.

The key contributions of this work are the develop-

ment and demonstration of the two techniques nec-

essary to build virtual prototypes of parallel, cache-

coherent, shared-memory computers. The first tech-

nique is fine-grained shared virtual memory, which

enables shared-memory programs to run efficiently on

non-shared-memory computers (Section 3). The sec-

ond technique is the integration of direct execution

and distributed, discrete-event simulation, which to-

gether efficiently run a parallel shared-memory pro-

gram and accurately compute its execution time (Sec-

tion 4). Section 5 compares W WT with a uniproces-

sor simulation system (Stanford’s Tango/Dixie) sim-

ulating the Stanford DASH multiprocessor. Section 6

describes related work, Section 7 describes extensions

and future work. Section 8 presents our conclusions.

2 Background

This section provides background by briefly review-

ing machines that we want to simulate (Section 2.1),

important characteristics of the host machine (Sec-

tion 2.2), and simulation techniques (Section 2.3).

2.1 Cache-Coherent, Shared-Memory

Target Machines

Figure 1 illustrates the essential features of a target

machine. It has IV processors, where IV currently can-

not exceed the number of host processors (however,

49

see Section 7). To permit high-bandwidth access,

memory is divided into IV memory modules, each of

which is physically adjacent to a processor. A pro-

cessor, memory module, cache, and network interface

form a procewing node. Nodes are connected by an

interconnection network that delivers point-to-point

messages.

%:nx% M
virtual Address

Specs space

I stack
1) 4 v

Segmem SIacn

Private Data {
Segment

VH

VOW-state
(Oeta)

Target Texl
segment WWT Text

Segmem

Figure 2: The target program’s address space is shown
on the left. The virtual prototype’s (WWT) address
space (right) is a separate SPARC context. The ar-
rows show how WWT maps target data into its address
space. Dashed lines indicate that a mapping exists only
for pages containing cached blocks. The mappings are

logical and implemented with virtual address aliases to

common physical pages.

The target machine supports shared memory by

allowing all processors to address a single virtual ad-

dress space. The current target programs are single-

program-multiple-data (SPMD) shared-memory pro-

grams that run one process per node. Each process’s

virtual address space contains four segments—text

(code), private data, shared data, and stack–as illus-

trated on the left side of Figure 2. All processes iden-

tically map the shared-data segment. Other segments

are mapped to physically local memory, so distinct

processes access different private locations. Shared
data is interleaved by placing successive pages (> 4K

bytes) on successive nodes.

To reduce average memory latency, each cache

holds blocks (~ 32 bytes) recently referenced by its

processor. A processor node handles a cache miss
by sending a message to the referenced block’s home

node and receiving the block’s contents in a reply

message. Processors use a directory protocol to keep

cache and memory blocks coherent [1]. Typically, a

directory is distributed so a directory entry and mem-

ory block reside on the same node. The directory

protocol determines the contents of a directory entry

and the messages used to maintain coherence.

We assume that the execution time for each in-

struction is fixed. Instruction fetches and stack refer-

ences require no cycles beyond the basic instruction

time. Other memory locations are cached in a node’s

cache. A cache hit requires no additional cycles, while

a cache miss invokes a coherence protocol that sends

messages, accesses a directory entry, etc. All mes-

sages and cache or directory transitions have a cost,

A cache or directory processes messages in first-come-

first-serve (FCFS) order. Queuing delay is included

in the cache miss cost. Network topology and con-

tention are ignored, and the latency of all messages

is fixed at T cycles.

2.2 TMC CM-5 Host

The host platform for WWT is

chines CM-5 [9]. The architecture

a Thinking Ma-

supports from 32

to 16,384 processing nodes. Each node contains a

SPARC processor, cache, memory management unit

(MMU), custom vector/memory controller units, up

to 128 MB of memory, and a custom network inter-

face. Nodes are connected by two user-accessible net-

works. The data network allows a program to send

short (five-word) point-to-point messages, but does

not guarantee order of arrival. The control network

performs fast barriers, broadcasts, and parallel prefix

computations. W WT does not use the vector units.

2.3 Distributed, Discrete-Event Simu-

lation

In discrete-event simulation, the target system (some-

times called the physicai system) is modeled by a set

of state variables that make discrete transitions in re-

sponse to events [13]. A uniprocessor host computer

performs discrete-event simulation by removing the

first event from an event list (ordered by target time),

processing the event to change the system state, and

scheduling zero or more events. Distributed, discrete-
event simulation partitions the target system’s state

and event lists among the multiple processing nodes

of a parallel host system. Generally, each node pro-

cesses events in a manner similar to a uniprocessor

and sends messages to other nodes to schedule events

that affect remote state. The fundamental difficulty

is to determine the next event. The first event in the

local event list may not be the event that should be

processed first, because a message may subsequently

arrive with an event from an earlier target time.

50

Aggressive distributed, discrete-event simulation

algorithms optimistically process the local event list

and exchange information that causes rollbacks of

prematurely-processed events. By contrast, conser-

vative algorithms ensure causality by exchanging in-

formation to determine when the first item in the lG

cal list can be processed safely. A node processes its

first event only when no node will subsequently send

an earlier event. Section 4.1 describes W WT’S con-

servative technique and Section 6 compares it with

related algorithms.

3 Parallel Direct Execution of

Shared-Memory Programs

This section describes how WWT directly executes

shared-memory programs on the CM-5. The next sec-

tion provides details of the performance calculation.

Non-shared-memory machines, such as the CM-5, do

not provide hardware mechanisms to handle cache

misses on remote memory references. W WT simu-

lates this mechanism with a software trap handler

that is invoked on target cache misses. Our approach

is a fine-grained extension of Li’s shared virtual mem-

ory. With this technique, WWT directly executes all

instructions and all memory references that hit in the

target cache. Only target cache misses require simu-

lation.

Li’s shared virtual memory (SVM) [22] implements

shared memory on a distributed-memory system.

Pages local to a processor are mapped into the pro-

cessor’s virtual address space. A remote page is left

unmapped so a reference to it causes a page fault,

which invokes system software to obtain the page.

Although SVM allows direct execution of memory

references, sharing is limited to page granularity (typ-

ically 4K bytes), which is much larger than target

cache blocks (e.g., 128 bytes). WWT refines SVM

to support fine-grained sharing by logically adding “

a valid bit to every 32 bytes in the host pages un-

derlying the target cache. An access to an invalid

block traps and software simulates a cache coherence

protocol that obtains the block. The CM-5 does not

provide memory valid bits, but it does provide precise

interrupts on double-bit error correcting code (ECC)

errors. WWT marks invalid blocks with a bad ECC

value, which causes a trap on loads and stores.

WWT target programs are SPARC binaries that

run directly on the CM-5’s SPARC processors. As

described in Section 2.1, each target process sees the
virtual address space illustrated on the left side of

Figure 2. WWT runs in a different SPARC context.

The right side of Figure 2 illustrates WWT’S virtual

address space, all of which is mapped to local mem-

ory. The text segment holds WWT code and the

stack segment contains WWT’S and the target pro-

gram’s stack. WWT’S data is divided into four re-

gions: WWT-state, target text, target node memory,

and cache page frames (CPFS). W WT-st ate holds

WWT-specific data structures. Target text is a copy

of the target program. Target node memory holds
all data that resides in the target node’s local mem-

ory module and is logically equivalent to the target

node’s physical memory. 1 Finally, WWT uses CPFS

to model the target node’s cache, as explained below.

To understand how WWT models a cache, let’s fol-

low the steps (under a simple cache coherence proto-

col) when a memory reference misses in the cache.

Initially, the target’s private and shared data seg-
ments are unmapped so the first reference to a page

generates a fault that the CM-5 passes to WWT. This

reference would be a cache miss on the target shared-

memory machine. W WT regains control on all cache

misses so it can simulate the target cache.

Assume for a moment that the target cache’s block

size equals the host page size (4K bytes). In this

case, WWT handles a cache miss in a similar manner

as shared virtual memory (SVM) [22]. Upon a cache

miss, WWT allocates a page from the pool of CPFS

and changes the target’s page tables so the faulting

address maps to the CPF. WWT then simulates the

target cache-coherence protocol by sending messages

to other processors to obtain the referenced block and

update directory information. Finally, W WT writes

the block to the allocated page and resumes the target

program. Subsequent references to the same block

execute directly. WWT removes a block from the

cache-either because of cache replacement or a co-

herence message--by unmapping the CPF and re-

turning the block’s data to its home memory mod-

ule. As a further refinement, we simulate a transla-

tion lookaside buffer (TLB) by selectively unmapping

CPFS.

Cache blocks in foreseeable systems will be much

smaller than 4K bytes, so WWT simulates multiple

blocks per host page. WWT logically adds a valid bit

to each block in a mapped CPF page. On a target

cache miss to a previously unrefenced page, WWT

maps the page into a CPF (as above), writes the

block’s data into a valid block, and marks as invalid

all other blocks on the page. Subsequent references

to these blocks cause an “invalid” trap that WWT

1W WT can model machines in which private and shared

data is stored in the same cache-by storing private data in

CPFs-or stored separately-by mapping private data to tar-

get node memory.

51

services similarly.

Since the CM-5, like most machines, does not pro-
vide valid bits, we synthesize them from existing

hardware. We divide the CPF pages into blocks of

the same size as those in the CM-5’s SPARC cache

(32 bytes). WWT marks a block invalid by using a

CM-5 diagnostic mode to change the error correcting

codes (ECC) for the block’s memory double-words

to invalid values that cause a double-bit ECC error.

By running the CM-5’s SPARC cache in write-back

mode, all target memory references appear to the
memory controller as 32-byte cache fills. A cache

fill of a valid block loads the data into the SPARC

cache. An invalid block incurs a double-bit ECC er-

ror, which causes the memory controller to interrupt

the processor and transfer control to WWT.

Target cache blocks larger than 32 bytes are easily

handled by having WWT manipulate aligned groups

of 32-byte blocks. Read-only blocks require setting

the block’s page protection to read-only, which causes

protection violations on writes. Regrettably, protec-

tion must be read-only if any block in a page is read-

only. A write to another, writable block in the page

causes a protection violation, but W WT determines

that the write is permissible and completes it.

Conservative users may be surprised to learn that

WWT’S use of ECC bits has little effect on the CM-5’s

standard ECC coverage. Most memory is outside the

CPFS and unaffected by our use of the ECC bits.

Valid blocks within the CPFS have valid ECC. On

an ECC error, WWT checks a block’s validity. If the

block is invalid, W WT simulates a cache miss. Other-

wise, W WT signals a true. ECC error. However, a bit

error could make an invalid block appear valid. Writ-

ing invalid ECC codes in the two double words in a

block ensures that two single-bit errors are necessary

to cause this problem.

4 Calculating Performance

The discussion above described how WWT accurately

and efficiently mimics the functionality of a cache-

coherent, shared-memory computer. Functional sim-

ulation without performance metrics, however, is in-
sufficient to study and compare computer architec-

tures. A program’s running time is the single most

important metric in determining how well the pro-

gram runs on a computer. This section describes how

W WT computes a program’s execution time on a tar-

get machine.

WWT adds logical clocks to target processes, pro-

tocol messages, directory hardware, etc. to enable

WWT to model latencies, dependencies, and queuing.

The result is an event-driven simulation of a parallel
target machine that runs on a parallel host machine.

WWT differs from other distributed, discrete-event

simulators [13] because its workload is an executing

program. Driving a simulation from an executing tar-

get program requires new techniques because of the

frequency with which the program modifies the tar-

get machine’s state. By contrast, a queuing network

simulation only modifies target state on job arrival

and departure. Treating every instruction execution

as an event would be prohibitively costly and would

forfeit the benefits of the efficient functional simula-

tion described above.

WWT uses two techniques to combine the dis-

tributed simulation of a parallel computer with di-

rect execution. First, WWT manages interproces-

sor interactions by dividing program execution into

lock-step quanta to ensure all events originating on a

remote node that affect a node in the current quan-

tum are known at the quantum’s beginning. Sec-

ond, WWT orders all events on a node for the cur-

rent quantum and directly executes the process up

to its next event. These two techniques result in

an efficient simulation that delivers accurate, repro-

ducible results without approximations. Section 4.1

describes how WWT simulates interactions among

processor nodes. Section 4.2 shows how WWT in-

tegrates direct-execution of target programs with

discrete-event simulation.

4.1 Inter-Node Simulation

In this section, we ignore the details of WWT’S pro-

cessor simulation. From this perspective, W WT per-

forms a distributed, discrete-event simulation that ex-

ploits characteristics of the target and host machines.

First, rollback is impractical because directly exe-

cuted programs can modify any part of a target pro-

cessor’s state (e.g., registers and memory). Second,

determining the local time of nodes that could po5

sibly send an event is expensive because any target

node can communicate with any other target node.

Third, our host system hardware (the CM-5) does not

guarantee that messages from one host node to an-

other node arrive in order. However, the CM-5 does
provide hardware support for efficient reductions.

WWT coordinates simulation of processor nodes

by breaking the target program’s execution into lock-

step quanta Q target machine instruction cycles long.

Every quantum ends with a CM-5 reduction that en-

sures all outstanding messages containing events are

received, Setting Q ~ T (where T is the minimum

latency of the target machine’s interconnection net-

work) guarantees that at the beginning of a quan-

52

turn, a host node hss received all remotely-generated

events that could affect the target node in the quan-

tum, because:

s all messages containing events that originated

during the previous quantum have been deliv-

ered, and

● all events produced during the current quantum

cannot affect target state on other nodes during

this quantum.

We choose this approach because it avoids roll-

backs, makes good use of the ethcient CM-5 reduc-

tions, and tolerates unordered data messages. In

practice, the technique works well, as the numbers in

Section 5 demonstrate. Section 6 discusses how the
technique relates to other distributed, discrete-event

simulation algorithms.

4.2 Node Simulation

This section explains how WWT coordinates direct

program execution with the distributed, discrete-

event simulation. On each host node, WWT runs
the target program up to the first event, processes

the event, and continues running the program up to

the next event or until the quantum expires. If the

local program produces events (e.g., cache misses),

they are easily added to the event list.

WWT directly executes many instructions consecu-

tively by identifying the points in a program at which

events can interact with the program and only check-

ing for a pending event at these points. Instructions

that do not access memory only affect a processor’s

local state and neither cause nor are directly affected

by shared-memory events. These instructions execute

directly. A memory reference produces an event when

it misses in the target machine’s cache. Fortunately,

fine-grained shared virtual memory (Section 3) effi-

ciently identifies these memory references and returns

control to WWT. Finally, shared-memory references

can interact with events caused by other processor

nodes. For example, another processor can steal a

cache block from the local node. These events must

be carefully coordinated so state changes occur at the

correct point with respect to the local program’s exe-

cution. Because W WT knows all non-local events at

the beginning of a quantum, it runs the program up

to the first event, changes the cache or directory state

as dictated by the event, and continues the program.

Each WWT host node performs the discrete-event

simulation of a target node by repeatedly processing

the first event in the local event list and performing an

appropriate action. Target machine coherence proto-

col messages are sent via CM-5 data messages. WWT

timestamps each message with its sending time plus

T (to model the target network latency). When a

data message is received, WWT inserts its event on

the local event list. WWT also schedules a quantum-

expiration event every Q target cycles. This event

causes a host node to wait for all other nodes to reach

a barrier and all data messages to reach their desti-

nation. WWT uses the CM-5’s fast reductions to

determine when all messages are delivered.

WWT currently processes requests on a target di-

rectory at the request’s arrival time rather than en-

queuing the request until its service time. This op-

timization, advocated by Ayani [3], is possible be-

cause the directory uses first-come-first-serve queu-

ing in which an event is unaffected by events that ar-

rive after it. The optimization is important because

directory service and completion events need not be

enqueued and the running program is interrupted less

often. WWT processes external requests on a target

cache in the same fashion as directory requests.

— Initialization not shown

while (simulation not complete) do
begin

wl-dle (time (cpu) z time (event-queue. head)) do
begin

— Process interproce.wor events that occur

— before the next instruction execution.

— Remember: quantum expiration is event.

first-event = dequeue (event-queue);

process-event (first.event);

end

— Run the target program up to the next event,

— Apermitted cycles in the future.

Apermstted = time (first-event) - time (cpu);

— AoCtUal is the actual time that the program ran.

Aact..l =)“run-program (Permitted ,

time (cpu) = time (CPU) + A.ctua[;

end

Figure 3: WWT’S event loop.

Figure 3 shows WWT’S event processing loop. The

routine run-program runs the target program and re-

turns control to WWT at the first target cache miss

or before the first memory reference that executes
at or after APermitted cycles. The program need not

stop precisely at Apernaitted cycles, because additional
instructions that do not reference memory cannot in-

teract with external events. The function returns

the amount of time that the program actually ran

(A~.t.~/). On a cache miss, 0< A~.tti~/ < APerrnitte~,

53

so the cache miss occurs before the first event in the

local event list. If the memory access references the

local memory module, its event is inserted before the

former (and still unprocessed) first event and the loop

continues. If the miss references a remote memory

module, WWT sends a message, suspends the pro-

gram, and processes the event list since the response

to the message cannot arrive until the next quantum.

rwn.program returns control of the host processor

to the target program. WWT ensures that the tar-

get program always returns before the next event by

using a modified version of qpt [4] to add quick tests

to the target program’s binary executable. Before

resuming the target program, W WT sets a counter

in a global register to Apermitted. Conceptually af-

ter each instruction, the instrumented target program

decrements the counter by the instruction’s static cy-

cle cost. For memory references, this cost assumes

a cache hit. On a cache miss, W WT regains control

and accounts for the miss penalty. To improve perfor-

mance, the cycle counter is actually decremented only

before non-private references and at the end of ba-

sic blocks. The instrumented program only tests the

counter before non-private references. If the counter

is negative, the program returns control to W WT,

which processes the next event before executing the

memory reference. The decrement and test each re-

quire a single instruction and consequently do not

greatly affect the program’s execution time.

5 A Comparison

To improve upon direct-execution uniprocessor sim-

ulators, W WT must obtain results of comparable ac-

curacy and run large parallel programs more quickly.

This section shows that WWT produces results sim-

ilar to Stanford’s Tango/Dixie, a direct-execution

uniprocessor simulator. It also shows how WWT

scales to simulate large target systems more effec-

tively than a uniprocessor simulator.

!5.1 Validation

WWT is a complex system for modeling complex

software and hardware systems. To build confi-

dence in WWT, we compared it against an exist-

ing simulator—a process that is often optimistically

called validation. The similar—though not identi-

cal, for reasons discussed below—results increased

our confidence in W WT. Even so, the process did

not prove W WT correct, because testing never proves

software to be correct. The validation only showed

that the two systems produced similar results. It did

I I I Input I Size

Name Application Data Set I (lines)

choleskw I Smrse matrix I bcsstk14 1888

Table 1: Applications used in validation.

These three benchmarks, two from the SPLASH bench-

mark suite [30] and a parallelized version of a SPEC

benchmark [32], were chosen because they make little use

of the math libraries. We could not simulate these li-

braries with Tango, because we did not have MIPS math

library sources.

not demonstrate that either system correctly modeled

a real computer.

We compared WWT against Dixie, a Tango-based

simulation of the DASH multiprocessor [27]. Tango

is a direct-execution simulation system that runs on a

uniprocessor MIPS-based workstation. Tango instru-

ments a target program’s assembly code with addi-

tional code that computes instruction execution times

and calls the simulator before loads and stores. The

Dixie memory system simulation models the DASH

prototype hardware [21]. Together, Dixie and Tango

execute parallel shared-memory programs and esti-

mate system performance.

Our original intent was to perform a black box

comparison by writing our own DASH simulator for

WWT (WWT/DASH) from only published details

and reproducing DASH performance results. Unfor-

tunately, this goal proved impossible because of myr-

iad unpublished, subtle, and detailed design choices

that significantly affect shared-memory system per-

formance. For example, differences in memory allo-

cation (e.g., in malloc and sbrk) resulted in a nearly

100% discrepancy in cache performance.

Instead, we “opened the black box” and modified

both W WT/DASH and Tango/Dixie until they mod-

eled similar syst ems. We made most changes to our
description of DASH. The principal exception was the

memory hierarchy. The DASH multiprocessor has a

four-level memory hierarchy: primary cache, write

buffer, secondary cache, and remote access cache. To

reduce the complexity of our DASH simulation, we

disabled most levels of the hierarchy and simulated

a system with a single direct-mapped cache, no clus-

ters, and T = 100 cycles to send a coherence protocol

message.

During the validation, we found several major dif-

54

Message Counts Simulated Cycles

Application Proc WWT T/D Diff. WWT T/D Diff.

cholesky 4 1253504 1259467 -0.47% 103379891 107713586 -4.02%

cholesky 8 1756122 1747374 0.50% 93356751 99380412 -6.06%

cholesky 16 2197179 2220362 -1.0470 87566479 94468953 -7.31%

mp3d 4 2823164 2799511 0.84~o 95464151 104226210 -8.41%

mp3d 8 3276119 3267250 0.27% 64579958 68684983 -5.98%

mp3d 16 3778487 3769719 0.23% 47764673 49901197 -4.28%

tomcatv 4 332995 332181 0.25~o 52214338 43086273 21.19%

tomcatv 8 330091 328362 0.53% 26468922 22029613 20.15%
tomcatv 16 197397 195722 0.86% 12606286 9991406 26.17%

Table2: Results of Validation.

WWT/DASH(WWT)andTango/Dixie (T/D)areverycloseinmessagecounts. The percent difference (100%x(WWT -
T/D)/T/D)islessthan l.l%in allca.ws. The simulated cycle counts-execution times—are not ae.close since the two
host systems have different instruction sets, different compilers, and use different instrumentation. Both systems are
simulating direct-mapped, 64K byte caches with 32-byte blocks.

ferences in the way that WWT and Tango/Dixie

manage memory. First, Tango/Dixie does not sim-

ulate a translation lookaside buffer (TLB), while

WWT does. For large virtual address spaces and

large data sets, TLB performance can be impor-

t ant. To minimize this difference, we simulated a very

large, fully-associative TLB in WWT. Second, be-

cause Tango shares the same address space as an ap-

plication program, Tango’s data structures are inter-

mixed with the application’s private data. In WWT,

an application has its own address space. This dif-

ference caused non-trivial differences in cache perfor-

mance. To remedy it, we ensured that both simu-

lators cached only shared data and allocated shared

data contiguously.

After making these changes, we ran the three par-

allel benchmarks listed in Table 1. Table 2 summa-

rizes the simulated message and target cycle counts.

We simulated target systems with 4–16 processors,

because Tango/Dixie could not handle larger sys-

tems on our workstations. The message counts are

close, with less than 1. l% deviation in all cases. The

estimated cycle counts—target execution times—are

not quite as close. Some deviation is unavoidable
because Tango/Dixie runs on a MIPS, while WWT

runs on a SPARC. C!melik et al. showed that pr~

grams on these architectures typically perform within

10% for similar compilers [8]. To minimize instruc-

tion set differences, we assumed all instructions ex-

ecute in a single cycle. A problem, however, is
that Tango/Dixie counts instructions in compiler-

generated assembly code. Because the MIPS assem-

bler expands pseudo-instructions, assembly code dif-
. fers from executed binary code. This was particu-

larly important for Tomcatu, whose inner loop ex-

panded from 969 pseudo-instructions to 1394 binary

instructions (on the SPARC, the inner loop takes

1329 binary instructions). Despite these differences,

the cycles counts for JfP3D and Cholesky are within

10%. Tomcatv’s differences are 20-26%, due to the

large assembler expansion. Finally, Tango/Dixie did

not measure the math library routines, whose sources

were unavailable. W WT, because it instruments and

runs executable, measures all code in a program.

5.2 Performance Evaluation

Another goal of WWT is to simulate programs faster

than direct-execution uniprocessor simulators such as

Tango/Dixie. It is tempting to compare directly the

performance of Tango/Dixie and W WT/DASH. For

at lesst three reasons, this comparison is not mean-

ingful. First, the Dixie memory system simulator

models the DASH implementation more completely

than WWT/DASH. In particular, although we dis-

abled the effects of Dixie’s four-level memory hierar-

chy, much of the code still executed. Second, isolating

the effect of different instruction sets, compilers and

operating systems is difficult. Third, WWT/DASH

is newer than Tango/Dixie. Unreleased versions of

Tango/Dixie might perform better.

For these reasons, we focus on how performance

changes as we increase the number of processors in a

target system, both without and with changing the

program’s size. The W WT numbers were collected
on a 64-processor CM-5 running pre-release (beta)

CMOST 7.2 S4.

Consider first the simulation time when the num-

55

Application

cholesky

cholesky

cholesky

cholesky

cholesky

mp3d

mp3d

mp3d

mp3d

mp3d

tomcatv

tomcatv

tomcatv

tomcatv

tomcatv

WWT

Procs Time I Rate I Slowdown

(sec.) (eye. /sec.) (host/target)

4 586 176416 187

8 353 264466 124

16 236 371044 88

32 182 469111 70

64 168 504118 65

4 725 131674 I 250

+

8 322

16 179

32 114

64 79

4 114

8 58

16 20

32 13

64 14

200558

266841

335560

414663

458020

456360

630314

533214

304765

164

123

98

79

72

72

.52

61

108

Tango/Dixie

-

ThG-
(see.)

5659

8474

16695

n/a

n/a

3891

4048

4601

n/a

n/a

2705

2902

3039

n/a

n/a

11727 3410

5658 7068

n/a n/a
n/a n/a

26786 / 1493

16967 2357

10845 3688

n/a n/a

_-w?
Table 3: WWT/DASH and Tango/Dixie simulation speed and slowdown.

This table shows simulation time, the number of target cycles simulated per second, and the host cycles required to simulate
each target cycle. WWT runs on 33-Mhz SPARCS in a CM-5. Tango/Dixie runs on a 40-Mhz DECstation 5000/240.
Results for Tango/Dixie with 32 and 64 processors are unavsdable (n/a), because we could not run Tango/Dixie on these
target systems on our workstations.

ber of processors in a target system increases and the

program’s size is fixed. Uniprocessor simulators are,

at best, unaffected by the change since the program,

at best, performs the same operations on more target

processors. In practice, additional context switching

overhead and host TLB and cache contention increase

simulation time. Since W WT runs on a parallel host,

we increase the number of host nodes (up to the size of

the host) as the target system grows. Consequently,

W WT’S simulation time should decrease, rather than
increase, because each target (and host) node per-

forms fewer operations. Table 3 and Figure 4a clearly

demonstrate this behavior. For MP3D and Tomcatv,

Tango/Dixie’s execution time increases slightly from

4 to 16 processors. WWT’S elapsed time decreases

nearly linearly for MP3D and Tomcatv as the target

system size increases. In Cholesky, moreover, pro-

cesses spin on a shared variable, which increases the
number of target instructions executed as the num-

ber of target processors increases. Since Tango/Dixie

simulates all processors serially, its execution time

triples from 4 to 16 p-rocessors. W WT’S elapsed time

again decreases.

The advantage of WWT is more striking for scaled

speedup. Gust afson [15] and others have argued that

parallel speedup is uninteresting: give scientists a
larger machine and they will solve larger problems

in the same amount of time. This argument calls for

scaling a problem’s size approximately linearly with

the number of processor nodes. On uniprocessor sim-

ulators, like Tango/Dixie, scaling a problem increases

simulation time at least linearly. On WWT, aa illus-

trated in Figure 4b, simulation time increases much

more slowly.

6 Related Work

WWT is a tool for evaluating large-scale, parallel

computer system software and hardware. The two

closely-related methods for studying large-scale paral-

lel computers are hardware prototyping and software

simulation. The methods are not mutually-exclusive

as simulation usually precedes prototyping.

Stanford DASH [21], MIT Alewife [7], and MIT
J-Machine [11] are projects that built hardware pro

totypes. WWT offers at least four advantages over

hardware prototyping. First, WWT ran programs

after two months, ran large applications four months

later (instead of multiple years), and produced accu-

rate cycle counts in two more months. Second, W WT

modules can be modified in days or weeks (instead

of months or years). Third, W WT can be built in

a university without the infrastructure for hardware

development. Finally, WWT can be distributed to

56

Constant Problem Size
1.6

Scaled Problem Size
16

1.4
Tango/Dixie (T/D)

14 uniprocessor-ideal —

j 1.2 .

T/D-cholesky +
W41T-tomcatv4 .384 -+--

T/D-r@d + B
wsT-tcnlcatv4 .128 -+--

T/D-t c.mcatv .0--- 2
12

3iWT-cholesky *
!5 WWT-n@L4 + ~

; 1 WwT-tomcatv -=--
. 10
:

28 .

:

m ‘u

g 0.6 8 6

.

! 0., - i4 -

i? 2

0.2 2

.+

0
4

0 -
8 16 32 64 4 8 i6 32 64

Target Pr.ms SOrS Target Proces sozs

(a) (b)

Figure 4: Normalized simulation time vs target system size.

This figure plots the relative simulation times as the target system size increwes for both constant problem size (a) and
scaled (linearly with target system size) problem size (b). Each curve is normalized against the respective simulator time
for 4 processors. For constant problem size, Tango/Dixie’s simulation time increases with target system size, while WWT’S
time decreases nearly linearly. For scaled problem size, W WT’S simulation time increases slowly, while the simulation
time on a uniprocessor host must increase at least linearly (exponentially on this semi-log plot). The tomcatv4. 128 line
corresponds to 4, 16, and 64 processors and 128 x 128, 256 x 256, and 512 x 512 matrices, respectively. The tomcatv4.384
line corresponds to 4, 16, and 64 processors and 384 x 384, 768 x 768, and 1536 x 1536 matrices, respectively.

other sites.

The disadvantages of WWT include not provid-

ing participants with experience in building actual

hardware and the ever-present question as to how

closely a simulation reflects the actual system. Of

course, even academic hardware prototypes are not

completely realistic, because of constraints on infras-

tructure, money, and availability of experienced de-

signers.

An alternative to hardware prototyping is software

simulation. MIT Proteus [6], Berkeley FAST [5], Rice

Parallel Processing Testbed [10], and Stanford Tango

[12] are simulation systems that simulate parallel ma-

chines by running actual programs (as opposed to

distribution-driven or trace-driven workloads). All

use direct execution and run on a uniprocessor host.

WWT improves on these systems by extending di-

rect execution to all target operations except shared-

memory references that miss and by running on a

parallel host with gigabytes of main memory. These

differences enable WWT to evaluate larger and more

realistic workloads including real applications, data
sets, and system software.

A disadvantage of WWT with respect to uniproces-
sor simulators is the high cost of W WT’S host. Never-

theless, WWT provides two advantages. First, it can

perform more realistic evaluations, because the CM-5

provides more main memory than can be placed on

most workstations (and this memory accounts for a

significant fraction of the CM-5’s cost). Second, it

facilitates successive refinement of software and hard-

ware by providing a much faster response time.

Other researchers [13, 17, 19,25,26, 3, 29, 28] have

studied simulation systems for parallel hosts. These

systems perform a discrete-event simulation of a par-

allel target using a discrete-event workload. These

systems and WWT exploit the parallel host by avoid-

ing a fine-grained global simulation clock that ad-

vances in lock-step.

The key advance of WWT over these systems is

that WWT supports dynamic execution of target pro-

gram binaries. As discussed by Covington, et al. [10],

execution-driven simulation of computer systems pr~

duces more detailed results than either distribution-

or trace-driven simulation. To the best of our knowl-

edge, all other distributed, discrete-event simulation

systems simulate queuing networks or computer sy5
terns with stochastic workload models, not real pro-

grams.

WWT’S method for coordinating nodes for the exe-

57

cution time calculation is a conservative, synchronous

method. Synchronous algorithms use the target times

of some or all neighboring nodes to ensure causal-

it y [3, 25, 29, 28]. The difference between the target

times of two nodes is called lag and the minimum

target time for one node to affect another is called

distance. Synchronous algorithms ensure the lag be-

tween each pair of nodes is always less than the dis-

tance.

WWT ensures that lag is less than distance with

barriers at fixed target intervals smaller than the min-

imum distance between any two target nodes. Our

approach is closely related to the methods of A yani,

Lubachevsky and Nicol. Ayani uses barriers, but runs

on a shared-memory host machine and simulates at

most one event per node per barrier. Lubachevsky

[25] repeatedly broadcasts the time of the slowest

node (to maintain a bounded lag), but allows the lag

to be greater than the dist ante between some nodes.

Nicol [28] uses barriers at variable intervals. After

each barrier, nodes cooperate to determine the next

barrier time. WWT eliminates this phase by using a

fixed time between barriers.

Konas and Yew and Lin et al. perform parallel

simulations of multiprocessors, but neither system

directly executes target programs. Konaa and Yew

[19, 20] use distribution-driven workloads and simu-

lation algorithms that rely on a shared-memory host.

Lin et al. [23] use trace-driven workloads in which

the trace and interactions among processors are un-

affected by a memory-reference miss (as if a cache hit

and miss take the same time). W WT models refer-

ence times more accurately to compute target exe-

cution time and allows memory system behavior to

affect program execution.

Finally, WWT allocates cache page frames in 4K-

byte blocks, but usually uses smaller blocks (> 32

bytes) for data transfers and coherence. The IBM

360/85 cache [24] used different block sizes for alloca-
tion and transfer. Goodman [14] discusses the use of

different block sizes for allocation, transfer, and co-

herence. These ideaa are also used more recently by

Tamir [33] and Kendall Square [18].

7 Extensions and Future Work

Currently, WWT is a novel simulator of cache-

coherent, shared-memory computers that runs on a

Thinking Machines CM-5. We believe that virtual

prototyping is very general concept and can be used

to model any target system and to extend WWT to

run on other hosts. The primary issue is how effi-
ciently a specific target feature can be modeled. As an

example, WWT could easily support message-passing

programs. This only requires a library of message-

passing primitives that use WWT timestamps to

compute message latency. A more expensive change

would enable WWT to model interconnection net-

work topology and contention. W WT could charge

a minimum latency determined by network topol-

ogy and add a stochastic contention penalty. Finally,

WWT could, at great cost, model contention exactly

by using CM-5 nodes to simulate network routing.

W WT can model most target node features. In-

struction set extensions-e. g., a corapare-and-svap

instruction—are implemented by existing instruc-

tions (either in-line, in a call, or with a simulator

trap). gpt models the instruction’s performance by

charging an assumed cycle count. qpt can also form

the bmis of a binary-to-binary translator that per-

mits non-SPARC instruction sets [31]. This tech-

nique could model a dynamic pipeline of arbitrary

complexity. At some point, however, the complexity

of translating an instruction set outweights the ben-

efits of direct execution and an instruction simulator

is a better alternative.

Fine-grained shared-virtual memory efficiently sim-

ulates caches that use pseudo-random replacement. A

second-level cache can be simulated during the traps

for level-one cache misses. Algorithms that cause

state changes on some cache hits, such aa LRU re-

placement, require a full address trace, which qpt can

provide.

Currently, WWT runs one target node on a host

node. Future versions will run multiple target nodes

on a host node, which will permit evaluation of larger

systems. WWT will use a separate context (i.e., vir-

tual address space) for each target node. During a

quantum, a host node will run each target node, in

turn, for Q cycles. Causality is preserved because the

communication latency of the target nodes running

on a host node is still T > Q cycles. In addition, we

could switch contexts more frequently when model-

ing a target system with low intracluster communica-

tion latency. Finally, this improvement will enable us

to simulate multithreaded architectures that context

switch frequently.

WWT could run on machines besides a CM-5. The
key CM-5 features exploited by WWT are precise in-

terrupts on ECC errors, fast user-level messages, and

efficient reductions. Without the ECC mechanism,
fine-grained shared virtual memory could be imple-

mented with memory tag bits (e.g., Tera [2]). on a

machine with neither mechanism, qpt can add addi-

tional code to a program to directly test if a shared-

memory reference will miss, as in Tango/Dixie. The

performance of this approach relative to the ECC

58

mechanism depends on its overhead on cache hits,

since the cost of a cache miss dwarfs the tests and

traps.

WWT can run on machines without the CM-5’s

fast user-level messages and reductions. High latency

messages will slow WWT’S execution. On a shared-

memory host, WWT could directly write to remote

event lists to add events. Again, the efficiency de-

pends how quickly the host’s memory system perform

these accesses. W WT quanta end with a reduction

that completes when all outstanding messages are re-

ceived. A barrier would suiiice on a machine that haa

another mechanism for ensuring that remote events

are scheduled (e.g., shared memory). On machines

without barrier or reduction hardware, WWT could

use software reductions and barriers, or the system

could be radically changed to use another distributed,

discrete-event simulation technique.

This paper contains some results for a simulation of

a shared-memory machine similar to Stanford DASH.

We are using WWT to compare existing and new

cache-coherence protocols. WWT facilitates these

studies, because it clearly separates the modules that

specify a target machine’s cache coherence protocol

and the rest of WWT. To date, WWT runs DASH

[21], Dir~NB for i = 1 . ..iV[l]. Di~iBfOri=O. ..IV

[1], and DirlS’ W variants [16, 34].

8 Conclusions

This paper describes the Wisconsin Wind Tunnel

(WWT)—a system for evaluating cache-coherent,

shared-memory computers on a Thinking Machines

CM-5. W WT runs parallel shared-memory bina-

ries and concurrently calculates the programs’ ex-

ecution times on the target hardware with a dis-

tributed, discrete-event simulation. The non-shared-

memory host directly executes all target instructions

and memory references that hit in the target cache.

WWT’S shared memory uses the CM-5 memory’s

error-correcting code (ECC) as valid bits to build a

fine-grained extension of Li’s shared virtual memory.

WWT calculates target program execution times

on the parallel host with a distributed, discrete-event

simulation algorithm. W WT manages the interac-

tions among target nodes by dividing execution into

lock-step quanta that ensure all events originating on

a remote node that affect a node in the current quan-

tum are known at the quantum’s beginning. On each
node, WWT orders all events in a quantum and di-

rectly executes the process up to the next event.

We showed that WWT produces results that are

close to Tango/Dixie for a Stanford DASH-like sys-

tem. Finally, we examined how WWT’S performance

scales as target systems increase in size. WWT)S ex-

ecution time decreases for fixed-size problems run-

ning on larger target systems and increases slowly as

problems are scaled to run on larger systems. Nei-

ther result is surprising, because W WT uses the pro-

cessors and memory of a parallel host. Nevertheless,

they demonstrate that WWT can support evaluations

of much more realistic parallel workloads than previ-

ously possible without building hardware.

Acknowledgements

Dave Douglas, Danny Hillis, Roger Lee, and Steve

Swartz of Thinking Machines provided invaluable ad-

vice and assistance in building WWT. Satish Chan-

dra, Glen Ecklund, Shubhendu Mukherjee, Subbarao

Palacharla, and Timothy Schimke helped develop

WWT and applications. Richard Fujimoto and David

Nicol provided readings in distributed, discrete-event

simulation.. Sarit a Adve, Richard Fujimoto, Stephen

Goldschmidt, Rahmat Hyder, Alain Kagi, Edward

Lazowska, David Nicol, and John Zahorjan provided

helpful comments that greatly improved this paper.

We would also like to acknowledge the invaluable

assist ante provided by the Stanford DASH project.

Helen Davis, Kourosh Gharachorloo, Stephen Gold-

schmidt, Anoop Gupta, John Hennessy, and Todd

Mowry wrote and generously provided Tango and

Dixie. Singh et al. [30] wrote and distributed the

SPLASH benchmarks.

References

[1]

[2]

[3]

[4]

[5]

Anant Agarwal, Richard Simoni, Mark Horowitz, and

John Hennessy. An Evaluation of Directory Schemes for

Cache Coherence. In Proceedings of the 15th Annual In-
ternational Symposium on Computer Architecture, pages

280-289,1988.

Robert Alverson, David Callahan, Daniel Cummings,

Brian Koblenz, Allan Porterfield, and Burton Smith. The

Tera Computer System. In Proceedings oj the 199o Inter-
national Conference on Supereomputing, pages 1-6, June

1990.

Rassul Ayani. A Parallel Simulation Scheme Based on

the Distance Between Objects. In Proceedings oj the S(Z9

Multiconjerence on Distributed Simulation, pages 113–

118, March 1989.

Thomas Ball and James R. Larus. Optimally Protlling

and Tracing Programs. In C’onjerence Record oj the Nine-

teenth Annual ACM Symposium on Principles oj Pro-

gramming Languagea, pages 59-70, January 1992.

Bob Boothe. Fast Accurate Simulation of Large Shared

Memory Multiprocessors. Technical Report CSD 92/682,

Computer Science Division (EECS), University of Califor-

nia at Berkeley, January 1992.

59

[6] Eric A. Brewer, Chrysanthos N Dellarocae, Adrian
Colbrook, and William WeihL PROTEUS: A High-

Performance Parallel-Architecture Simulator. Technical

Report MIT/LCS/TR516, MIT Laboratory for Com-

puter Science, September 1991.

[7] David Chaiken, John Kubiatowics, and Anant Agar-

waL LirnitLESS Directories: A Scalable Cache Coherence

Scheme. b Proceeding of the Fourth International Conf-

erence on Architectural Support for Programming Lan-

gnagea and Operating Systems (A SPLOS IV), pages 224-

234, APd 1991.

[8] Robert F. Cmelik, Shing I. Kong, David R. Ditzel, and

Edmund J. Kelly. An Analysis of MIPS and SPARC In-

struction Set Utilization on the SPEC Benchmarks. In

Proceedings of the Fourth International Conference on

Architectural Support for Programming Languages and

Operating Systems (A SPLOS IV), pages 290-302, April

1991.

[9] Thinking Machines Corporation. The Connection Ma-

chine CM-5 Technical Summary, 1991.

[10] R.C. Covington, S. Madala, V. Mehta, J.R. Jump, and
J.B. Sinclair. The Rice Parallel Processing Testbed. In

Proceedings of the 1988 ACM SIGMETRICS Conference

on Measuring and Modeling of Computer Systems, pages

4–11, May 1988.

[11] William J. Dally, Andrew Chien, Stuart Fiske, Waldemar

Horwat, John Keen, Michael Larivee, Rich Nuth, Scott
Wills, Paul Carrick, and Greg Flyer. The J-Machine: A

Fine-Grain Concurrent Computer. In G. X. Ritter, editor,

Proc. fnjormation Processing 89. Elsevier North-Holland,

hlC., 1989.

[12] Helen Davis, Stephen R. Goldzchmidt, and John Hen-

nessy. Multiprocessor Simulation and Tracing Using

Tango. In Proceedings of the 1991 International Con-

ference on PaTallel PToce8sing (Vol. II Software), pages

1199-107, August 1991.

[13] Richard M. Fujimoto. Parallel Discrete Event Simula-

tion. Communications of the A CM, 33(10):30-53, Ott@

ber 1990.

[14] James R. Goodman. Coherency for Multiprocessor Vir-

tual Address Caches. In Proceedings of the Second In-

ternational Conference on Architectural Support for Pro-

gramming Languages and OpeTating Systems (ASPLOS

11), pages 408-419, October 1987.

[15] John L. Guztafson. Reevaluating Amdabl’s Law. Com-

munications of the A CM, 31(5):532–533, May 1988.

[16] Mark D. Hill, James R. Larus, Steven K. Reinhardt, and

David A. Wood. Cooperative Shared Memory: Software

and Hardware for Scalable Multiprocessors. In Proceed-

ings of the Fifth International Conference on Architec-

tural SILpport for Programming Languages and Operating

Systems (A SPLOS V), pages 262-273, October 1992.

[17] David R. Jefferson. Virtual Time. ACM Transactions on

Programming Languagea and Syatemn, 7(3):404-425, July
1985.

[18] Kendall Square Research. Kendall Square Research Tech-

IliCd Summary, 1992.

[19] Pavlos Konas and Pen-Chung Yew. Parallel Discrete

Event Simulation on Shared-Memory Multiprocessors. In
Proc. of the 2Jth Annual Simulation Symposium, pages

134–148, April 1991.

[20] Pavlos Konas and Pen-Chung Yew. Synchronous Parallel

Discrete Event Simulation on Shared-Memory Multipro-

cessors. In Proceedings of 6th WoTksh op on Parallel and
Distributed Simulation, pages 12-21, January 1992.

[21] Daniel Lenoeki, James Laudon, Kourosh Gharachorloo,

Wolf-Dietrich Weber, Anoop Gupta, John Hennessy,

Mark Horowitz, and Monica Lam. The Stanford DASH

Multiprocessor. IEEE Computer, 25(3):63-79, March

1992.

[22] Kai Li and Paul Hudak. Memory Coherence in Shared

Virtual Memory Systems. ACM Transaction on Com-
puter Systems, 7(4) :321–359, November 1989.

[23] Y.-B. Lin, J.-L. Baer, and E. D. Lazowska. Tailoring

a Parallel ‘l&ace-Driven Simulation Technique to Specific

Multiprocessor Cache Coherence Protocols. Technical Re-

port 88-01-02, Department of Computer Science, Univer-

sity of Washington, March 1988.

[24] J. S. Liptay. Structural Aspects of the System/360 Model

85, Part II: The Cache. IBM Systems Journal, 7(1):15-21,

1968.

[25] Boris D. Lubachevsky. Efficient Distributed Event-Driven

Simulations of Multiple-Loop Networks. Communications

of the A Chf, 32(2):111-123, January 1989.

[26] Jayadev Misra. Distributed-Discrete Event Simulation.

ACM Computing Surveys, 18(1):39-65, March 1986.

[27’1 Todd MowTY and Anoop Gupta. Tolerating Latency

Through Software-Controlled Prefetching in Shared-

Memory M[ultiprocessom. Jou?’nat of Parallel and Dis-

tributed Computing, 12:87–106, June 1991.

[28] David Nic.1. Conservative Parallel Simulation of Priority

Claes Queu,eing Networks. IEEE Tran8action8 on Parallel
and Dintriliuted Systems, 3(3):398-412, May 1992.

[29] David M. Nicol. Performance Bounds on Parallel Self-

Initiating Discrete-Event Simulations. ACM Transactions

on Modehg and ComputeT Simulation, 1(1):24-50, Jan-

uary 1991.

[30] Jaawinder Pal Singh, Wolf-Dietrich Weber, and Anoop

Gupta. SPLASHs Stanford Parallel Applications for

Shared Memory. Computer Architecture News, 20(1):5-
44, March 1992.

[31] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Mau-

rice P. Mru-kz, and Scott G. Robinson. Binary Transla-

tion. Communication of the A CM, 36(2):69-81, Febru-

ary 1993.

[32] SPEC, SPIEC Benchmark Suite Release 1.0, Winter 1990.

[33] Yuval Tamir and G. Janakiraman. Hierarchical Coherency

Management for Shared Virtual Memory Multicomput-

ers. Journal of Parallel and Distributed Computing,

15(4):408-419, August 1992.

[34] David A. Wood, Satish Chandra, Babak Falsafi, Mark D.

HUI, Janms R. Larus, Alvin R. Lebeck, James C. Lewis,

Shubhendu S. Mukherjee, Subbarao Palacharla, and

Steven K. Reinhardt. Mechanisms for Cooperative Shared

Memory. In %oceeding8 of the 20th Annual International
Symposium on Computer Architecture, page May 1993.

To appean

60

