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Abstract

Similarity search finds the most similar matches in an object col-
lection for a given query; making it an important problem across
a wide range of disciplines such as web search, image recognition
and protein sequencing. Practical implementations of High Dimen-
sional Similarity Search (HDSS) search across billions of possi-
ble solutions for multiple queries in real time, making its perfor-
mance and efficiency a significant challenge. Existing clusters and
datacenters use commercial multicore hardware to perform search,
which may not provide the optimal performance and performance
per Watt.

This work explores the performance, power and cost benefits
of using throughput accelerators like GPUs to perform similarity
search for query cohorts even under tight deadlines. We propose
optimized implementations of similarity search for both the host
and the accelerator. Augmenting existing Xeon servers with accel-
erators results in a 3Xx improvement in throughput per machine,
resulting in a more than 2.5 reduction in cost of ownership, even
for discounted Xeon servers. Replacing a Xeon based cluster with
an accelerator based cluster for similarity search reduces the total
cost of ownership by more than 6x to 16x while consuming sig-
nificantly less power than an ARM based cluster.

Categories and Subject Descriptors C.5.5 [Computer System Im-
plementation]: Servers

Keywords high throughput, energy efficiency, total cost of own-
ership, GPGPU

1. Introduction

Similarity search or nearest neighbor search is a classical problem
with many applications across many disciplines. First referred to as
the post-office problem by Knuth in his comprehensive work “The
Art of Computer Programming”, it finds extensive applicability for
a wide range of real world problems. In text processing it can
be used to identify the most similar documents in a collection of
given documents [28]. In web search it can be used to identify the
matching pages to a given search query [5]. In image processing,
similarity search is used in reverse image search or Content Based
Image Retrieval applications to yield the most similar images to a
given image [4}132]. It can be used in protein sequencing to identify
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the similarity between a new sequence and a database of known
proteins [12} 25]].

Datacenters currently handle arrival rates of the order of thou-
sands of queries/s [[14]], but these are expected to increase by several
orders of magnitude with the advent of more intelligent services,
wearables, connected cars and the Internet of Things [35]. The
number of connected sessions will not be limited by the number
of connected people, rather by the number of connected devices.
According to a recent report by Verizon, the number of connec-
tions is expected to increase fourfold to 5.4 billion by 2020 [36].
Much further into the future, the number of devices connected to
web services in expected to reach hundreds of billions [35]], and the
question naturally arises as to what is the best way to satisfy this
demand. Server designs based on commodity multicore processors
may not be the most cost effective and energy efficient for all work-
loads, and there is ongoing debate over which architecture is best
suited for specific workloads [2} [10} [19} 22} 27} 29} [31]].

Throughput accelerators such as NVIDIA’s Kepler, and Intel
Xeon Phi achieve efficiencies >5 gigaflops/W, by exploiting SIMD
and SIMT based hardware to amortize fetch and decode overheads,
and executing a large number of threads simultaneously to improve
throughput within a limited power envelope. These accelerators
are generally considered suitable for scientific or HPC workloads,
and too expensive or power hungry for web service workloads like
search.

The last decade was an era of cheap off the shelf hardware being
used to create large pools of machines to scale to user demand. With
the end of Dennard scaling and the creep of dark silicon [9], general
purpose cores are no longer viable alternatives for scaleout while
operating within a fixed power budget. Even with the release of
the Broadwell architecture, Intel is primarily focusing on efficiency
improvements, and devoting larger areas of the die to the GPU, with
a modest 5% CPU IPC increase [18]], providing further evidence
that we need to find an alternative for datacenters.

This work argues for the throughput and efficiency benefits of
using accelerators for a similarity search workload and searching
across billions of documents under deadlines as tight as few tens
of milliseconds. This efficiency arises from two observations, 1)
even under tight deadlines, for a high enough query arrival rate, a
server has the opportunity to delay some requests in order to form
cohorts of similar requests, and 2) these cohorts can be scheduled
on conventional multi-threaded hardware or throughput accelera-
tors to improve throughput and efficiency. Cohort scheduling has
been shown to improve cache locality on general purpose multi-
cores [24] and throughput/Watt on accelerators [2f]. For the pur-
poses of this work, we define two search queries to be similar if
they search across the same set of objects.

The goal of this work is to look at high dimensional similarity
search from a systems perspective, and provide a methodology to
identify the optimal server design to satisfy latency constraints



for an incoming query stream by minimizing the total cost of
ownership. The primary contributions of this paper are:

e Algorithms for similarity search based on Sparse Matrix Matrix
Multiplication for both the host and the accelerator that per-
form better than existing MKL and cuSPARSE libraries for text
based similarity search.

e An implementation of text search on NVIDIA GPUs that is
twice as efficient and delivers more than twice the throughput
of the corresponding implementation on Xeon and ARM cores.

e An SoC + Accelerator approach that delivers 2.3 x the through-
put of a Xeon server and is 75% more energy efficient than an
ARM server for an arrival rate of 25,000 queries/s and a dead-
line of 50 ms.

e An evaluation of text search under deadline constraints that
shows that scaling out using servers augmented with acceler-
ators is more than 60% cheaper than scaling out with conven-
tional Xeon chips for high arrival rates and tight deadlines, even
for half priced Xeon servers.

The remainder of this paper is organized as follows. Section 2]
defines the similarity search problem and its contemporary solu-
tions. We then describe the baseline architecture of our system, and
our approach to search on the host and the accelerator in Section 3]
Section [] briefly describes the model we use for computing clus-
ter cost of ownership. Sections [5] and [f] describe our experiments,
and evaluate our accelerator based implementation in comparison
to the host processors. Related work is discussed in Section[7] and
we conclude in Section [§

2. Similarity Search

Similarity search is a general mechanism that identifies a group of
similar objects based on some definition of similarity between any
two objects in the given space. More formally, we are given a D
dimensional space containing N input points. We are given a query
point in this space and wish to find the k¥ (k << N) most similar
points to this query point from the collection of N points. These
points can be objects such as documents or images characterized by
some features and represented as vectors in this space. We assume
that both NV and D are very large, and aim for an exact solution to
this problem by exhaustively searching through all input objects.

An essential factor in similarity search performance is the way
the input objects are stored and accessed. For many practical prob-
lems, N and D can be very large, and an index structure is used
to shard these objects across a cluster. For example, for document
retrieval in an application like web search using a bag of words
model, N is in the order of billions, and D is in the order of mil-
lions (unique words, n-grams). As the number of unique words per
document is usually << D, the document vectors are sparse; and
an inverted list is used to efficiently store and access the index [S].

In many cases, an approximate solution to the nearest neighbor
problem is equally useful [[17]]. Locality Sensitive Hashing (LSH)
is a more recent approach for approximate similarity search [11}
34]. LSH is essentially a clustering technique that partitions the
input space into buckets based on a family of hash functions.
Approximate similarity search can give higher performance gains
at the expense of quality [8]], and we leave that exploration to future
work. We discuss our work in the context of exhaustive search, but
the ideas are broadly applicable and used for approximate search as
well.

Many of these methods add significant complexity to index con-
struction and querying, and do not map well to throughput acceler-
ators. Adding a datacenter or cluster perspective significantly con-
strains the time and power we have to perform the search operation.
We assume an incoming stream of guery points in this space with
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Figure 1: Baseline Search Architecture.

a constant arrival rate of « and find the k(k << ) nearest neigh-
bors for each of the query points within a deadline of 7T'(seconds).
We aim to identify the processor or platform giving the highest
throughput in terms of Queries X Documents per second while
at the same time looking for higher throughput per Watt. For the
purposes of this work, we analyze similarity search in the context
of document retrieval, which makes the input and query vectors
sparse. The ideas presented in this paper can be easily applied to
any similarity search problem with the above properties.

3. Mapping Similarity Search to Different
Architectures

In its simplest form, similarity search involves ranking the input
documents on the basis of their similarity with a given query. We
first look at the baseline architecture of our cluster, and the algo-
rithms we adopt to perform search on the host and the accelerator.
We then briefly describe the optimizations we perform on both plat-
forms, in order to fully utilize the capabilities of each architecture.

3.1 Baseline Architecture

We assume a baseline architecture similar to contemporary designs
[20], consisting of an aggregator node[]_-]and multiple service nodes
(Figure [T). The aggregator is responsible for parsing the query
stream and generating the respective query vectors. A query vector
is defined as a vector in the given input space for which we wish to
compute the nearest neighbors. The aggregator waits for C' query
vectors to arrive based on the query arrival rate (o), where C' is
the cohort size and this cohort is broadcast to each of the service
nodes. A service node holds a shard of the input data set, and
is responsible for generating the k& highest similarity matches for
each query in the cohort from its shard. The aggregator receives
these matches from each service node, and generates the £ highest
similarity results from these matches.

A set of service nodes is needed to store all the N documents,
and a given cohort runs on this set. A node processes a single
cohort at a time across its shard. While a cohort is being serviced,
more queries arrive at the aggregator, forming additional query
cohorts, and more nodes are needed to service these queries. Our
cluster design holds multiple copies of the document collection IV,
allowing multiple cohorts to be serviced at a time. In this work we
focus on the design and capabilities of the service nodes which do
most of the work, and assume the aggregator has the capacity to
handle the incoming query arrival rate.

' We use the terms node and machine synonymously in this work.
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Figure 2: Time taken for an SpMM operation by MKL (16C/32T
Xeon) and cuSPARSE (GTX Titan) for 4 = 500000, C' = 256
queries. opthost and optacc are the times for our algorithm.

3.2 Algorithms and Implementation

Each service node contains a shard of the document collection,
based on the node’s compute capabilities and the number of doc-
uments it can process within the given deadline. A machine holds
Nmachine documents that we wish to search across (similar to a
shard in a cluster setup), and we batch queries into cohorts of size
C each. The machine is then responsible for generating the k high-
est similarity matches for each query in the cohort across these
Nmachine dOocuments.

Let AT be the nmachine X D matrix composed from nmachine
input data vectors, and @) be the C' X D query matrix composed
from a cohort of query vectors. We assume that both A and @ are
sparse and stored in the Compressed Sparse Row (CSR) format and
use cosine similarity as a measure of similarity between two doc-
uments in the given space [28]]. We note that A stored in the CSR
format is similar to an inverted list [S]], as each row of A represents
aterm, and holds the list of documents (columns + values) that con-
tain that term. Computing the similarity between the input vectors
and a query cohort then becomes a Sparse Matrix Matrix Multipli-
cation (SpMM) operation to produce a C' X Nymachine Similarity
matrix .S,

S=QxA (¢Y)

such that S; ; is the similarity between query ¢ and document j.
We evaluated an implementation of our SpMM approach using
commercial BLAS libraries such as Intel’s MKL and NVIDIA’s
cuSPARSE, however, we found their performance to be unsuitable
for realtime deadlines. We develop our own implementations for
SpMM and Top-k on the host and the accelerator which deliver
higher performance than these commercial libraries (Figure[2), and
briefly describe them now.

Sparse Matrix Matrix Multiplication Sparse matrices consist
primarily of zeros, and are therefore stored in special formats for
efficient storage utilization. Compressed Sparse Row (CSR) stores
a sparse matrix in the form of 3 one-dimensional arrays; the val-
ues array which holds all nonzeros, the columns array which holds
column indices for these nonzeros, and the rows array which holds
indices into the column array for the start of each row. SpMM is a
harder problem than dense matrix multiplication, as different spar-
sity patterns make coalesced memory accesses for both matrices
difficult.

Algorithm[T]shows the pseudocode for our approach. The outer
loop iterates over all the rows of the query matrix () in parallel. The
middle loop iterates over each nonzero in a particular row of ). The

Algorithm 1 Sparse Matrix Matrix Multiplication for S = Q x A

: > clear all values in S

S+0

: D in parallel

: fori < 1to C do

for j where Q(7,j) # 0 do
> in parallel on accelerator
for k& where A(j, k) # 0 do

S(i, k) < S(i, k) + Q(i, ) * Aj, k)

end for

end for

: end for
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inner loop accumulates the rows of A corresponding to nonzeros in
the current row of @ in parallel on the accelerator.
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Figure 3: Our SpMM approach for S = Q x A. The shaded rows of
A are accumulated into the values(S).

We merge rows of A corresponding to nonzeros in a row of @
into a row of S. S is stored in a sparse format similar to CSR, but
the columns are not sorted as our final goal is to compute the top-
k results. Accumulating values from rows of A is usually done by
using a hash table to map columns of S to indexes into the values
array of S. However, standard hash tables can become arbitrarily
complex, due to lack of size guarantees and handling of collisions.
A key aspect of our approach is the use of a C' X nmachine
occupancy array to keep track of the location of each nonzero of
S in the values array. The occupancy array maps a column index
in A to an index in the values array of S. For every nonzero in
a row of A, the occupancy array is checked to see if that column
index already exists in the values array (accumulation) or it needs
to be appended (insertion). For an insertion, the occupancy array
is updated to reflect the location of the new inserted value in the
values array, essentially creating a perfect hash function at runtime.
The columns array of S is updated with the column index of the
corresponding value in the values array.

Figure [3] shows a toy example to demonstrate our approach.
When the first nonzero of @ is processed, a is inserted into the
values array, and occupancy(4) is updated to the position of a in
the values array. When the next nonzero of @ is processed, e and g
are insertions, and f is an accumulation into values[occupancy[4]].
Our final goal is to compute the highest k results for each row of
the similarity matrix, therefore, we do not sort the columns array.
This improves overall time taken by the algorithm, and makes the
output arrays from our SpMM implementation different from the
traditional CSR format.

Top-k We compute the top-k results in parallel for a query co-
hort. Our top-k algorithm relies on maintaining a small per query
cache of the current top-k results while traversing the list of simi-
larity scores. The cache is a list of the current k highest similarity
scores stored in memory. The value under inspection is inserted into
the cache if it is greater than the current minimum in the cache. The
number of insertions into the cache reduces as we iterate through



the list and the cache gains a better idea of the actual results. For
k << Nmachine, We found that the top-k latency is primarily gov-
erned by the time to load and inspect the values from memory rather
than the insertions, and we use a simple butterfly reduction to calcu-
late the minimum in parallel on the accelerator rather than a binary
heap.

We emphasize that our SpMM algorithm is designed specifi-
cally for text search, in that we do not output the S matrix, it lives
entirely inside fast scratchpad storage. After we extract the top k
values from each sub-matrix, S is discarded, making our approach
dissimilar to existing SpMM implementations.

3.3 Architecture specific modifications

We performed a large number of optimizations for our SpMM and
top-k implementations by analyzing program performance using
VTune on the host, and the NVIDIA Visual Profiler on the ac-
celerator. We use the well known technique of tiling to divide the
Nmachine documents or shard into smaller tiles of size p each, per-
forming SpMM and top-k operations for each tile and merging the
Top-k results into a set of k£ most similar documents.

Tiling the input set is more efficient because it improves cache
locality and decreases cache contention on the host across a cohort
of queries, as the working set can fit in the LLC. It enables us
to work with limited memory on the accelerator and allows for
early termination of the search, since remaining tiles can be ignored
under latency constraints to give partial results. We now focus on
the broad changes adopted for each device.

3.3.1 Host specific optimizations

We partition a query cohort uniformly across the various cores on
the host multiprocessor, with all cores working on the same tile but
for different queries. Processing the same tile across all cores al-
lows smaller tile sizes to fit into the last level cache shared across
cores, improving locality for a cohort. Processing different queries
on different cores also avoids the need for atomics, as there is no
shared state. Within a core, a group of queries is processed sequen-
tially, essentially performing a Sparse Vector Matrix (SpVM) mul-
tiplication operation on a tile. For each query, the SpVM operation
is followed by a top-k computation, taking advantage of cache lo-
cality for the value and column arrays of S.

We perform experiments for a different number of threads for
each cohort size. Larger number of threads per tile allows for
higher instruction level and memory level parallelism, however,
more threads mean more queries in flight and more state, which
creates cache contention. Memory bandwidth on the host is limited,
and increasing ILP beyond that decreases performance.

For evaluating single queries (or C' = 1), we enable parallelism
by processing different tiles across different cores. This improves
memory bandwidth utilization at the expense of cache pollution,
giving better performance than a single threaded implementation.
We also use the Intel ICC compiler for auto-vectorization.

3.3.2 Accelerator specific optimizations

Given the large number of compute cores on the accelerator, we
modify our algorithm to exploit both inter-query and intra-query
parallelism. An easy way to exploit intra query parallelism would
be to partition the input tile into smaller tiles (microtiles) based on
document indexes, and launching a thread per query per microtile.
The columns array is stored in the compressed sparse format, mak-
ing this partitioning hard as we do not know where each document
starts and each ends in a particular tile.

An obvious choice would be to just decrease the tile size to the
microtile size and perform the SpMM operation. However, trans-
ferring these arrays over the PCIE bus is not feasible for our dead-
lines and we need to store the rows array for each tile in accelerator

memory, which is of size 4D bytes. For ¢ = 1,000,000 and a
microtile size of 1,000, we would need 1,000 microtiles, increas-
ing the overhead of the rows array to 4, 000D bytes. D can be in
millions, it can be the number of n-grams or unique words for text
search, requiring several gigabytes just for the rows array. For large
D, this becomes prohibitive.

Figure [f] shows our approach on the accelerator. A static parti-
tioning is not feasible due to space constraints and for each query,
we dynamically generate microtiles for rows of A indexed by the
query terms. This partitioning can be done on the host or the accel-
erator. If done on the host, the partitioning information would have
to be copied over to the accelerator, if done on the accelerator, the
partition function needs to be parallelized. To solve this, we use a
multi-step partitioning approach. The first partitioning operation is
done on the host to generate fewer and larger subtiles to enable par-
allelism for the second step on the accelerator. The second partition
operation runs on the accelerator, and generates the final microtiles
in accelerator memory.

To summarize our partitioning, we divide a shard into multiple
tiles, and divide a tile into multiple subtiles on the host. Each subtile
is partitioned into smaller microtiles on the accelerator. An SpMM
operation is performed for each query cohort and microtile, giving
us the result values and columns arrays. The Top-k kernel then
computes the final k values and columns for each query in the query
cohort for a given tile.

Partition subtiles
into microtiles
using query terms

Partition tile Copy partitions|
into subtiles and Q
using query terms| | to accelerator

Get final

k matches P

for shard (D[Repeat for Get Generate

across tiles other tiles highest values(S) and
in shard matches columns(S)

® =

\— 1
Copy k matches| v ————————__ i
To host

— 1
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Figure 4: Implementation of similarity search on the accelerator

We divide an input tile into 10 subtiles, and choose a microtile
size of 1000 documents to allow the occupancy array to fit into
the smaller higher bandwidth scratchpad memory of the accelerator
(similar to a self-managed cache). Multiple threads work on the
same query and microtile at a time, so accumulations into values(S)
and updates to the occupancy array are done atomically. Each
microtile based SpMM operation generates its part of the values(S)
and columns(S) array. We compute top-k results for each query
across a tile, then merge these results and perform a final top-k
operation across tiles to get k matches for a shard. We optimize
our top-k implementation as well, by first performing top-k across
subsets of the values(S) array, and then merging these results.

Computation is primarily performed on the accelerator, and no
data is transferred across the PCle bus except for the query cohort,
the partition information at step 2 and the top-k results since an
entire shard resides in GPU memory. Each of these data structures
is a maximum of several MB in size, allowing us to avoid PCle
bandwidth constraints under tight deadlines. The host can also
work on its tiles in parallel with the accelerator, and perform a final
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Figure 5: Block diagram of a node in our cluster design.

top-k computation between the top-k values generated from the
host and those from the accelerator. These optimizations allow both
the host and the accelerator to optimally utilize their underlying
architectures, and each device can process millions of documents
in sub-millisecond times for a query.

4. A Model for Cost Efficient Cluster Design

This work presents a framework to implement high dimensional
similarity search across billions of points in a scalable and cost
efficient manner. We propose a model that can be used to estimate
the cost of performing similarity search across a stream of queries
for a given server platform. The model computes the capital cost
and operational cost of a system to run a workload to satisfy a given
arrival rate (o) and deadline (7).

To calculate the cost of performing the search for a given o and
T, we estimate two metrics: 1) the number of machines required,
and 2) the energy consumed by these machines over their lifetime.
The first parameter is used to estimate the total capital cost based
on the cost of each machine, and the second parameter gives us the
total operational/electricity cost of running the workload. The total
cost of ownership ($totq1) is

$total = $capital + $operational (2)

Given that both D and N are very large, and the embarrassingly
parallel nature of similarity search, we divide the problem into
shards across a cluster. We batch the incoming query stream into
cohorts of size C' each. Assuming a homogeneous distribution of
machines in the cluster, we allocate an equal number of documents
to each machine. We model an exhaustive search, thus each query
is processed across all documents. We use $ to refer to cost and n
to refer to the number of documents. For example, 1 achine refers
to the number of documents processed on a machine. The number
of machines needed to process a query cohort is

. N
machinesPerCohort = —— 3)
Nmachine
The cohort arrival rate is <. The number of cohorts that arrive

C
while a cohort is being serviced for a cohort service time of T' is

cohorts = % x T “4)

To meet deadlines for all queries, all these cohorts need to be
processed. Using EquationE[, the capital cost to process all pending
cohorts is

$capital = cohorts x N X M 5)

Timachine

where $,,4chine is the cost per machine. Each machine consists of
a host processor and an accelerator (Figure 5). Breaking down the
cost per machine and the documents per machine, (cpu refers to the
general purpose cores in the machine, acc refers to the accelerator),

the capital cost for a given configuration can be written as,
aNT > $fixed + $cpu + $acc

$capital -
C Nepu + Nace

(6)
where O‘gT is the total number of documents that need to be
searched for all cohorts arriving in time 7', $ ;44 is the fixed cost
per machine (including disk, RAM, etc.), $¢p. is the cost of the
host processor, and $,.. is the cost of the accelerator.

Due to the homogeneous nature of the cluster, the energy con-
sumed to process a cohort can simply be written as,

energyPerCohort = machinesPerCohort x T X
(Pfized + Ucpupcpu + chcpacc) (7)

where Ppizeq is the fixed or idle power consumption of a ma-
chine, P.p, is the power consumed by the host to process ncpu
documents, and P, is the power consumed by the accelerator to
process nqc. documents. Uep,, and Uy denote the fraction of the
deadline when the processor is doing work, or the utilization factors
of the host and the accelerator respectively. The time a processor is
actually performing the search may be less than the deadline 7'
Nace 18 limited by the memory on the accelerator, and the if the
deadline is higher than the time it takes to process 1. documents,
the accelerator remains idle. Both the host and accelerator also re-
main idle while waiting for the cohort to form. The operational cost
of the workload across the lifetime of the machines becomes

Soperational = li fetimeCohorts x energyPerCohort
x energyCost (8)

where li fetimeCohorts is the number of cohorts processed over
the lifetime of a machine. Assuming the average lifetime of a
machine as 4 years, for an arrival rate of «, the number of cohorts
processed in 4 years is & X 4 x 365 x 24 x 3600. The U.S. industrial
average electricity rate is 6.7 cents/kWh [3]. Using Equations 3]
and[8] the total operational cost of the workload is,

g aNT
operational — X
P C

Pfixed + Ucpupcpu + UscePace
Nepu + Nace

All of the parameters in Equations [6] and [J] can be easily mea-
sured for a given server platform, with or without an accelera-
tor (set corresponding accelerator values to 0). The capital cost
for a given configuration is essentially the dollars/workDone (in-
verse of the performance per dollar), and the operational cost is the
Watts/workDone (inverse of the performance per watt) metric. We
define the work done per machine as the number of queries pro-
cessed on a machine across its shard within the given deadline, or,

2.35 x

(C)]

W = C X (Nepu + Nace) (10)
We also define,

Ssystem = Brized + Sepu (11)
and,

Psystem = Ptized + UcpuPepu (12)

Using these parameters, the total cost incurred can be written as,
aNT
W
This cost can be easily broken down and understood. By appli-

cation of Little’s Law, a/N'T is the total amount of work that needs

to be done, therefore, O‘VA(,T is the number of machines needed.

Ssystem + Bace is the cost per machine. 2.35 is the dollars per watt
spent over the lifetime of a machine. Psystem + Uace Pacc 18 the

($system+$acc+2~35(Psystem+UaccPacc) (13)

$t0tal =




power consumed per machine. This model allows us to compute of
the cost of ownership of a similarity search platform for a given
arrival rate, deadline, corpus size and hardware configuration. The
model also allows us to compare different cluster designs. For a
given arrival rate and deadline, designating the two configurations
as 1 and 2, configuration 1 is cheaper than configuration 2 if,

$total (1)
$t0tal (2)

We pick the highest Work done for each configuration, and this
inequality gives us a linear design space that can be explored
for different values of the cost of each system. We can compare
two CPU configurations, a CPU configuration with an CPU +
Accelerator configuration, or a CPU system with an accelerator
only system, for different arrival rates and service times.

<1 (14)

5. Methodology

Table [T] shows the different platforms we use for evaluation. The
PowerEdge R720 represents a state of the art enterprise class server,
and the Titan and Maxwell represent different points in the accel-
erator design space. The GTX Titan is based on the Kepler archi-
tecture, and represents a power hungry high throughput accelerator.
The GTX 750Ti is based on the more energy efficient Maxwell ar-
chitecture, and represents a low cost accelerator. We use the quad-
core Tegra K1 based on the ARM A1S5 architecture, representative
of high energy efficiency. The Xeon + Titan and Xeon + Maxwell
represent our augmented configurations.

We use the English Wikipedia consisting of 4M pages as our in-
put document set. We identify distinct words containing 3 or more
letters from across the entire set giving around 3.5 million unique
words/dimensions. We use the popular #f-idf method to score doc-
uments [28]], which reflects the importance/weight of a word in
a given document. There are many different techniques for docu-
ment scoring, e.g. PageRank [5] for web search, color histograms
for images [32], and other machine learning based ranking models.
The scoring methodology is used to populate the document and
query matrices used in our algorithms. We assume the document
and query matrices are given to us, and our results are independent
of the scoring methodology used.

We perform our experiments for a collection of N = 1 billion
documents. To simulate this collection, we assume multiple copies
of Wikipedia, specifically 250 copies of 4M pages each. We use
boolean values for the query vectors, denoting presence (1) or ab-
sence (0) of a term. Due to a lack of a public database of queries,
we generate queries by randomly picking titles of Wikipedia pages.
Correctness and quality is guaranteed by ensuring the results from
the search contain the page matching the respective title. We use
single precision floating point for our computations for all plat-
forms.

We implement C versions of our SpMM and Top-k algorithms
for the x86 platforms and C+CUDA versions for the GPU plat-
forms. The x86 code is compiled using the Intel Compiler Collec-
tion (ICC) 15.0.0 with vectorization and -Ofast enabled. The GPU
code is compiled with gcc + CUDA 6.5 with -O3. We measure real
values for power using a Watts up? PRO meter.

A global scale search engine like Google processes over 100
billion search queries a month, or 38K search queries/second. As-
suming these are distributed to 20+ datacenters around the world,
the maximum arrival rate of queries at a location can be estimated
as 1000 queries/second. We evaluate our search platform for an ar-
rival rate («) of 1000 queries/s modeling present datacenters. We
also evaluate a high arrival rate of 25000 queries/s to demonstrate
the scalability of our approach, and to model future datacenters. We
constrain our deadline to 50 ms, leaving time for other aspects of
search such as parsing, network overhead and ranking.

We vary the tile size p from 100K documents to 2M documents
by randomly partitioning the Wikipedia document set. The cohort
size (C') varies from 1 to 1024 for each value of u, as 1024 is the
largest cohort size feasible for an arrival rate of 25000 queries/s
and a deadline of 50 ms. For a cohort size of 1, we run experiments
for 1K queries, allowing the experiments to finish in a reasonable
amount of time. For larger cohort sizes, we evaluate 8K random
queries. We use a value of £ = 32 for our top-k computations. For
our experiments with the Xeon processor, we vary the number of
threads from 1 to 128, and pick the number of threads giving the
highest throughput. For the ARM experiments, we vary the number
of threads from 1 to 8.

We note that our design space is essentially 7 dimensional,
where each value of (plat form, «, T, C, u, threads) represents a
different design point and cost value. We evaluate a platform on the
basis of its most cost effective configuration. We run experiments
for each value of these parameters and pick the value of u, C
and threads which gives the highest Work done (W) and reduce
the design space to 4 dimensions (platform,a,T, W) for our
analysis.

We model a higher memory variant of the GTX 750Ti, and
increase its memory to 6 GB, while retaining existing compute
capabilities (5 SMs for the Maxwell). We assume that the DRAM
accesses and signaling consume 20% of the accelerator’s power
[21]. A 6 GB Titan consumes 150 W of power for our workload,
and we estimate that 6GB of GDDRS5 memory consumes 30W of
dynamic power. We add 30W to the Maxwell’s power consumption
to model this variant.

To take advantage of the accelerators cost efficiency, we model
an accelerator only cluster design where the primary function of the
host processor is to drive the accelerator, and search is performed
only on the accelerator. This allows us to significantly reduce the
cost of the host platform. We choose the J1800 SoC based on the
Bay Trail-D processor. We refer to these accelerator only configu-
rations as SoC + Titan and SoC + Maxwell in our experiments.

5.1 Computing n¢p, and ngce

The number of documents that can be processed on the host or
the accelerator for a cohort is bounded by the deadline 7". The
available service time is further reduced by the time it takes to
form a cohort. For an arrival rate of « and a cohort size of C, the
available processing timeis 7/ = T — % since the first query in the
cohort must finish before the deadline. We determine the number
of documents that can be processed on the host or the accelerator
within this time so that at least 95% of queries satisfy the deadline
by using a Monte Carlo simulation for the tiles processed per
machine.

We assume the host has a large enough memory pool such that
it can accommodate the maximum number of documents that can
be processed within the available deadline. For the accelerator,
we bound the number of documents that can be processed by the
available memory on the accelerator, to avoid PCle bottlenecks.

6. Evaluation

This section evaluates conventional hardware platforms and com-
pares them to accelerator based platforms. We present some pre-
liminary results that confirm the applicability of commercial accel-
erators to similarity search, and show that these provide much more
efficient performance than conventional processors even under very
tight deadlines.

6.1 Impact of the Tile Size 1« and Cohort Size C

A simple measure of the work done in similarity search can
be the number of queries a device can process over a collec-
tion of documents. Performance of a configuration becomes the



Table 1: Experimental and Modeled(*) System Platforms

[ Platform [ Description |
Xeon PowerEdge R720, 2 x Xeon E5-2650v2, 22 nm, 16C/32T, 8x8GB 1866MHz RDIMMs
ARM Tegra K1 SoC, 28 nm, Jetson TK1, ARM A15, 4 cores, 2GB DDR3L RAM

Xeon + Titan

PowerEdge R720, 2 x Xeon E5-2650v2, GTX Titan, 28 nm, 2688 CUDA cores, 14 SMs, 6GB GDDRS Memory

Xeon + Maxwell

PowerEdge R720, 2 x Xeon E5-2650v2, GTX 750Ti, 28 nm, 640 CUDA cores, 5 SMs, 6GB GDDRS Memory

SoC + Titan*

J1800 SoC, 22 nm, 4GB DDR3L RAM, GTX Titan

SoC + Maxwell*

J1800 SoC, 22 nm, 4GB DDR3L RAM, GTX 750Ti (6GB variant)
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Figure 6: Performance of a processor for different cohort sizes and tile sizes.

Work done/second, and the energy efficiency becomes the Work
done/Joule. Figure [6h and [6p show the performance for the Xeon
and the Titan as a function of the tile size p and the cohort size
C'. Focusing on the Xeon, we can see that larger cohort sizes give
higher performance, since more queries can work on the same tile
at a given time, which fits in the last level cache. On the other hand,
larger tile sizes don’t give the highest performance. Even if the tile
is shared across queries, each query maintains its own occupancy,
values and columns array, and large tile sizes result in a degenerate
cache access pattern, causing misses in the top-k segment.

For the Titan, both larger cohort sizes and larger tile sizes result
in higher performance. The partition function needs to be run for
each tile, and larger tile sizes create fewer overall tiles, reducing
partitioning overheads. Larger cohort sizes enable more memory
level parallelism and higher utilization of the accelerator.

For the rest of our analysis, we pick the tile size giving the high-
est performance/throughput for a given processor at a given cohort
size. The power consumption of a platform remains relatively uni-
form across different cohort sizes and tile sizes, therefore higher
throughput gives both higher Work done/s and Work done/J.

6.2 Peak Performance and Efficiency

Similarity search involves processing a set of queries over the given
documents using the most efficient processor available. Batching
queries together is intuitively a good idea, as it increases ILP, and
allows queries to share resources amortizing fixed costs. We first
determine the raw throughput and efficiency of the host and accel-
erator processors. This is shown in Figure [7h and [7p for different
cohort sizes. Even for single queries (C' = 1), the accelerators out-
perform the Xeon, with the Maxwell delivering 1.5x more perfor-
mance than the Xeon and being 3 x more energy efficient. The Titan
remains underutilized for single queries, and its lower clock speeds
compared to the Maxwell reduce performance, delivering 9% more
performance than the Xeon, at 21% more energy efficieny.

For larger cohort sizes, the Titan delivers more performance,
while the Maxwell is more energy efficient. For a cohort size of 64
(Figure[7b), the Titan delivers more than 2.5% the performance of

the Xeon, while the Maxwell delivers more than 3.5 x the work per
Joule. This can be partially attributed to the more energy efficient
Maxwell architecture in comparison to Kepler. The Maxwell card
also provides more available scratchpad memory per core, resulting
in more parallelism for our algorithm. However, the Maxwell sat-
urates in terms of both throughput and efficiency for cohort sizes
larger than 64. This is expected, as our variant of the Maxwell
has just 5 SMs. The Titan becomes more energy efficient than the
Maxwell for cohort sizes larger than 256, as there is enough instruc-
tion and memory level parallelism to fully utilize the accelerator.
The quad-core ARM is more energy efficient than the Xeon for
all cohort sizes, however, its throughput is significantly lesser, de-
livering 7% of the throughput of the Xeon at 3x the efficiency for
a cohort size of 64. We can see that current accelerators are a bet-
ter choice than the Xeon and ARM in terms of both performance
and efficiency, providing ample motivation to consider accelerators
for more efficient cluster configurations. This analysis ignores the
memory limitations of the accelerator and the delay incurred while
forming a cohort, and looks at the peak performance and efficiency
figures for each platform. We next look at a practical implementa-
tion with a stream of incoming queries and constrained deadlines.

6.3 Adding Constraints

We now model a more realistic search platform by adding several
constraints:

e The search operation must finish within 7" ms, and 95% of
queries finish within this time.

e The number of tiles processed on the accelerator is limited by
available memory as PCI-E transfers are infeasible within these
deadlines.

® Queries arrive with a rate of o queries/s, therefore forming a
cohort incurs batching delay, and the cohort must still finish
within 7" ms.

Figure [8h shows the throughput and efficiency of the host and
accelerator platforms for an arrival rate of 1000 queries/s and a
deadline of 50 ms. Larger cohorts require more time to create,
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and cohort sizes larger than 32 become infeasible in 50 ms. The
Maxwell based accelerator only configuration (soc+maxwell) is the
most efficient at a cohort size of 32, doing 70% more Work/J, while
delivering 2.2x of the throughput of the Xeon. The augmented
accelerator based configurations deliver the highest throughput,
which is expected as each machine carries two processors.

The accelerators have 6 GB of memory, and can hold a maxi-
mum of 8M documents. For a cohort size of 1, they process these
8M documents in < 5 ms, and remain idle for 45 ms, leading to
low performance and energy efficiency. Due to memory capacity
constraints, accelerators opt for the highest cohort size to maxi-
mize their Work done. For a cohort size of 32, the soc+accelerator
platforms remain idle for 32 ms while batching the requests, yet
do more than 2x the work of the Xeon, while being more energy
efficient than the ARM.

The host platforms are not bound by memory limitations, and
both the Xeon and the ARM processors achieve their highest
throughput and efficiency for smaller cohort sizes, as they have
more time to satisfy 95% of the queries giving them more flexibil-

ity in tile management. For a cohort size of 32, they have to wait
32 ms for the cohort to form, and have only 18 ms to process doc-
uments. Each tile takes longer to process as well for larger cohort
sizes, and even though larger cohort sizes are more efficient (Figure
|Z|), they might not be the optimal strategy under tight deadlines.
Intuitively, increasing the arrival rate of queries (lower cohort
formation times and higher cohort sizes) should increase both
throughput and efficiency for all the configurations. This can be
confirmed from Figure [8p, which shows the throughput and ef-
ficiency of our evaluated platforms for an arrival rate of 25000
queries/s. Both the accelerator only configurations deliver higher
throughput and are more energy efficient than the ARM and Xeon
designs. The SoC + Titan approach delivers 2.3 the throughput
of the Xeon while being 75% more energy efficient than the ARM.
Tables 2h and 2p show the optimal parameters and results of
our model for different experimental configurations. Each set of
listed values gives the highest throughput for that particular cluster
platform. The number of machines represent the machines needed
to process a billion documents for the given arrival rate such that



(Kdocs) Power (Watts) n (Kdocs) No. of Total Cluster
Platform C cgu [ acc | fixed | cpu | acc cpu [ acc | machines | Power (kW)
(a) a = 1000 querles/s
Xeon 1 500 - 144 33 56000 - 893 146
Arm 8 100 - 2 2 - 800 - 7813 23
Xeon+Maxwell 32 100 | 2000 156 32 68 1500 | 4000 285 52
Xeon+Titan 32 100 | 1000 193 32 62 1500 | 4000 285 62
SoC+Maxwell 32 - 2000 17 68 - 4000 391 14
SoC+Titan 32 - 1000 54 62 - 4000 391 27
(b)a= 2500 queries/s
Xeon 256 | 100 - 144 32 - 1300 - 3757 611
Arm 128 | 100 - 2 2 - 100 - 97657 320
Xeon+Maxwell | 128 | 100 | 500 156 41 65 2500 | 3000 1776 419
Xeon+Titan 128 | 100 | 2000 193 41 77 2500 | 6000 1149 323
SoC+Maxwell 128 - 500 17 - 65 - 3000 3256 218
SoC+Titan 128 - 2000 54 - 77 - 6000 1628 183

Table 2:

95% of queries finish within 50 ms. The accelerator augment based
configurations require less than half the machines to satisfy the
given arrival rate and deadline compared to a Xeon only cluster.

The ARM based cluster requires almost 100K quad-core pro-
cessors to handle an arrival rate of 25000 queries/s, making it im-
practical due to scale-out/uncore overheads. Although accelerators
require additional power per machine, the reduction in number of
machines reduces overall fixed costs, reducing total power required.

Accelerators do more work than the host processors for the
same arrival rate and deadline constraints, translating into higher
throughput and higher throughput/Watt. A natural question for any
datacenter architect would be if these improvements translate into
actual cost savings, or if the cost of the accelerator becomes pro-
hibitive. We next look at the cost of different cluster configurations
based on the host processor and accelerator used.

6.4 Cost of ownership Analysis

We now compare the different platforms based on cost of owner-
ship from models created in Section[d] We use values of power, uti-
lization and work done from our experiments, and identify optimal
configurations for each platform type based on highest throughput.
Identifying the cheapest configuration is essential for minimizing
total cost of ownership.

We pessimistically assume retail/sticker prices for the ARM
system and the accelerators. We use a value of $system (arm) =
$100, and $..c = $1000 for the Titan, and $300 for the 6GB
Maxwell. Lower values for these prices would give higher cost
gains for the accelerator based designs. Figure[Oh shows the ratio of
the cost of ownership for different configurations normalized to the
cost of the Xeon platform, for values of $system (xeon) ranging
from $500 to $6000 (the retail price for a PowerEdge R720) for
an arrival rate of 1000 queries/s. Even for a half priced Xeon
system, the ARM cluster is 73% cheaper, and the SoC + Maxwell
configuration is more than 15 x cheaper than the Xeon cluster.

If a 16 cores/32 threads Xeon system can be acquired for
1/12th its retail price at $500 (including fixed costs), both acceler-
ator configurations are still significantly cheaper, with the Xeon +
Maxwell being 56% cheaper, and the SoC + Maxwell more than 3 x
cheaper. The cost benefits of the Xeon + Maxwell system remain
constant at higher values of $system (zeon), as the ratio of total
costs approaches the ratio of the work done by the two systems.

Increasing the arrival rate to 25000 queries/s (Figure Pp) makes
the Xeon more efficient due to larger cohort sizes, and the Xeon
cluster is cheaper than the ARM one for $sysiem (zeon) < $2400.
We choose the Titan as the accelerator at these arrival rates due
to its higher throughput and efficiency. At half the retail price

Configurations for 7" = 50 ms. Each configuration is optimal for that platform giving highest Work done/s.

of the Xeon, the SoC + Titan system is more than 5x cheaper,
and the Xeon + Titan configuration is 2x cheaper. Even for
Ssystem (reon) = $500, the accelerator platforms are 30% cheaper
than the Xeon cluster. For capital and operation costs running into
millions of dollars, these are still significant savings.

This analysis fixes the price of the accelerators and looks at the
gains in the total cost of ownership across a range of Xeon cost
values. These results show significant margins for the accelerators,
even with present sticker prices for accelerators and cheap Xeons,
providing ample proof for the applicability of accelerators to text
search. Both the Titan and the Maxwell are manufactured at 28 nm,
in comparison to the Xeon which is at 22 nm, providing even more
potential for these cards in the future.

6.5 Miscellaneous

Network Bandwidth in Scale-Out Due to its embarrassingly par-
allel nature, text search is not a network intensive workload. The
only data transferred over the network is the query cohort from the
aggregator to the service nodes, and the final top-k results from the
service nodes back to the aggregator. For an application like web
search, assuming an average of 2.4 terms per query [33], requires
(4B for term weight + 4B for term identifier) x 2.4 = 20B per query.
Assuming a node receives a cohort of size 256 queries every 50 ms,
processes its shard, and sends out the top 32 results (values + doc-
ument ids) per cohort, the total bandwidth requirement at a node
s (256“0”(25“3”8) ,or 11 Mbps, which is ~1% of a standard
Gbps link. Usmg accelerators also reduces the overall number of
machines required (Table[2), further reducing network overhead by
requiring fewer connections and switches.

Changing the Arrival rate and Deadline Our conclusions
would not change with variations in the arrival rate. Changing
the arrival rate translates to changing the cohort size, and even
at the smallest cohort size of 1, the Maxwell card is as efficient
as the Xeon and ARM processors (Figure [7). However, the 6GB
memory limit of the GPU prevents it from attaining that efficiency,
and higher memory GPUs would be desirable. For higher arrival
rates, larger cohort sizes become feasible, and we have already
demonstrated the applicability of accelerators to those.

The primary bottleneck for longer deadlines would be the mem-
ory and PCIE limitations of current GPUs. Due to low PCIE band-
width, it is not possible to transfer documents over to GPU memory,
and the GPU will sit idle for the remainder of the time, leading to
lower efficiencies. For higher arrival rates, it can compensate by
forming larger cohorts within the deadline. Therefore, accelerators
are not a good choice at lower arrival rates and longer deadlines, but
in that case the query can be easily processed on the host processor.
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Figure 9: Ratio of cost of ownership for different platforms as a function of cost of the Xeon system for 7" = 50 ms

6.6 Limitations

Indexing and Query Parsing We assume that the document index
and the query matrices are given to us, and do not consider the
cost of constructing these. We set our deadlines to 50 ms, and a
web search takes anywhere from 200 - 300 ms for fluid response
times. We assume the remaining time as sufficient to do parsing
and ranking. There is a significant body of work in constructing the
index offline, and we believe this to be complementary to our work.

Scale out overhead We do not consider additional overhead
while scaling out, such as the network and fixed hardware, cooling
costs and PUE factors. Adding accelerators to machines would
increase cooling costs per machine, however, it requires fewer
machines to do the same task. These overheads can also be folded
into the fixed costs per machine, and higher system costs further
amplify the benefits of adding accelerators to existing hardware.

Additional workloads Our work identifies the most efficient
hardware platform for similarity search. A datacenter server runs
multiple workloads, and these might result in conflicting platform
designs. There is a growing body of work optimizing more and
more applications for accelerators, and these devices can be utilized
for other workloads as well.

Corpus size We use the English Wikipedia for our experiments,
which consists of just 4M pages. The number of documents indexed
by industrial search engines is many orders of magnitude larger
than that. However, our study only uses Wikipedia as a reference for
scaling out to a larger document collection with similar attributes
as Wikipedia. Wikipedia is sufficiently dense, averaging to 100
nonzeros per row of the document term matrix. A larger corpus
consisting of random web pages would contain fewer distinct words
than Wikipedia, speeding up the SpMM and top-k operations even
more.

7. Related Work

This work spans several research areas in a large number of top-
ics namely similarity search, k Nearest Neighbors, datacenters, to-
tal cost of ownership models, GPGPU implementations, Internet
Search Engines and Sparse Matrices. In the interest of brevity, we
focus on research most closely related to our work.

Total cost of ownership models for datacenters exist in many
different forms, focusing on the relationship between capital cost
and operational cost [3} 23]. Sparse matrices have been used for
text search before by Goharian et al. [13]. Their work focuses on
using Sparse Matrix Vector Multiplication to process one query at

a time, and on the storage benefits of a sparse matrix approach as
compared to a more traditional inverted index.

Both the MKL and cuSPARSE libraries are closed-source, mak-
ing it difficult to algorithmically compare our approach to theirs.
We note that the transpose of the document-term matrix (A7) is
very similar to the inverted index when stored in the CSR format,
and a search on all documents becomes a SpMM operation. We
reiterate that our algorithm works better than these commercial li-
braries for text based similarity search, and leave a more generic
evaluation to future work.

Dalton et al. [6] present the ESC algorithm for GPUs, which
breaks down the SpMM operation into parallelizable primitives,
however, the algorithm requires significant intermediate state, and
several passes over this data, making it computationally expensive.
Liu et al [26] focus on irregular sparse matrices, and allocation
schemes for the output matrix S. In contrast, we maintain the
matrix S entirely in temporary scratchpad storage, and only output
the top k results for each row.

Patwary et al. [30] present a similar algorithm that uses a dense
matrix to store the results of SpMM. They focus on improving the
performance of SpMM on Xeon multicores up to 28 threads. We
demonstrate scalability on GPUs that have hundreds of thousands
of threads, and focus on the TCO benefits of using GPUs for text
based similarity search.

Recent work by Sundaram et al. [34] uses LSH to quickly
search across a billion tweets using 100 machines. However, LSH
requires massive amounts of state to achieve reasonable quality,
using 4000GB (40GB per machine) of state to index just 28GB of
data (average 28 chars per tweet), causing scalability issues.

Memcached on GPUs [15| [16] evaluates the popular Mem-
cached distributed workload on GPUs. They perform request batch-
ing as well, trading request latency for higher request throughput
and energy efficiency. This further validates our findings on the ap-
plicability of accelerators to scale-out workloads in datacenters.

Reddi el al. [19] evaluate the efficiency and QoS characteristics
of the Bing search engine on Xeon and Atom cores. Text search on
GPUs was studied by Ding et al. [7] using a traditional compressed
inverted list implementation. Jeon et al. [20] focus on the adaptive
parallelization of a query based on the system load and paralleliza-
tion efficiency. There is a large body of work on search engine qual-
ity and scoring techniques such as PageRank [5]], which are com-
plementary to our work. Catapult [31] is a recent design that uses
FPGAs to improve the ranking throughput of servers, while our
work focuses on the document selection problem, which precedes
document ranking. Catapult also highlights the increasing interest



in using accelerators to improve performance and cost efficiency in
commercial datacenters, and is complementary to our work.

8. Conclusion

Similarity search is a well known problem with a wide range
of real world applications across many disciplines. Searching for
similar matches to a stream of queries across billions of objects
requires thousands of machines, and identifying the right server
platform and sharding strategy are crucial for minimizing total cost
of ownership.

We evaluate the potential of accelerators to improve the cost
effectiveness of cluster designs for similarity search. While gen-
eral purpose server processors offer higher utility and ease of pro-
grammability, accelerators deliver higher throughputs, and result
in significant cost and energy savings. We present optimized al-
gorithms for similarity search and show improvements in both
throughput and efficiency as compared to Xeon and ARM based
systems. Higher throughput per machine results in a reduction in
the number of machines needed to perform search, significantly
lowering cost of ownership.
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