
Statistical Robustness of Markov Chain Monte Carlo

Accelerators

Xiangyu Zhang
Duke University

Durham, North Carolina, USA
xiangyu.zhang@duke.edu

Ramin Bashizade
Duke University

Durham, North Carolina, USA
ramin@cs.duke.edu

Yicheng Wang
Duke University

Durham, North Carolina, USA

Sayan Mukherjee
Duke University

Durham, North Carolina, USA
sayan@stat.duke.edu

Alvin R. Lebeck
Duke University

Durham, North Carolina, USA
alvy@cs.duke.edu

ABSTRACT

Statistical machine learning often uses probabilistic models and

algorithms, such as Markov Chain Monte Carlo (MCMC), to solve

a wide range of problems. Probabilistic computations, often consid-

ered too slow on conventional processors, can be accelerated with

specialized hardware by exploiting parallelism and optimizing the

design using various approximation techniques. Current method-

ologies for evaluating correctness of probabilistic accelerators are

often incomplete, mostly focusing only on end-point result quality

(łaccuracyž). It is important for hardware designers and domain

experts to look beyond end-point łaccuracyž and be aware of how

hardware optimizations impact statistical properties.

This work takes a first step toward definingmetrics and amethod-

ology for quantitatively evaluating correctness of probabilistic ac-

celerators. We propose three pillars of statistical robustness: 1)

sampling quality, 2) convergence diagnostic, and 3) goodness of fit.

We apply our framework to a representative MCMC accelerator and

surface design issues that cannot be exposed using only application

end-point result quality. We demonstrate the benefits of this frame-

work to guide design space exploration in a case study showing that

statistical robustness comparable to floating-point software can be

achieved with limited precision, avoiding floating-point hardware

overheads.

CCS CONCEPTS

· Computer systems organization → Special purpose sys-

tems; · Hardware→ Robustness; · General and reference→

Evaluation.

KEYWORDS

accelerator, statistical machine learning, probabilistic computing ,

statistical robustness, markov chain monte carlo

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19ś23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446697

ACM Reference Format:

Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Sayan Mukherjee,

and Alvin R. Lebeck. 2021. Statistical Robustness of Markov Chain Monte

Carlo Accelerators. In Proceedings of the 26th ACM International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS ’21), April 19ś23, 2021, Virtual, USA. ACM, New York, NY, USA,

16 pages. https://doi.org/10.1145/3445814.3446697

1 INTRODUCTION

Statistical machine learning, like other methods in artificial intelli-

gence, has become an important workload for computing systems.

Such workloads often utilize probabilistic computing, including

probabilistic models and probabilistic algorithms, which enable the

potential to provide generalized frameworks to solve a wide range

of problems. As alternatives to Deep Neural Networks, probabilis-

tic computing provides easier access to interpreting why a given

result is obtained due to model transparency and measurable statis-

tical properties. Many specialized accelerators propose to address

the sampling inefficiency of probabilistic algorithms (e.g., Markov

Chain Monte Carlo Bayesian Inference), by utilizing approximation

techniques to improve the hardware efficiency, such as reducing

bit representation, truncating small values to zero, or simplifying

the random number generator.

Understanding the influence of these approximations on applica-

tion results is crucial to meet the quality requirement. A hardware

accelerator should provide correct execution of target algorithms. A

common approach to evaluating correctness is to compare the end-

point result quality, such as prediction accuracy, against accurately-

measured or hand-labeled ground-truth data using community-

standard benchmarks and metrics: the hardware execution is con-

sidered to be correct if it provides comparable prediction accuracy

to the baseline implementations that do not have the specific ap-

proximations.

Although statistical guarantees can be made regarding end-point

results [55, 63], domain experts in statistics are interested in the

full distribution of possible results rather than a single-point esti-

mate. For example, the outcome of Bayesian Inference is a posterior

distribution that includes both the end-point result and uncertainty.

The end-point result can be obtained by finding the mode or mean

of the distribution. Instead of only knowing the class of an object

in an image, statisticians also want to know the probabilities of

the object belonging to other classes (aleatory uncertainty) and the

959

https://doi.org/10.1145/3445814.3446697
https://doi.org/10.1145/3445814.3446697

ASPLOS ’21, April 19–23, 2021, Virtual, USA Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Sayan Mukherjee, and Alvin R. Lebeck

overall confidence on the result distribution (epistemic uncertainty,

or łuncertainty on uncertaintyž [78]).

Quantifying uncertainty plays a critical role in probabilistic ma-

chine learning and failure to adequately or appropriately consider

uncertainty information can lead to adverse or catastrophic out-

comes, such as a surgeon failing to completely remove a tumor due

to incorrect uncertainty in a segmented image [12, 60], or a self-

driving car leading to the death of a driver due to over-confidently

recognizing a truck as the sky [78]. Furthermore, measuring end-

point results may not always be possible since ground-truth data

is not always accessible. Therefore, statements and guarantees on

the application end-point results are necessary but not sufficient to

claim correctness. Probabilistic accelerators should produce correct

uncertainty along with correct end-point results.

Unlike end-point results, uncertainty is usually difficult to di-

rectly present and can be intractable to compute for high dimen-

sional problems. Instead, domain experts use statistical robustness to

indicate how faithfully software/hardware produces result distribu-

tions, which can be obtained using a collection of statistical metrics.

Good statistical robustness often indicates high confidence regard-

ing the produced distribution and the learning/inference method

is more robust to perturbed inputs. In the domain of probabilistic

computing, correctness is defined by more than the end-point result

of executing the algorithm, and includes statistical robustness.

Current methodologies for evaluating probabilistic accelerators

are often incomplete or ad hoc in evaluating correctness, focusing

only on end-point results or limited statistical properties. Therefore,

a probabilistic architecture should provide some measure (or guar-

antee) of statistical robustness. This work takes a first step toward

defining metrics and a methodology for quantitatively evaluating

correctness of probabilistic accelerators beyond just end-point re-

sult quality.

We use Markov Chain Monte Marlo (MCMC) accelerators as a

case study, and propose three pillars of statistical robustness: 1)

sampling quality, 2) convergence diagnostic, and 3) goodness of fit

(Contribution 1). Each pillar has at least one quantitative empiri-

cal metric: Effective Sample Size (ESS) for sampling quality; Gelman-

Rubin’s 𝑅 and convergence percentage for convergence diagnostic;

and Root Mean Squared Error (RMSE) and Jensen-Shannon Di-

vergence (JSD) for goodness of fit. These pillars do not require

ground-truth data and collectively enable comparison of special-

ized hardware to a target precision, such as a 64-bit floating-point

(FP64) software implementation. We expose several challenges with

naively applying existing popular metrics for our purposes, includ-

ing high dimensionality of the target applications and random

variables with zero variance. Therefore, we modify the existing

methodologies for sampling quality and convergence diagnostic,

and propose a new metric (convergence percentage) for conver-

gence diagnostic (Contribution 2).

The three pillars of statistical robustness can inform end-users

by characterizing existing hardware and inform hardware design-

ers by using the pillars in design space exploration. As a case

study, we demonstrate the framework using a representativeMCMC

acceleratorÐStochastic Processing Unit (SPU) [87]Ðand show that

end-point result quality alone is insufficient to claim correctness:

the accelerator with limited precision and other aggressive approx-

imation techniques achieves the same application end-point result

quality as FP64-software, confirming the previous work, but has

compromised ESS and convergence percentage results (Contri-

bution 3). The analysis reveals that applications need to run 2×

more iterations on the accelerator to achieve the same statistical

robustness as FP64-software, reducing the accelerator’s effective

speedup. We also demonstrate the benefits of using this framework

on design space exploration to overcome the limitation of the above

accelerator (Contribution 4). We find that considerable improve-

ment in statistical robustness, comparable to FP64-software, can

be achieved by slightly increasing the bit precision from 4 to 6 and

removing an approximation technique, with only 1.20× area and

1.10× power.

We believe our work provides a template for analyzing statistical

robustness on other accelerators. The remainder of this paper is

organized as follows. Section 2 provides the necessary background

and motivation for this work. The detailed description of the three

pillars is in Section 3. Section 4 describes the analysis of statistical

robustness on a representative accelerator and we perform design

space exploration using the three pillars in Section 5. Section 6

discusses generality of the proposed methodology, limitations, and

future work. Related work is presented in Section 7. Section 8

concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 Probabilistic Computing and Uncertainties

Probabilistic (stochastic) computing is a powerful approach used in

many applications (e.g., image analysis [25], robotics [33], natural

language processing [19], global health [32], and wireless communi-

cations [34]), which includes probabilistic models and probabilistic

algorithms. Probabilistic models, such as Markov Random Fields

and Bayesian Networks, represent problems as parameterized prob-

ability distributions. Probabilistic algorithms, such as MCMC and

Hamiltonian Monte Carlo [62], solve problems by randomly infer-

ring the parameters in the probabilistic models to explain observed

data. Probabilistic algorithms create opportunities to provide gen-

eralized frameworks and are the only practical approach to solve

certain problems, such as high-dimensional inference. Compared

with Deep Neural Networks, probabilistic models are conceptu-

ally simple, compositional, and interpretable [27]. As a key feature,

probabilistic computing not only produces a single-point estimate

(a.k.a., the end-point result) but also a full distribution of possible

outcomes: the approach not only predicts the outcome of a coin

toss but also provides the probability of getting a łheadž.

Bayesian Inference is an important framework in probabilistic

computing, which updates the probability estimate (a.k.a., posterior

distribution) for a hypothesis by combining information from prior

beliefs and observed data. Suppose𝑋 is the latent randomvariable of

interest. The goal is to retrieve the posterior distribution 𝑝 (𝑋 |𝑑𝑎𝑡𝑎)

given the prior beliefs of 𝑋 and the observed 𝑑𝑎𝑡𝑎 using Bayes’

theorem: 𝑝 (𝑋 |𝑑𝑎𝑡𝑎) ∝ 𝑝 (𝑑𝑎𝑡𝑎 |𝑋)𝑝 (𝑋), where 𝑝 (𝑋) is the prior

distribution of 𝑋 , and 𝑝 (𝑑𝑎𝑡𝑎 |𝑋) is the likelihood of observing

𝑑𝑎𝑡𝑎 given a certain value of 𝑋 . Both 𝑋 and 𝑑𝑎𝑡𝑎 can be scalars or

multidimensional vectors.

960

Statistical Robustness of Markov Chain Monte Carlo Accelerators ASPLOS ’21, April 19–23, 2021, Virtual, USA

all possible distributions

possible distributions
given a model

𝐷!"

𝐷#$%

𝐷&%!

𝐷'#(

model
uncertainty

learning/inference
uncertainty

implementation
uncertainty

Figure 1: Different types of uncertainties adapted from

Hüllermeier and Waegeman [37]. We introduce implemen-

tation uncertainty apart from prior work.

As stated by Ghahramani [27], łuncertainty plays a fundamental

partž in probabilistic machine learning. Domain experts in statistics,

especially in Bayesian Inference, look beyond the end-point result

and are also interested in the uncertainty of the produced result,

such as the probabilities of other possible outcomes and the over-

all confidence in the produced result. Hüllermeier and Waegeman

wrote a comprehensive introduction to uncertainty in machine

learning [37]. One way to categorize uncertainty is by its reducibil-

ity. Aleatory uncertainty is due to the inherent randomness of a

problem and cannot be reduced. For example, the uncertainty of a

coin toss outcome always exists no matter how many data points

or how powerful of a predictor we have. Epistemic uncertainty, as

Varshney and Alemzadeh also call it łuncertainty on uncertaintyž

[78], is due to the lack of knowledge including limited model ca-

pability, sub-optimal learning/inference algorithms, an inadequate

amount of data, insufficient precision in an implementation, etc.

Epistemic uncertainty can be reduced by improving the models,

algorithms, implementations, and/or collecting more data: we can

obtain a better idea of the ratio of łheadž vs. łtailž with more coin

tosses. Statistical robustness (defined in Section 1) evaluates epis-

temic uncertainty, and is the focus of this paper. Aleatory and

epistemic uncertainties are context-dependent and not absolute

notions, as noted by Hüllermeier and Waegeman.

Uncertainty can be further categorized by its source. Figure 1

illustrates the types of uncertainty from different sources. Sup-

pose 𝐷𝑔𝑡 is the ground-truth distributionÐthe ground-truth so-

lution of a problem. 𝐷𝑚𝑑𝑙 is the best possible solution that can

be learned/inferred given a probabilistic model (a.k.a., hypothesis

space). The discrepancy depicts model uncertainty since the model

may not be capable of representing the ground-truth solution. 𝐷𝑎𝑙𝑔
is the learned/inferred solution from a probabilistic algorithm given

observed data. The discrepancy between 𝐷𝑚𝑑𝑙 and 𝐷𝑎𝑙𝑔 demon-

strates learning/inference uncertainty1 caused by algorithms not

finding the optimal solution due to either the algorithm per se or

not enough observed data.

The above uncertainties are categorized by prior work [37] re-

lated to the selection of models/algorithms and the collection of

1The original literature [37] refers to łlearning/inference uncertaintyž as łapproxima-
tion uncertaintyž. We rename it to avoid the confusion with łhardware approximationž
which may cause implementation uncertainty in our context.

while not converged:
for each pixel:

1) compute probabilities of each possible labels.

2) randomly assign new labels based on the probabilities.

Markov Chain Monte Carlo method:

Label

value

nbr2’s

label

value

nbr3’s

label

value

nbr4’s

label

value

nbr1’s

label

value

data
disparity mapimage pair

Figure 2: Stereo vision using MCMC (MRF Gibbs Sampling).

data. These uncertainties are independent of the software/hardware

implementations: the uncertainties exist even with FP64 preci-

sion and perfect random number generation. In practice, software

or hardware implementations often utilize approximation tech-

niques to improve efficiency. Software implementations can use re-

duced floating-point representations such as TensorFloat-32 [45] or

BFloat16 [82]. Hardware accelerators (see Section 2.3) often utilize

limited precision, simplified pseudo-random number generators,

or other custom techniques. Intuitively, these approximations po-

tentially introduce epistemic uncertainty: for example, insufficient

precision can reduce the knowledge obtainable from the numerical

value of input data or intermediate results. Therefore, we intro-

duce implementation uncertainty, in addition to model and learn-

ing/inference uncertainty, to represent the uncertainty introduced

by software/hardware implementations. A good software/hardware

implementation should not impose significant uncertainty in the

results. The goal of this paper is to quantify implementation uncer-

tainty using statistical robustness metrics.

The rest of this section introduces the performance bottleneck

of probabilistic computing using MCMC as an example, the exist-

ing probabilistic accelerators that address the bottleneck, and a

representative MCMC accelerator that implements various approx-

imation techniques.

2.2 MCMC and Sampling Overhead

In Bayesian Inference, as the dimension of data and probability dis-

tribution increase, analytically or numerically deriving the exact re-

sult of a posterior distribution becomes complicated and intractable.

One approach to breaking łthe curse of dimensionalityž is Markov

Chain Monte Carlo (MCMC), a collection of methods that solve the

problems by iteratively generating samples on random variables

and eventually converge to a result regardless of the initial stage.

Figure 2 shows an example using an MCMC method, Markov

Random Field (MRF) Gibbs Sampling for stereo vision, proposed by

previous work [6]. Stereo vision reconstructs the depth information

of objects in an image pair by matching the corresponding pixels

that represent the same objects. The results are presented in a dis-

parity map, indicating the depth of the corresponding objects in the

image (lighter is closer). As shown in Figure 2, the MCMC method

iterates the image pixels by considering the disparity of each pixel

as a random variable. For each pixel, it evaluates probabilities of

each possible label (disparity outcome) and draws a sample as the

961

ASPLOS ’21, April 19–23, 2021, Virtual, USA Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Sayan Mukherjee, and Alvin R. Lebeck

output label. Each probability is determined by the label values of

neighboring pixels and the initial pixel data values of the image

pair, defined by First-Order MRF probabilistic graphical model [25].

The outer loop (a.k.a., iteration) iterates on the whole image until

convergence.

MCMC methods rely on efficiently performing sampling in the

inner loop, which involves step 1) efficiently computing the param-

eters of the distribution to sample from based on the observed data,

and step 2) efficiently generating samples from the parameterized

distribution. Unfortunately, as described in previous work [83], sam-

pling overhead can be notably high: step 2) alone takes hundreds

of CPU cycles for a simple distribution. One approach to reducing

the sampling overhead is to use approximation techniques in al-

gorithms [58, 62, 85]. Deterministic methods, such as Expectation

Propagation and Variational Bayesian, are alternatives to MCMC.

Although these methods are often more efficient in the applied

cases, domain experts use the original MCMC as a conceptually

straightforward, mathematically simple, yet accurate framework.

As a result, even with sampling overhead, MCMC is one of the most

popular algorithms in probabilistic computing. Other examples

of MCMC applications include: Herschlag et al. quantify gerry-

mandering in North Carolina using MCMC sampling [35]; various

researchers propose using MCMC as the inner loop for learning

different types of Markov Networks [26, 76], which can be used for

electronic health records analysis [5].

2.3 Specialized Probabilistic Accelerators

Meeting the needs of domain experts to overcome sampling over-

head may be achieved by accelerating sampling through hardware

specialization. Previous work seeks to efficiently generate spe-

cific types of distributions using FPGAs [1, 74] and specialized

circuits [10]. Specialized architectures are proposed to accelerate

specific algorithms and models, such as dedicated MCMC accelera-

tors [17, 47, 53, 57, 61, 73, 88], a Bayesian Neural Networks accelera-

tor [9], an accelerator for Stochastic Gradient Descent [54], an ASIC

accelerator for Bayesian Networks [44], CMOS-hybrid MRF Gibbs

Sampling Unit [83, 87], and compiler workflows to build specialized

accelerators [4]. Many of these accelerators use various forms of

optimizations (e.g., limited bit precision, pseudo-random number

generators, etc.) to reduce area/power, allowing more individual

units on a single chip and thus improving overall performance. As

described above, it is important to measure (or guarantee) the cor-

rectness of these accelerators, including both end-point result quality

and statistical robustness.

This paper represents a first step toward articulating a set of met-

rics and methodology for quantifying the statistical robustness of

probabilistic accelerators. Section 3 presents our proposed method-

ology and we use an accelerator [87] (described below) as a case

study to demonstrate how to analyze an existing accelerator and to

perform design space exploration.

2.4 A Representative Probabilistic Accelerator

As a case study, we consider the Gibbs Sampling accelerator design

described by Zhang, et al. [87] implemented entirely in CMOS using

pseudo-random number generation instead of molecular optical

devices (cf. [87] Section IV). Figure 3 shows the baseline pipeline

𝑝"#(𝑖)

Label
(𝐿)

Labels
[𝐿()#* , 𝐿()#+
𝐿()#, , 𝐿()#-]

Data
[𝐷*, 𝐷+]

RNG (19-bit
LFSR)

E
n

e
rg

y
 t
o

P

ro
b

a
b

ili
ty

𝐸(𝑖) 𝐸0(𝑖)

T
Update

Config

E
n

e
rg

y

C
o

m
p

u
ta

ti
o

n V

𝐸 FIFO

V+1

𝐸12(
for v

𝐸12(
for v+1

−

Valid

Discrete

Sampler

V V-1

CDF FIFO

8
4

12

6
2x6

4x6

32

Parameter Config

Figure 3: The SPU pipeline derived from RSU-G [87].

design, which we call a Stochastic Processing Unit (SPU). It is

divided into four main stages with two internal decoupling FIFOs

and an inverse transform method is used for the discrete sampler.

Given the data and neighbor labels, the first stage computes

the total energy of a possible label 𝐸 (𝑖) (Equation 1) each cycle,

where 𝛼 and 𝛽 are application parameters. The energy 𝐸 (𝑖) is then

dynamically scaled using subtraction to maximize the dynamic

range (Equation 2). Both 𝐸 (𝑖) and 𝐸𝑠 (𝑖) are 8-bit unsigned integers.

In the third stage, the scaled energy 𝐸𝑠 (𝑖) is converted to a scaled

probability represented in a 4-bit unsigned integer. The original

probability is computed by 𝑒𝑥𝑝 (−𝐸𝑠 (𝑖)/𝑇) which is represented as a

real number between (0,1] using floating-point in software, where𝑇

is a fixed parameter per outer iteration. However, the probability is

scaled using Equation 3 and truncated using Equation 4 tomatch the

unsigned integer representation, where 𝑃𝑏𝑖𝑡𝑠 = 4 is the number of

bits in the scaled probability output 𝑝𝑡𝑟 (𝑖). Additionally, probability

truncation drives all scaled probabilities that are less than one to

zero and 2𝑛 approximation rounds all scaled probabilities down to

the nearest 2𝑛 integer value (Equation 4). The value of 𝑝𝑡𝑟 (𝑖) can

be pre-computed and stored in a look-up table (LUT). The values

in the LUT need updates if 𝑇 changes between iterations. The final

stage of SPU generates a discrete sample per variable based on the

probabilities of all possible label values {𝑝𝑡𝑟 (0), 𝑝𝑡𝑟 (1), ...} using

the least 12-bits of a 19-bit LFSR to implement the inverse transform

sampling.

𝐸 (𝑖) = 𝛼𝐸𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛 (𝑖) + 𝛽
∑

𝐸𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 (1)

𝐸𝑠 (𝑖) = 𝐸 (𝑖) − 𝐸𝑚𝑖𝑛 (2)

𝑝𝑠 (𝑖) = (2𝑃𝑏𝑖𝑡𝑠 − 1) × 𝑒𝑥𝑝 (−𝐸𝑠 (𝑖)/𝑇) (3)

𝑝𝑡𝑟 (𝑖) = ⌊2 ⌊log2 𝑝𝑠 (𝑖) ⌋⌋ (4)

The SPU supports two operating modes: 1) pure sampling and

2) optimization (simulated annealing). Pure sampling iteratively

generates Gibbs samples using constant temperature 𝑇 , where 𝑇

is considered a parameter obtained during model training. When

converged, the estimated distribution of a random variable (e.g.,

distribution of possible disparities in a pixel) can be obtained by

collecting the latest N samples. An exact result can be obtained

from the mode of the estimated distribution, the most frequent

label. The optimization mode uses simulated annealing to converge

to an exact result faster by strategically decreasing the temperature

𝑇 [25].𝑇 is initially high so that each label has a similar probability

of being selected. As 𝑇 decreases, labels with the lowest energy

are more likely to be selected, eventually leading to convergence.

962

Statistical Robustness of Markov Chain Monte Carlo Accelerators ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 1: SPU result quality from one run per dataset.

Motion estimation1 Stereo vision2

Dataset Software SPU Dataset Software SPU

dimetrodon 0.600 0.611 art 26.8% 27.7%

rubberwhale 0.371 0.376 poster 12.3% 11.0%

venus 0.460 0.449 teddy 26.9% 27.8%

1 Metric is end-point error [2]. Lower is better.
2 Metric is bad-pixel percentage [70]. Lower is better.

The optimization mode requires fewer iterations than pure sam-

pling mode, but cannot provide an estimated distribution which

is required for uncertainty. Previous work [87] evaluates only the

optimization mode.

We implement the SPU in Verilog and use QuestaSim simulation

to evaluate the end-point result quality of the same three applica-

tions assessed in previous work [87]: image segmentation, motion

estimation, and stereo vision. Table 1 shows the result quality com-

parison between FP64-software and the SPU. Each result is collected

by a single run per dataset in optimization mode. We validate that

the SPU with a simple 19-bit LFSR as its random number genera-

tor (RNG) achieves the same result quality as the software. Image

segmentation results indicate the same conclusion and are omitted

for brevity. We also obtain similar high-quality application results

on an Intel Arria 10 FPGA prototype. Despite these results, we are

left with the question: What do the results in Table 1 indicate about

the accelerator’s statistical robustness? The answer is nothing. The

following sections present our initial efforts toward providing a

better answer.

3 THREE PILLARS OF STATISTICAL
ROBUSTNESS

To identify appropriate measures of hardware statistical robustness,

we draw on known techniques utilized by domain experts to evalu-

ate their models and algorithms. In this work, we focus on MCMC

where we view it as a good starting point since domain experts

have wide agreement on its statistical robustness metrics. Ideally,

we could formally prove bounds on relevant metrics [23, 41]. Un-

fortunately, some hardware optimizations (e.g., truncation to zero)

make formal proofs extremely difficult or impossible. A provable

architecture introduces more complicated hardware.

Therefore, we rely on existing empirical diagnostic tests for

MCMC techniques, based on foundations in statistics, to establish

three pillars for assessing a probabilistic accelerator’s statistical ro-

bustness: 1) sampling quality [75], 2) convergence diagnostic [16],

and 3) goodness of fit. Each pillar has at least one quantitative

measure, and provides insight to application users and hardware

designers. Compared with end-point result quality, which only

measures the difference between a produced distribution mode and

some measure of application ground-truth, the proposed pillars

collectively help in understanding/explaining end-point results by

providing confidence and uncertainty information, and can indicate

the performance of the MCMC execution from different aspects:

1) sampling quality measures the rate of generating independent

(non-correlated) samples from the target distribution in terms of

iterations; 2) convergence diagnostic measures the confidence that

the execution has arrived at a stable distribution as the solution; 3)

goodness-of-fit measures the difference between a target distribu-

tion and the distribution obtained as a solution. The initial metrics

we select for each pillar are well-accepted by domain experts. An

extensive introduction to MCMC diagnostic metrics is provided by

Robert and Casella [66] (Chapter 12). Note that we do not claim

completeness, but we believe the pillars are necessary and compre-

hensively cover key aspects of probabilistic algorithmsÐa crucial

first step.

Recall we are interested in implementation uncertainty intro-

duced by hardware accelerators. Statistical robustness is affected

by all uncertainties (i.e., model, learning/inference, and implemen-

tation). Therefore, we compare hardware accelerator results with

FP64-software as the baseline to isolate the impact of hardware

optimizations. The remainder of this section presents our proposed

three pillars of statistical robustness.

3.1 Pillar 1: Sampling Quality

A sampling algorithm with perfect sampling quality generates in-

dependent samples. However, an MCMC sample is drawn based

on the current values of random variablesÐthe outcome of sam-

ples in the previous iteration. This dependency creates correlations

between samples which is non-trivial until several subsequent sam-

ples are drawn, which can be represented as an autocorrelation

time 𝜏 . This implies that by generating 𝑛 samples fromMCMC, only

𝑛/𝜏 samples can be considered independent. A sufficient number of

independent samples are required to derive meaningful statistical

measures (e.g., mean and variance). Note that the sample depen-

dency is an intrinsic property of MCMC algorithms and exists even

with a perfect random number generator and FP64 precision.

Effective Sample Size (ESS) is commonly used as a sampling

quality metric that represents how many independent samples

are drawn among all the dependent samples. In general, higher

ESS indicates the MCMC sampler is more efficient at generating

independent samples. Unfortunately, there is no consensus on a

single ESS definition [28]. We use the definition discussed by Kass

et al. [42] based on autocorrelation time. An alternative ESS defi-

nition is łin the custom of survey samplingž [28, 46]. Since closed

form expressions for ESS are difficult, we estimate ESS using the

known initial positive sequence (IPS) methods [53, 75].

𝐸𝑆𝑆 = 𝑛/(1 + 2

𝐾∑

𝑘=1

𝜌 (𝑘)) (5)

We estimate ESS on a univariate random variable using Equation 5,

where 𝑛 is the number of dependent MCMC samples (iterations)

and 𝜌 (𝑘) is the autocorrelation function of the sample sequence.

We sum up the first 𝐾 contiguous lags where 𝜌 (𝑘) + 𝜌 (𝑘 + 1) ≥ 0.

Theoretically, 𝐸𝑆𝑆 = 𝑛 provides the best sampling quality where

all samples are independent; however, Equation 5 is an estimate of

ESS, and thus it is numerically possible that 𝐸𝑆𝑆 > 𝑛.

The above ESS method cannot be directly applied to our eval-

uation for two reasons. First, many MCMC problems are high-

dimensional (many random variables). For example, in stereo vision

a 320×320 input image has 102,400 dimensions. The above ESS does

not account for multidimensional problems. Furthermore, the above

963

ASPLOS ’21, April 19–23, 2021, Virtual, USA Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Sayan Mukherjee, and Alvin R. Lebeck

ESS has no definition when all collected samples have the same

value (zero empirical variance), which is possible in practice as

shown in Section 4. An ideal metric can report a scalar ESS value to

account for both issues. While methods exist to report multivariate

ESS [79], to our knowledge they are not practical in our case and

they do not allow zero variance for any variable.

To address multi-dimensionality, we consider each dimension

(each pixel in our applications) as a separate random variable (RV)

to compute ESS per dimension separately and report a scalar value:

themean ESS of all dimensions. To further address zero variance, we

propose two metrics: 1) mean łoverallž ESS that omits the random

variables with zero variance in software and hardware implemen-

tations, respectively; and 2) mean łactivež ESS, a paired metric that

only includes the random variables with non-zero variance in both

software and hardware. Section 4 suggests overall ESS is biased

toward software due to small but non-zero variance. Active ESS

omits small variance in software, which can potentially benefit hard-

ware implementations. Algorithms 1 and 2 outline the procedure

of computing the two metrics.

Pillar Insight. If ESS is low it may take more MCMC iterations

to achieve an acceptable ESS. If a hardware accelerator produces

substantially lower ESS than software, the additional iterations may

reduce its effective speedup.

Algorithm 1: Overall ESS

Input: trace of multidimensional samples 𝑿 from a MCMC

run, from software or hardware implementations.

sum_ESS = 0, num_valid_rvs = 0

for 𝑥 (trace of each univariable RV) in 𝑿 do

if variance(𝑥) ≠ 0 then
sum_ESS += ESS(𝑥)

num_valid_rvs++
end

end

Output: overall_ESS = sum_ESS/num_valid_rvs

Algorithm 2: Active ESS

Input: trace of multidimensional samples 𝑿𝒔𝒘 from a

MCMC run in software, and 𝑿𝒉𝒘 in hardware

implementations.

sum_ESS_sw = 0, sum_ESS_hw = 0

num_valid_rvs = 0

for 𝑥𝑠𝑤 (trace of each univariable RV in software) in 𝑿𝒔𝒘

and 𝑥ℎ𝑤 (trace of corresponding RV in hardware) in 𝑿𝒉𝒘 do

if variance(𝑥𝑠𝑤) ≠ 0 and variance(𝑥ℎ𝑤) ≠ 0 then
sum_ESS_sw += ESS(𝑥𝑠𝑤)

sum_ESS_hw += ESS(𝑥ℎ𝑤)

num_valid_rvs++
end

end

active_ESS_sw = sum_ESS_sw/num_valid_rvs

active_ESS_hw = sum_ESS_hw/num_valid_rvs

Output: active_ESS_sw, active_ESS_hw

𝑊 = 0?

𝐵 = 0?

𝑅& < 1.1?

Converged

Not

Converged

Samples

Y

N

N

N Y

Y

Figure 4: Determine convergence of a random variable.

3.2 Pillar 2: Convergence Diagnostic

An important question for an MCMC method is when to stop it-

erating, determined by when the MCMC is converged. Similar to

ESS, the time to convergence is used to analyze algorithms and

input data when using software even with FP64 and sophisticated

random number generators. Multiple methods exist to measure the

convergence. A comprehensive review is provided by Cowles and

Carlin [16]. We use Gelman-Rubin’s 𝑅 [8, 24], a popular quanti-

tative method provided by many statistical packages, to measure

whether a univariate random variable (e.g., a pixel in stereo vision)

is converged at a certain iteration.

Gelman-Rubin’s 𝑅 (potential scale reduction factor) estimates

the convergence by comparing the between-chain variance (𝐵) and

within-chain variance (𝑊) across multiple independent runs on the

same MCMC instance2. Equations 6 to 9 show the computation to

obtain an 𝑅 given the sample trace 𝑥 from𝑚 independent MCMC

runs, each with 𝑛 samples. 𝜎2+ is an overestimate on the variance of

a random variable. As a rule of thumb [8, 24], a univariate random

variable is considered converged when 𝑅 < 1.1. Typically larger 𝑅

indicates that more iterations are needed to converge. Note that the

𝑅 method requires a random value initialized from an overdispersed

distribution. We meet this requirement by initializing random vari-

ables (i.e., initial labels of pixels) uniform-randomly.

𝐵/𝑛 =
1

𝑚 − 1

𝑚∑

𝑗=1

(𝑥 𝑗 · − 𝑥 · ·)
2 (6)

𝑊 =
1

𝑚(𝑛 − 1)

𝑚∑

𝑗=1

𝑛∑

𝑡=1

(𝑥 𝑗𝑡 − 𝑥 𝑗 ·)
2 (7)

𝜎̂2+ = (𝑛 − 1)/𝑛 ×𝑊 + 𝐵/𝑛 (8)

𝑅2 =
𝑚 + 1

𝑚

𝜎̂2+
𝑊

−
𝑛 − 1

𝑚𝑛
(9)

A scalar convergence diagnostic is preferred formulti-dimension-

al applications. Similar to ESS, handling high dimensions and the

random variables with zero empirical variance (𝑊 = 0) is challeng-

ing using existing methods [8, 80]. The original Gelman-Rubin’s

𝑅 metric has no definition at 𝑊 = 0. Considering each dimen-

sion as a separate random variable (RV), we propose an extended

procedure (shown in Figure 4) to consider a random variable con-

verged when 𝐵 = 0 and𝑊 = 0, which indicates all samples are

the same value from different iterations and MCMC runs. A ran-

dom variable is not considered converged when 𝐵 > 0 and𝑊 = 0,

which indicates samples are the same value within MCMC runs,

but different across MCMC runs. We propose convergence percent-

age, the percentage of converged univariate random variables, as

our new metric. Algorithm 3 outlines the procedure of computing

convergence percentage.

2AnMCMC instance refers to the same input data, model and configuration parameters.

964

Statistical Robustness of Markov Chain Monte Carlo Accelerators ASPLOS ’21, April 19–23, 2021, Virtual, USA

Pillar Insight. Low convergence percentage indicates that more

iterations are needed for the model to converge. If a hardware

accelerator takes substantially more iterations to converge than the

software, the additional iterations may reduce its effective speedup.

Algorithm 3: Convergence percentage

Input: trace of multidimensional samples 𝑿 from𝑚 MCMC

runs, from software or hardware implementations.

num_converged_rvs = 0, num_rvs = 0

for 𝑥 (trace of each univariable RV) in 𝑿 do

if (𝑅(𝑥)<1.1) or (𝐵 = 0 and𝑊 = 0) then
num_converged_rvs++

end

num_rvs++
end

convergence_percentage =

num_converged_rvs/num_rvs*100 (in %)

Output: convergence_percentage

3.3 Pillar 3: Goodness of Fit

Understanding the łgoodness of fitž, the difference between end-

point results produced by the software and by the hardware accel-

erator, is important to evaluate the overall quality of the hardware

accelerator in absence of ground-truth data. We provide two łgood-

ness of fitž approaches: 1) using application-specific data to measure

how good the hardware results fit a reference software result; 2) us-

ing a distribution divergence measurement to evaluate all possible

data inputs and provide the worst-case divergence.

3.3.1 Application Data Analysis. We are interested in how close

or different the results are between the software and hardware.

Popular quantitativemetrics for łgoodness of fitž include RootMean

Squared Error (RMSE) and coefficient of determination (𝑅2). We

choose RMSE given the value of 𝑅2 can be misleading by the small

variance of the software results. RMSE measures the root of average

squared difference between the result from a hardware MCMC run

and a reference software run, ranging from 0 to infinity where

lower is better. Due to the stochastic nature of MCMC methods,

each MCMC run can have different end-point results for either

software or hardware. To account for this variation, we compute

RMSE for both hardware and software with respect to a reference

software result from multiple MCMC runs. The reference software

result is obtained using the mode of multiple software runs to

minimize the result variation in a single software reference run.

3.3.2 Data-independent Analysis. Recall the step-1 of sampling is

computing the probability distribution to sample from. Hardware

approximations in this step introduce divergence from the distri-

bution obtained from FP64-software. Quantifying the distribution

divergence of hardware from software provides 1) insights on why

the results are good (or bad), 2) how the hardware may perform on

unobserved data, and 3) the worst-case divergence with arbitrary

input data.

One popular divergence measurement is Kullback-Leibler (KL)

divergence. Given the same input data, model, configuration param-

eters, and states of neighbors, the distribution of a given random

variable is computed as 𝑃𝑠𝑤 from FP64-software and 𝑃ℎ𝑤 from a

hardware implementation. KL divergence (𝐷𝐾𝐿) from 𝑃ℎ𝑤 to 𝑃𝑠𝑤
is defined in Equation 10. 𝜒 is a collection of all possible outcomes

of the random variable and 𝑖 is a possible outcome.

𝐷𝐾𝐿 (𝑃𝑠𝑤 | |𝑃ℎ𝑤) =
∑

𝑖∈𝜒

𝑝𝑠𝑤 (𝑖) log
𝑝𝑠𝑤 (𝑖)

𝑝ℎ𝑤 (𝑖)
(10)

One major drawback of KL-divergence is it goes to infinity

when any entry of 𝑃ℎ𝑤 (𝑖) is zero while 𝑃𝑠𝑤 (𝑖) is non-zero, which

is likely to happen under the hardware technique of truncating

small probabilities to zero, and thus cannot be directly applied

to our study. Therefore, we choose Jensen-Shannon Divergence

(JSD) as our divergence measurement [50], shown in Equation 11.

JSD is defined based on KL-devergence, where 𝑀 = (1/2)𝑃𝑠𝑤 +

(1/2)𝑃ℎ𝑤 . Note that KL-divergence is asymmetric but JSD is sym-

metric: 𝐷 𝐽 𝑆 (𝑃𝑠𝑤 | |𝑃ℎ𝑤) = 𝐷 𝐽 𝑆 (𝑃ℎ𝑤 | |𝑃𝑠𝑤). A lower JSD is prefer-

able, showing distributions of a random variable computed from

FP64-software and hardware implementations are close.

𝐷 𝐽 𝑆 (𝑃𝑠𝑤 | |𝑃ℎ𝑤) =
1

2
𝐷𝐾𝐿 (𝑃𝑠𝑤 | |𝑀) +

1

2
𝐷𝐾𝐿 (𝑃ℎ𝑤 | |𝑀) (11)

Evaluating JSD on arbitrary data inputs for a random variable

with many possible labels, such as in stereo vision, is challenging

in both analytical and empirical approaches given the complicated

mathematical representation and the large parameter space. In

this work, we evaluate the JSD in binary label cases, such as in

foreground-background image segmentation.

Pillar Insight. Substantially worse RMSE or JSD results for a

hardware accelerator means it is likely producing low-quality ap-

plication end-point results and more iterations or model/hardware

design changes may be required.

4 ANALYZING EXISTING HARDWARE

We apply the three pillars of statistical robustness on an existing

hardware implementation, the Stochastic Processing Unit (SPU)

described in Section 2.4.

4.1 Methodology

In this work, we consider a single SPU as it is sufficient to explore

the statistical robustness questions. Development of an accelerator

prototype with multiple SPUs is beyond the scope of this work.

We primarily utilize MATLAB for both FP64-software and a func-

tionally equivalent SPU simulator. Importantly, we also have SPU

implementations in Verilog, Chisel, and HLS all with verified results.

We choose stereo vision and motion estimation as our test appli-

cations. Motion estimation infers the motion vectors of image pixels

in a frame of a video with respect to its next sequential frame. The

concept of applying MRF Gibbs Sampling on motion estimation is

similar to stereo vision as described in Section 2.2, except the output

label is a 2D motion vector of a pixel, indicating where the pixel

moves to in the next frame. Each disparity per pixel in stereo vision

is treated as a random variable. Each 2D motion vector per pixel in

motion estimation is considered as two random variables 𝑥 and 𝑦.

We pick three datasets from Middlebury [2, 70] for each application.

We use FP64 runs to find the application parameters (e.g., 𝛼 and

𝛽). Motion estimation has one set of parameters for all datasets,

and stereo vision has two sets for all datasets. Some parameters

965

ASPLOS ’21, April 19–23, 2021, Virtual, USA Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Sayan Mukherjee, and Alvin R. Lebeck

Figure 5: ESS per random variable in stereo vision teddy. Red

regions correspond to zero variance.

0

100

200

300

400

500

600

700

800

overall active overall active overall active

art poster teddy

E
ff

e
ct

iv
e

 S
a

m
p

le
 S

iz
e

sw spu

(a) Stereo vision

0

100

200

300

400

500

600

700

800

overall active overall active overall active

dimetrodon rubberwhale venus

E
ff

e
ct

iv
e

 S
a

m
p

le
 S

iz
e sw spu

(b) Motion estimation

Figure 6: Mean overall and active ESS (higher is better).

can be optimized in a training process, which is beyond the scope

of this paper. We also considered, but omit, image segmentation

since it converges too fast (30 iterations for simulated annealing)

to produce meaningful statistical measurements.

Recall the SPU supports two operating modes: pure sampling

that produces the full estimated distribution (sampling), and opti-

mization using simulated-annealing (optimization) that converges

quickly to an exact result. For optimization, measuring Effective

Sample Size (ESS) and Gelman-Rubin’s 𝑅 is not conceptually mean-

ingful, we evaluate sampling quality and convergence diagnostic

for sampling only and goodness of fit for both modes. Parameter

settings for each dataset are the same in sampling as in optimization,

except for a different, fixed temperature. Our empirical results show

that all datasets converge after 1,000 iterations for optimization and

3,000 for sampling, except for poster in stereo vision which takes

only 500 and 1,500 iterations, respectively.

4.2 Results Analysis

4.2.1 SamplingQuality. Weanalyze ESS on SPU comparedwith the

FP64-software by collecting the last 1,000 iterations of MCMC runs

in the two applications. We evaluate the ESS per random variable

and report the arithmetic mean. Figure 5 shows an example ESS

per random variable in stereo vision teddy dataset. Red regions

indicate the random variables with zero variance, and thus ESS

cannot be calculated. Due to truncating small probabilities to zero,

more random variables in the SPU have zero variance than in the

60%

65%

70%

75%

80%

85%

90%

95%

100%

0.33x 0.50x 0.67x 1x 1x

sw spu

C
o

n
v

e
rg

e
n

ce
 P

e
rc

e
n

ta
g

e

Normalized Iterations

art poster teddy

(a) Stereo vision

60%

65%

70%

75%

80%

85%

90%

95%

100%

sw spu

C
o

n
v

e
rg

e
n

c
e

 P
e

rc
e

n
ta

g
e

dimetrodon

rubberwhale

venus

(b) Motion estimation

Figure 7: Convergence percentage (higher is better) results.

For stereo visionwe run softwarewith 0.33×, 0.5×, 0.67×, and

1× the number of SPU iterations, while motion estimation

runs the same number of iterations for both.

software.We consider a random variable with zero variance inactive.

The percentage of inactive random variables with respect to the

total (a.k.a. inactive percentage) in three stereo vision datasets

are 26.9% for art, 44.6% for poster, and 26.2% for teddy in the SPU,

compared with 0.3% for art, 4.1% for poster, and 1.4% for teddy in the

software. Motion estimation exhibits similar inactive percentages.

Zero variance means the probability of a possible label is large

enough that all random samples pick the same label empirically,

which can indicate convergence. The variance of corresponding

inactive random variables in FP64-software is consistently small,

indicating the random variable is likely to consistently pick the

same label as wellÐa concentrated distribution. Therefore, a high

inactive percentage does not necessarily imply bad result quality.

Figure 6 shows the ESS arithmetic mean for a single MCMC run

per dataset. We verify that different runs have small ESS differ-

ences (< 6 in stereo vision). The mean overall ESS eliminates the

random variables with zero variance in the software and hardware,

respectively. Figure 5 reveals that the inactive regions in the SPU

(red) correspond to the regions with high ESS in FP64-software

due to small but non-zero variance (yellow), and thus overall ESS

is biased toward the software. Therefore, we also report the mean

active ESS which only includes the regions with non-zero variance

in both FP64-software and the SPU, where ESS is more meaningful.

As a consequence, the active ESS eliminates the regions with small

variance in the software, which can potentially benefit the SPU.

The importance of these small variance needs to be evaluated and

we are actively looking for methods to account for these regions.

The software has 1.1-1.4× higher active ESS than the SPU in stereo

vision and around 1.2× in motion estimation. This implies the SPU

needs to run 1.1-1.4× iterations to reach the same active ESS as the

software. These extra iterations will reduce the speedups (2.8-5.5×

and up to 84×) reported in previous work [83, 87].

4.2.2 Convergence Diagnostic. We evaluate the convergence di-

agnostic of the SPU using the proposed convergence percentage

metric. Each convergence percentage value is collected from 10

runs per dataset. Each run forfeits the first half of iterations as the

966

Statistical Robustness of Markov Chain Monte Carlo Accelerators ASPLOS ’21, April 19–23, 2021, Virtual, USA

art poster teddy art poster teddy
0

1

2

3

4

5

R
M

S
E

software

spu

--

Pure Sampling Simulated Annealing

(a) Stereo vision

dime rubber venus dime rubber venus
0

0.2

0.4

0.6

0.8

1

R
M

S
E

software

spu

--

Pure Sampling Simulated Annealing

(b) Motion estimation

Figure 8: Root Mean Squared Error (lower is better). Scales

are different in (a) and (b) due to application differences.

art poster teddy art poster teddy
0%

5%

10%

15%

20%

25%

30%

35%

40%

B
a
d
-p

ix
e
l
P

e
rc

e
n
ta

g
e

software

spu

--

Pure Sampling Simulated Annealing

(a) Stereo vision

dime rubbervenus dime rubbervenus
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

E
n

d
-p

o
in

t
E

rr
o

r

software

spu

--

Pure Sampling Simulated Annealing

(b) Motion estimation

Figure 9: Application end-point result quality (lower is bet-

ter).

burn-in period and only keeps the second half, as proposed by pre-

vious work [8]. Recall a random variable is considered converged

if 𝑅 < 1.1 or both within-chain variance𝑊 and between-chain

variance 𝐵 are zero. Figure 7 shows the results. The number of

iterations is normalized with respect to SPU runs in stereo vision

(0.33×, 0.5×, 0.67×, and 1×) and are the same in motion estimation.

Overall, convergence percentage is high in both the software and

the SPU: more than 80% of random variables in stereo vision and

more than 90% in motion estimation. More than 99.5% of random

variables with𝑊 = 0 in the SPU are converged. In stereo vision,

the SPU reaches the same or better convergence percentage than

the software with 2× iterations. This indicates the SPU needs to

be at least 2× faster in order to have a better overall performance

in this application in terms of convergence percentage. The SPU

has higher convergence percentages than the software in motion

estimation, indicating the SPU converges faster in this application.

Note that converging to a distribution faster does not necessarily

lead to a better end-point result. The goodness of fit should be

evaluated.

4.2.3 Goodness of Fit. Figure 8 shows the RMSE box plots of 10

MCMC runs per dataset compared with a reference result obtained

by the mode of 10 software runs per dataset. Solid boxes show the

range from 25th to 75th percentile with the medians of data as

the horizontal lines inside. The whiskers include the range of data

that are not considered as outliers. We use 1.5× interquartile range

as the rule to decide outliers, shown as pluses. The whiskers of

the software and the SPU overlap in all stereo vision benchmarks

(barely for teddy sampling mode), suggesting close results. RMSE

results in motion estimation are visually different in Figure 8b.

However, these differences are small considering the small scale of

y-axis. The software and the SPU produce closer results in simulated

annealing optimization mode.

Figure 9 shows the end-point result quality using ground-truth

data and application metrics. Most whiskers of the software and

the SPU overlap except for art in stereo vision and rubberwhale in

motion estimation, both of which are in sampling mode. In opti-

mization mode, the whiskers of the software and the SPU overlap,

indicating the difference in end-point result quality is very small.

This is consistent with the single-run results in Table 1. Note that

no obvious differences between FP64-software and the SPU are vi-

sually observable in the stereo vision disparity maps and the motion

estimation flow maps.

It seems intuitive to assume that FP64-software should produce

no worse results than the hardware with limited precision, trunca-

tion, and a simplified RNG. We find this assumption holds in most

but not all cases. We observe that in sampling mode of dimetrodon,

the SPU has consistently lower end-point result error (Figure 9b)

but higher RMSE (Figure 8b) than in FP64-software. To better un-

derstand this result, we examine per-pixel differences of end-point

error between the software reference and the SPU, as shown in

Figure 10. Blue regions correspond to lower end-point error in the

SPU and yellow to lower end-point error in the software. The fig-

ure suggests the software and the SPU have strengths in different

regions, which potentially leads to a high RMSE compared to the

software reference.

This result indicates two insights: 1) software with higher pre-

cision does not necessarily produce better application end-point

result quality, and 2) a higher RMSE compared to software does

not always indicate worse application end-point result quality. Al-

though bad pixel-percentage results are consistent with RMSE in

stereo vision, the general link between the goodness of fit measure

and the application end-point result quality needs to be further

explored. This confirms that collectively applying all three pillars,

not just end-point result, is necessary to evaluate correctness.

We analyze the Jensen-Shannon Divergence of SPU relative to

the software with FP64 probability representation. Our goal is to

provide insights on why hardware exhibits good or bad application

end-point results and how it may perform with arbitrary input data.

We assume each random variable has a binary distribution in this

analysis. By sweeping a wide range of possible energy inputs 𝐸 (𝑖)

(refer to Equation 1) from 0 to 255 in integer, corresponding to arbi-

trary data inputs, Figure 11 plots JSD for two temperatures (1 and

10) and two different SPU microarchitectures: 1) the SPU described

in Section 2.4 and 2) an early design [83]Ð1st-gen RSU-GÐthat was

shown to lack sufficient precision and dynamic range [87]. These

results clearly show the problems with the 1st-gen RSU-G. The

more recent SPU has negligible JSDs in most energy inputs (blue

regions), whereas the 1st-gen RSU-G has high JSD (>0.2, yellow) for

967

ASPLOS ’21, April 19–23, 2021, Virtual, USA Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Sayan Mukherjee, and Alvin R. Lebeck

100 200 300 400 500

50

100

150

200

250

300

350

<-1

-0.5

0

0.5

>1

E
n

d
-p

o
in

t
E

rr
o

r
D

if
fe

re
n

c
e

 (
s
p

u
-s

w
)

Figure 10:Dimetrodon end-point error difference (𝑠𝑝𝑢−𝑠𝑤) at

pixel level. End-point error: 0.581 (software) vs. 0.567 (SPU).

Figure 11: Jensen-Shannon Divergence comparison between

designs: SPU vs. 1st-gen RSU-G [83].

many inputs and becomes worse when the temperature decreases,

which explains the poor application result quality. A key difference

between these two designs is dynamic scaling for energy values in

the SPU, which is not present in the 1st-gen RSU-G.

5 DESIGN SPACE EXPLORATION: A CASE
STUDY

The previous section shows that architectural optimizations might

have a negative influence on statistical robustness, even while pro-

ducing comparable end-point results to FP64-software. The question

is can we achieve desirable end-point result quality and statistical

robustness without the commensurate overhead of FP64? To answer

this question, we use the three pillars to explore the SPU design

space.

5.1 Design Trade-offs

The SPU pipeline (Figure 3) has several design parameters related to

bit precision that potentially influence statistical robustness, includ-

ing energy 𝐸 (𝑖) and 𝐸𝑠 (𝑖), scaled and truncated probability 𝑝𝑡𝑟 (𝑖),

and RNG output bits. We fix energy 𝐸 (𝑖) and 𝐸𝑠 (𝑖) at 8 bits based on

previous work [57, 87]. The number of bits in 𝑝𝑡𝑟 (𝑖) considerably

influences the size of the energy-to-probability converter and the

discrete sampler. We evaluate three design points with 4-bit, 6-bit,

and 8-bit 𝑝𝑡𝑟 (𝑖)s. The influence of RNG output bits is small com-

pared to 𝑝𝑡𝑟 (𝑖) and we find a 19-bit LFSR with 12-bit RNG outputs

does not reduce the statistical robustness or result quality across all

design points, although the period is notably short compared with

RNGs used in other accelerators [9, 47, 57]. Understanding the in-

fluence of RNGs on the probabilistic algorithms is very challenging

and needs continual efforts [13, 14, 71, 77].

The SPU truncates all 𝑝𝑡𝑟 (𝑖)s to the nearest 2𝑛 values, called 2𝑛

approximation [87], enabling efficient energy-to-probability con-

version by comparing the boundaries of energy values. Without

2𝑛 approximation, a double-buffered 256-entry LUT is required to

store the 𝑝𝑡𝑟 (𝑖) values to achieve a stall-free design. We evaluate

the statistical robustness of each scaled probability design point

with and without 2𝑛 approximation. The above design parameters

generally do not directly influence the SPU per-iteration execu-

tion time assuming the same interface at the same clock frequency.

However, a design with lower precision may take more iterations

to converge. On the other hand, higher precision requires more

area and power affecting the number of SPU units in systems with

a limited area/power budget. Detailed system-level architecture

investigations are beyond the scope of this paper.

5.2 Evaluating Design Parameters

Figures 12-19 show our design space results. We explain stereo vi-

sion results in detail and highlight motion estimation results where

needed since both applications show consistent results. Starting

from the current SPU design (łspuž), we analyze the statistical

robustness by gradually increasing the precision: 1) replace the

19-bit LFSR sampler with an FP64 Mersenne Twister sampler while

keeping the front-end pipeline unchanged (łp4až); 2) increase the

bit width of 𝑝𝑡𝑟 (𝑖) to 6, 8-bit (łp6až and łp8až), with 2𝑛 approx-

imation; 3) remove 2𝑛 approximation (łp4ž, łp6ž, and łp8ž); and

4) keep front-end pipeline up to the scaled energy (𝐸𝑠 (𝑖)) output

unchanged, but has an FP64 back-end for probability conversion

and discrete sampling (łpdž).

5.2.1 SamplingQuality. Figure 12a shows overall ESS, which omits

random variables with zero variance for each design, respectively.

Recall this metric can create bias that benefits FP64-software for

variables with small but non-zero variance. Overall ESSs increase

when more bits are added, partly as a result of fewer random vari-

ables with zero variance. Recall the SPU truncates small scaled

probabilities 𝑝𝑡𝑟 (𝑖) < 1 to zero. Adding more bits keeps more pos-

sible labels with small probabilities available to be sampled. Figure

12b indicates inactive percentage drops significantly when increas-

ing 𝑝𝑡𝑟 (𝑖) bit size from 4 to 6. Interestingly, 2𝑛 approximation helps

reduce the inactive percentage under the same bit precision, but

decreases ESS for 6-bit and 8-bit designs. Figure 12c shows the

active ESS for the teddy dataset. Recall active ESS masks out the

random variables inactive in either FP64-software or the SPU. With

2𝑛 approximation, increasing bit precision does not close the gap

in active ESS with the software. Without 2𝑛 approximation, 6 or

8-bit 𝑝𝑡𝑟 (𝑖) have comparable overall and active ESS to software. As

expected, increasing bit precision decreases the difference between

968

Statistical Robustness of Markov Chain Monte Carlo Accelerators ASPLOS ’21, April 19–23, 2021, Virtual, USA

0

100

200

300

400

500

600

spu p4a p4 p6a p6 p8a p8 pd sw

O
v

e
ra

ll
 E

S
S

art poster teddy

(a) Overall ESS

0%

10%

20%

30%

40%

50%

60%

spu p4a p4 p6a p6 p8a p8 pd sw

In
a

ct
iv

e
 P

e
rc

e
n

ta
g

e art

poster

teddy

(b) Percentage of inactive random variables (inactive percentage).

0

100

200

300

400

500

600

spu p4a p4 p6a p6 p8a p8 pd

A
c
ti

v
e

 E
S

S

sw hw

(c) Active ESS in teddy

Figure 12: Stereo vision sampling quality in the design

points.

60%

65%

70%

75%

80%

85%

90%

95%

100%

spu p4a p4 p6a p6 p8a p8 pd sw

C
o

n
v

e
rg

e
n

c
e

 P
e

rc
e

n
ta

g
e

art poster teddy

Figure 13: Stereo vision convergence percentage in the de-

sign points.

overall and active ESS due to fewer inactive variables. Results for

motion estimation are similar, shown in Figure 16.

5.2.2 Convergence Diagnostic. Figure 13 shows the convergence

percentage increases with the increasing bit precision. In contrast

to ESS, 2𝑛 approximation improves the convergence percentage

under the same bit precision. Hardware with 6-bit and 8-bit 𝑝𝑡𝑟 (𝑖)

with and without 2𝑛 approximation produces comparable conver-

gence percentage to FP64-software. All designs except łp4ž produce

the same or higher convergence percentage compared with FP64-

software for motion estimation shown in Figure 17. All values of

convergence percentage are high (> 90%) in motion estimation.

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2

R
M

S
E

st_art

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2
st_poster

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2

2.5

3

3.5

4
st_teddy

(a) Pure sampling (sampling)

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2

R
M

S
E

st_art

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2
st_poster

spup4a p4 p6a p6 p8a p8 pd sw
0

0.5

1

1.5

2

2.5

3

3.5

4
st_teddy

(b) Simulated annealing (optimization)

Figure 14: Stereo vision RMSE in the design points.

spup4a p4 p6a p6 p8a p8 pd sw
20%

25%

30%

35%

40%

B
a
d

-p
ix

e
l
P

e
rc

e
n

ta
g

e

st_art

spup4a p4 p6a p6 p8a p8 pd sw
0%

5%

10%

15%

20%
st_poster

spup4a p4 p6a p6 p8a p8 pd sw
20%

25%

30%

35%

40%
st_teddy

(a) Pure sampling (sampling)

spup4a p4 p6a p6 p8a p8 pd sw
20%

25%

30%

35%

40%

B
a
d

-p
ix

e
l
P

e
rc

e
n

ta
g

e

st_art

spup4a p4 p6a p6 p8a p8 pd sw
0%

5%

10%

15%

20%
st_poster

spup4a p4 p6a p6 p8a p8 pd sw
20%

25%

30%

35%

40%
st_teddy

(b) Simulated annealing (optimization)

Figure 15: Stereo vision application end-point result quality

in the design points.

5.2.3 Goodness of Fit. Figure 14 shows RMSE results compared

with software reference results. Observable lower RMSEs can be

found in stereo vision art when increasing the bit precision from 4

to 6. Differences of RMSEs are hard to notice when further increas-

ing the precision given whiskers largely overlap in most datasets.

969

ASPLOS ’21, April 19–23, 2021, Virtual, USA Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Sayan Mukherjee, and Alvin R. Lebeck

0

100

200

300

400

500

600

700

800

spu p4a p4 p6a p6 p8a p8 pd sw

O
v

e
ra

ll
 E

S
S

dimetrodon

rubberwhale

venus

(a) Overall ESS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

spu p4a p4 p6a p6 p8a p8 pd sw

In
a

ct
iv

e
 P

e
rc

e
n

ta
g

e

dimetrodon

rubberwhale

venus

(b) Percentage of inactive random variables (inactive percentage).

0

100

200

300

400

500

600

700

spu p4a p4 p6a p6 p8a p8 pd

A
c
ti

v
e

 E
S

S

sw hw

(c) Active ESS in dimetrodon

Figure 16: Motion estimation sampling quality in the design

points.

86%

88%

90%

92%

94%

96%

98%

100%

spu p4a p4 p6a p6 p8a p8 sw

C
o

n
v

e
rg

e
n

c
e

 P
e

rc
e

n
ta

g
e

dimetrodon rubberwhale venus

Figure 17: Motion estimation convergence percentage in the

design points.

Application end-point results in Figure 15 exhibit the same trends.

All designs produce comparable result quality to the software in

simulated annealing (optimization), consistent with Table 1. We

highlight the following results for motion estimation (Figures 18

and 19): 1) the design parameters have a negligible influence on

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
M

S
E

me_dimetrodon

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
me_rubberwhale

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
me_venus

(a) Pure sampling (sampling)

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
M

S
E

me_dimetrodon

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
me_rubberwhale

spup4a p4 p6a p6 p8a p8 pd sw
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
me_venus

(b) Simulated annealing (optimization)

Figure 18: Motion estimation RMSE in the design points.

spu p4a p4 p6a p6 p8a p8 pd sw
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

E
n

d
-p

o
in

t
E

rr
o

r

me_dimetrodon

spu p4a p4 p6a p6 p8a p8 pd sw
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5
me_rubberwhale

spu p4a p4 p6a p6 p8a p8 pd sw
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6
me_venus

(a) Pure sampling (sampling)

spu p4a p4 p6a p6 p8a p8 pd sw
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

E
n

d
-p

o
in

t
E

rr
o

r

me_dimetrodon

spu p4a p4 p6a p6 p8a p8 pd sw
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5
me_rubberwhale

spu p4a p4 p6a p6 p8a p8 pd sw
0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6
me_venus

(b) Simulated annealing (optimization)

Figure 19: Motion estimation application end-point result

quality in the design points.

application end-point result quality (end-point error) except łp4ž in

a couple of cases, which performs observably worse; 2) all designs

except łp4ž produce better end-point error than the software for

dimetrodon with sampling; 3) all designs produce slightly worse

end-point error than the software for rubberwhale with sampling;

and 4) gaps exist between the software and all hardware designs

970

Statistical Robustness of Markov Chain Monte Carlo Accelerators ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 2: Resource usage and performance of various SPU im-

plementations on Arria 10 FPGA.

Parameter Verilog HLS-int HLS-fp

Frequency (MHz) 374 369 320

ALMs 321 1,189 4,407

Registers 680 2,551 7,932

Memory Bits 1,472 10,688 49,536

DSPs 4 10 25

Initiation Interval (Cycles) 1 1 3

Table 3: Area (𝜇𝑚2) and Power (mW) Analysis in ASIC.

Design Area Power Design Area Power

spu 1957 2.17 p4 2112 2.21

p6a 2134 2.31 p6 2356 2.38

p8a 2309 2.46 p8 2599 2.54

including łpdž for RMSE, but not for end-point error. These results

confirm the importance of using all three pillars. Overall, we sum-

marize 1) optimization is more robust than sampling at producing

good result quality across various designs, and 2) increasing the

scaled probability to 6 bits produces comparable goodness of fit

and end-point results to FP64-software.

5.3 Resource Usage

5.3.1 FPGA. We evaluate three different implementations of the

SPU on an Intel Arria 10 FPGA [40]: 1) an optimized hand-written

Verilog implementation with 4-bit scaled probability, 2) a High-

Level Synthesis (HLS) implementation (HLS-int) that matches the

hand-written Verilog (but using HLS basic integer data-types), and

3) an HLS implementation with a 32-bit floating-point (FP32) back-

end after energy computation (HLS-fp), eliminating the energy

scaling stage. HLS-fp is developed in order to assess the option of

directly using FP32 representation inside the SPU for probability

conversion and sampling. Table 2 shows the synthesis results. HLS-

int is close to the Verilog implementation in terms of performance

(frequency and initiation interval), but consumes more resources.

The resource usage of HLS-int can be further decreased by using

reduced-precision integers. HLS-fp consumes 13.7× ALMs, 33.7×

memory, 6.3× DSPs compared to Verilog and most importantly per-

forms remarkably worse due to its lower frequency and throughput

(initiation interval) caused by the FP addition [39]. Clearly, naively

implementing the SPU in FP32 consumes too many resources and

significantly reduces the performance benefits. A human-designed

architecture is needed to improve efficiency.

5.3.2 ASIC. We estimate the ASIC area/power for various design

points. Circuit elements written in Chisel are synthesized in a pre-

dictive 15nm library [59] using Synopsys Design Compiler. Memory

elements (FIFOs and LUTs) are estimated using Cacti 7 [3] in 22nm

technology, the smallest supported technology. The designs are

verified using stereo vision art. Table 3 summarizes the results. To-

tal area/power numbers are the sum of 15nm circuitry and 22nm

memory elements. Power is estimated at 1GHz. Since Cacti requires

widths in multiples of bytes, we estimate a double-buffered 2×256-

byte LUT (537 𝜇𝑚2 and 0.32 𝑚𝑊) and a 64-byte FIFO (215 𝜇𝑚2

and 0.18𝑚𝑊) with an 8-bit port, and linearly scale them to target

widths of 4 and 6 bits. All designs can run up to 3.3GHz, bounded by

the SPU energy computation stage. Increasing the SPU 𝑝𝑡𝑟 (𝑖) from

4-bit to 6-bit precision while keeping the 2𝑛 approximation (łp6až)

incurs 1.09× area and 1.07× power overheads, but has considerably

better statistical robustness. Removing 2𝑛 approximation (łp6ž)

adds double-buffered LUTs for energy-to-probability conversion,

thus incurs 1.20× area and 1.10× power overheads. Despite a 10%

difference in area, we advocate the 6-bit designs without 2𝑛 approx-

imation in an ASIC for better sampling quality if area is not a major

concern. The benefit from further increasing the bit-precision is

marginal based on the previous analysis.

6 DISCUSSION

Our work takes an important first step to introduce the architecture

community to widely used evaluation methods from the statistics

community. Historically, the popular approach to evaluating design

correctness of an accelerator is to simply compare end-point re-

sults against a software baseline considered accurate using standard

input data sets and metrics. We argue this is necessary but not suffi-

cient to claim correctness of probabilistic accelerators given domain

experts in statistics are interested in the full distribution of the pos-

sible results, including end-point results and quantified uncertainty

(statistical robustness). A degradation in statistical robustness may

require more algorithm iterations and thus offset the improved effi-

ciency provided by hardware/software optimization. Our proposed

frameworkÐthe three pillars of statistical robustnessÐincludes tech-

niques commonly used by domain experts to quantify uncertainty

and make statistical guarantees regarding full distributions. In ab-

sence of ground-truth, the three pillars provide confidence about

end-point results and uncertainty. Good statistical robustness is

likely to achieve good end-point results. Nevertheless, we advocate

assessing both end-point results and statistical robustness, when

possible, for correctness. Note that the proposed pillars can be used

for software implementations that exploit recently introduced data

types, such as BFloat16 [82] or Microsoft Floating Point [67]. We

utilize the pillars in the context of hardware since the trade-off

between robustness and performance/power/area is critical and has

been previously overlooked.

We discuss statistical robustness starting with MCMC accel-

erators where domain experts have clear agreement on the ap-

propriate evaluation metrics. The selected pillars and metrics are

well-accepted by Bayesian statisticians, although we do not claim

completeness we believe they comprehensively cover key aspects

of statistical robustness. The analysis of other metrics and methods

(e.g., MCMC standard error [20]) might help identify limitations

of selected metrics. The challenges of directly applying existing

metrics motivate us to propose modified processes and a newmetric

(convergence percentage) for reporting scalar measures for sam-

pling quality and convergence diagnostic. Our proposals are con-

ceptually straightforward, but could benefit from domain experts

developing metrics with stronger theoretical foundations. Mean-

while, the adequateness of rule-of-thumb 𝑅 < 1.1 to determine

971

ASPLOS ’21, April 19–23, 2021, Virtual, USA Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Sayan Mukherjee, and Alvin R. Lebeck

convergence is under debate [80]. Additionally, defining łgood

enoughž statistical robustness is a valuable future work.

Our work uses a representative MCMC accelerator and two com-

puter vision applications as a case study. Applying the three pillars

to other MCMC accelerators, applications, and models remains

future work. Our proposed processes and metrics apply to other

MCMC accelerators and applications, especially for those when

directly applying existing methods is difficult due to high dimen-

sionality and random variables with zero variance. Applications

with continuous random variables and low dimensionality may

utilize the unmodified metrics within each pillar. The effects of

some hardware approximations are unknown for applications that

require information from variables with very low variance, such as

rare event simulation.

We argue that bringing statistical robustness into the architec-

ture design process applies to all types of accelerators, with the

evolution/refinement of pillars/metrics. The key to choosing pil-

lars/metrics for broader use is to appropriately address uncertainty.

The proposed pillars or metrics may be used for other probabilistic

algorithms. For example, both ESS and 𝑅 are used for evaluating

performance and robustness of Hamiltonian Monte Carlo [7]. Con-

vergence diagnostic pflug is used for evaluating the process of

Stochastic Gradient Descent [11, 64]. Diagnostics are available for

Variational Inference, such as Pareto Smoothed Importance Sam-

pling (PSIS, or 𝑘) [81] and Variational Simulation-Based Calibration

(VSBC) [86]. These metrics may be useful in our framework to in-

dicate robustness when evaluating the corresponding accelerators.

We believe the idea of evaluating statistical robustness is also

necessary for Deep Neural Networks (DNN) if full distributions

are of interest, which may be achievable if using appropriate un-

certainty metrics. Compared with MCMC, metrics for quantifying

uncertainty in DNNs are various and rapidly evolving. Krishnan

and Tickoo [48] summarize several metrics for classification tasks,

including predictive entropy [72], variation ratio [21], and mutual

information [72]. Recent work proposes methods to extract aleatory

and/or epistemic uncertainties, such as those proposed by Kendall

and Gal [43], Kwon et al. [49], Postels et al. [65], Monte-Carlo

dropout [22], Prior Networks [56], etc. It is interesting to see how

these metrics could be adapted into the process of designing robust

DNN accelerators.

7 RELATED WORK

Section 2.3 discussed various specialized accelerators for probabilis-

tic algorithms. Other accelerators exist for deterministic Bayesian

Inference [38, 51]. A benchmark for Bayesian Inference models is

proposed for performance evaluation [84]. Previous work addresses

some statistical metrics for MCMC accelerators. Mansinghka and

Jonas [57] evaluate data input precision using KL-divergence and

QQ plots. Liu et al. [53] argue using ESS/second as a performance

metric for MCMC samplers. Mingas et al. [61] use both ESS/second

and KL-divergence. A recent GPU MCMC method [31] uses a con-

vergence diagnostic to decide stopping point. Multiple goodness of

fit statistical tests exist, such as KolmogorovśSmirnov test (KS-test),

Analysis of Variance (ANOVA), a kernel two-sample test [29], a

goodness-of-fit test based on Stochastic Rank Statistic (SRS) [68],

etc. These metrics all belong to one of three pillars proposed in this

work and we argue all three pillars are needed to fully characterize

the statistical robustness of an MCMC accelerator. Theoretical stud-

ies provide error bounds for MCMC with algorithmic approxima-

tion techniques given mathematical assumptions [23, 41]. Studies

(e.g., Darulova [18]) and tools (e.g. Gappa++ [52]) are available for

evaluating quantization error, which are important but orthogonal

to statistical robustness. Methods are proposed to make statisti-

cal guarantees on end-point results for approximate computing

[55, 63], which are conceivably useful to find acceptable end-point

quality loss and to evaluate goodness-of-fit. Analytical and empiri-

cal studies have been done on evaluating limited precision in neural

networks [15, 30, 36, 69].

8 CONCLUSION

Probabilistic computing is an important branch in statistical ma-

chine learning with the advantage of interpretability and generality.

Many specialized architectures using approximation techniques

have been proposed to address sampling inefficiency of probabilis-

tic algorithms. These domain-specific accelerators should provide

correct execution of the original algorithms. Current evaluation

methodologies that focus only on end-point result quality are not

adequate for evaluating probabilistic algorithms, since the correct-

ness defined by domain experts includes both end-point results

and statistical robustness. Therefore, we claim a probabilistic ar-

chitecture should provide some measure (or guarantee) of statistical

robustness. This work takes a first step toward defining metrics and

a framework for evaluating correctness of probabilistic accelerators

beyond application end-point result quality.

We propose three pillars of statistical robustness: 1) sampling

quality, 2) convergence diagnostic, and 3) goodness of fit. The pillars

are built on quantitative metrics with the necessary modifications

to account for high-dimensionality and zero empirical variance

that occurs in practical cases. We apply the three pillars to an

existing hardware accelerator and surface design issues that cannot

be revealed by only using application end-point result quality. We

show how the three pillars can guide design space exploration

and achieve considerable improvements in statistical robustness by

slightly increasing bit precision. This work takes an important step

in raising awareness that correctness for probabilistic accelerators

is more than application end-point accuracy.

ACKNOWLEDGMENTS

This project is supported in part by Intel, the Semiconductor Re-

search Corporation and the National Science Foundation (CNS-

1616947). We thank Rong Ge and Cheng Lyu.

REFERENCES
[1] Tarek Ould Bachir, Mohamad Sawan, and Jean-Jules Brault. 2008. A new hardware

architecture for sampling the exponential distribution. In Electrical and Computer
Engineering, 2008. CCECE 2008. Canadian Conference on. IEEE, 001393ś001396.
https://doi.org/10.1109/CCECE.2008.4564770

[2] Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J. Black, and
Richard Szeliski. 2011. A Database and Evaluation Methodology for Optical
Flow. International Journal of Computer Vision 92, 1 (01 Mar 2011), 1ś31. https:
//doi.org/10.1007/s11263-010-0390-2

[3] Rajeev Balasubramonian, Andrew B. Kahng, Naveen Muralimanohar, Ali Shafiee,
and Vaishnav Srinivas. 2017. CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories. ACM Trans. Archit. Code Optim. 14, 2, Article
14 (June 2017), 25 pages. https://doi.org/10.1145/3085572

972

https://doi.org/10.1109/CCECE.2008.4564770
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1007/s11263-010-0390-2
https://doi.org/10.1145/3085572

Statistical Robustness of Markov Chain Monte Carlo Accelerators ASPLOS ’21, April 19–23, 2021, Virtual, USA

[4] Subho S. Banerjee, Zbigniew T. Kalbarczyk, and Ravishankar K. Iyer. 2019. AcMC
2 : Accelerating Markov Chain Monte Carlo Algorithms for Probabilistic Models.
In Proceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (Providence, RI, USA)
(ASPLOS ’19). ACM, New York, NY, USA, 515ś528. https://doi.org/10.1145/
3297858.3304019

[5] Aubrey Barnard. 2019. Causal Discovery of Adverse Drug Events in Observational
Data. Ph.D. Dissertation. University of WisconsinśMadison.

[6] Stephen T. Barnard. 1989. Stochastic stereo matching over scale. International
Journal of Computer Vision 3, 1 (01 May 1989), 17ś32. https://doi.org/10.1007/
BF00054836

[7] Michael Betancourt. 2017. A conceptual introduction to Hamiltonian Monte
Carlo. arXiv preprint (2017). arXiv:1701.02434

[8] Stephen P. Brooks and Andrew Gelman. 1998. General Methods for Monitoring
Convergence of Iterative Simulations. Journal of Computational and Graphical
Statistics 7, 4 (1998), 434ś455. https://doi.org/10.1080/10618600.1998.10474787

[9] Ruizhe Cai, Ao Ren, Ning Liu, Caiwen Ding, Luhao Wang, Xuehai Qian, Massoud
Pedram, and Yanzhi Wang. 2018. VIBNN: Hardware Acceleration of Bayesian
Neural Networks (ASPLOS ’18). Association for Computing Machinery, New York,
NY, USA, 476ś488. https://doi.org/10.1145/3173162.3173212

[10] Lakshmi N. Chakrapani, Bilge E.S. Akgul, Suresh Cheemalavagu, Pinar Korkmaz,
Krishna V. Palem, and Balasubramanian Seshasayee. 2006. Ultra-Efficient (Em-
bedded) SOC Architectures based on Probabilistic CMOS (PCMOS) Technology.
In Proceedings of the Design Automation Test in Europe Conference, Vol. 1. 1ś6.
https://doi.org/10.1109/DATE.2006.243978

[11] Jerry Chee and Panos Toulis. 2018. Convergence diagnostics for stochastic
gradient descent with constant learning rate. In Proceedings of the Twenty-First
International Conference on Artificial Intelligence and Statistics (Proceedings of
Machine Learning Research, Vol. 84), Amos Storkey and Fernando Perez-Cruz
(Eds.). PMLR, 1476ś1485. http://proceedings.mlr.press/v84/chee18a.html

[12] Wenjun Cheng, Luyao Ma, Tiejun Yang, Jiali Liang, and Yan Zhang. 2016. Joint
lung CT image segmentation: a hierarchical Bayesian approach. PloS one 11, 9
(2016). https://doi.org/10.1371/journal.pone.0162211

[13] Timothy H. Click, Aibing Liu, and George A. Kaminski. 2011. Quality of random
number generators significantly affects results of Monte Carlo simulations for
organic and biological systems. Journal of computational chemistry 32, 3 (2011),
513ś524. https://doi.org/10.1002/jcc.21638

[14] Paul D. Coddington. 1994. Analysis of random number generators using Monte
Carlo simulation. International Journal of Modern Physics C 5, 03 (1994), 547ś560.
https://doi.org/10.1142/S0129183194000726

[15] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. BinaryCon-
nect: Training Deep Neural Networks with binary weights during propagations.
In Advances in Neural Information Processing Systems 28. Curran Associates,
Inc., 3123ś3131. http://papers.nips.cc/paper/5647-binaryconnect-training-deep-
neural-networks-with-binary-weights-during-propagations.pdf

[16] Mary Kathryn Cowles and Bradley P. Carlin. 1996. Markov chain Monte Carlo
convergence diagnostics: a comparative review. J. Amer. Statist. Assoc. 91, 434
(1996), 883ś904. https://doi.org/10.1080/01621459.1996.10476956

[17] Keivan Dabiri, Mehrdad Malekmohammadi, Ali Sheikholeslami, and Hirotaka
Tamura. 2020. Replica Exchange MCMC Hardware With Automatic Temperature
Selection and Parallel Trial. IEEE Transactions on Parallel and Distributed Systems
31, 7 (2020), 1681ś1692. https://doi.org/10.1109/TPDS.2020.2972359

[18] EvaDarulova. 2014. Programmingwith numerical uncertainties. Ph.D. Dissertation.
EPFL. https://doi.org/10.5075/epfl-thesis-6343

[19] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incor-
porating non-local information into information extraction systems by gibbs
sampling. In Proceedings of the 43rd annual meeting on association for computa-
tional linguistics. Association for Computational Linguistics, 363ś370. https:
//doi.org/10.3115/1219840.1219885

[20] James M. Flegal, Murali Haran, and Galin L. Jones. 2008. Markov chain Monte
Carlo: Can we trust the third significant figure? Statist. Sci. (2008), 250ś260.
https://doi.org/10.1214/08-STS257

[21] Linton C. Freeman. 1965. Elementary Applied Statistics: For Students in Behavioral
Science. Wiley.

[22] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international conference on
machine learning. 1050ś1059. http://proceedings.mlr.press/v48/gal16.html

[23] Rong Ge, Holden Lee, and Andrej Risteski. 2018. Simulated Tempering Langevin
Monte Carlo II: An Improved Proof using Soft Markov Chain Decomposition.
arXiv preprint (2018). arXiv:1812.00793

[24] Andrew Gelman and Donald B. Rubin. 1992. Inference from iterative simulation
using multiple sequences. Statistical science 7, 4 (1992), 457ś472. https://doi.org/
10.1214/ss/1177011136

[25] Stuart Geman and Donald Geman. 1984. Stochastic relaxation, Gibbs distri-
butions, and the Bayesian restoration of images. IEEE Transactions on pattern
analysis and machine intelligence 6 (1984), 721ś741. https://doi.org/10.1109/
TPAMI.1984.4767596

[26] Sinong Geng, Zhaobin Kuang, Jie Liu, Stephen Wright, and David Page. 2018.
Stochastic learning for sparse discrete markov random fields with controlled gra-
dient approximation error. In Conference on Uncertainty in Artificial Intelligence,
Vol. 2018. NIH Public Access, 156. https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6292514

[27] Zoubin Ghahramani. 2015. Probabilistic machine learning and artificial intelli-
gence. Nature 521, 7553 (2015), 452ś459. https://doi.org/10.1038/nature14541

[28] Lei Gong and James M. Flegal. 2016. A practical sequential stopping rule for high-
dimensional Markov chain Monte Carlo. Journal of Computational and Graphical
Statistics 25, 3 (2016), 684ś700. https://doi.org/10.1080/10618600.2015.1044092

[29] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and
Alexander Smola. 2012. A kernel two-sample test. Journal of Machine Learn-
ing Research 13, Mar (2012), 723ś773. https://www.jmlr.org/papers/volume13/
gretton12a/gretton12a.pdf

[30] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
2015. Deep Learning with Limited Numerical Precision. arXiv preprint (2015).
arXiv:1502.02551

[31] Allan Haldane and Ronald M. Levy. 2020. Mi3-GPU: MCMC-based inverse
ising inference on GPUs for protein covariation analysis. Computer Physics
Communications (2020), 107312. https://doi.org/10.1016/j.cpc.2020.107312

[32] Ghassan Hamra, Richard MacLehose, and David Richardson. 2013. Markov
chain Monte Carlo: an introduction for epidemiologists. International journal of
epidemiology 42, 2 (2013), 627ś634. https://doi.org/10.1093/ije/dyt043

[33] Marcel Häselich, Simon Eggert, and Dietrich Paulus. 2012. Parallelized energy
minimization for real-time Markov random field terrain classification in natural
environments. In 2012 IEEE International Conference on Robotics and Biomimetics
(ROBIO). IEEE, 1823ś1828. https://doi.org/10.1109/ROBIO.2012.6491233

[34] Jonathan C. Hedstrom, ChungHim Yuen, Rong-Rong Chen, and Behrouz Farhang-
Boroujeny. 2017. Achieving near MAP performance with an excitedMarkov chain
Monte Carlo MIMO detector. IEEE Transactions on Wireless Communications 16,
12 (2017), 7718ś7732. https://doi.org/10.1109/TWC.2017.2750667

[35] Gregory Herschlag, Han Sung Kang, Justin Luo, Christy Vaughn Graves, Sachet
Bangia, Robert Ravier, and Jonathan C. Mattingly. 2018. Quantifying gerryman-
dering in north carolina. arXiv preprint (2018). arXiv:1801.03783

[36] Jordan L. Holi and Jenq-Neng Hwang. 1993. Finite precision error analysis of
neural network hardware implementations. IEEE Trans. Comput. 42, 3 (1993),
281ś290. https://doi.org/10.1109/12.210171

[37] Eyke Hüllermeier and Willem Waegeman. 2019. Aleatoric and Epistemic Uncer-
tainty in Machine Learning: An Introduction to Concepts and Methods. arXiv
preprint (2019). arXiv:1910.09457

[38] Skand Hurkat and José F Martínez. 2019. VIP: A Versatile Inference Processor. In
2019 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 345ś358. https://doi.org/10.1109/HPCA.2019.00049

[39] Intel®. 2019. Floating-Point IP Cores User Guide. https://www.intel.com/
content/www/us/en/programmable/documentation/eis1410764818924.html

[40] Intel®. 2019. Intel® Quartus® Prime Software Suite. https://www.intel.com/
content/www/us/en/software/programmable/quartus-prime/overview.html

[41] James E. Johndrow, Jonathan C. Mattingly, Sayan Mukherjee, and David Dunson.
2015. Optimal approximating Markov chains for Bayesian inference. arXiv
preprint (2015). arXiv:1508.03387

[42] Robert E. Kass, Bradley P. Carlin, Andrew Gelman, and Radford M. Neal. 1998.
Markov chain Monte Carlo in practice: a roundtable discussion. The American
Statistician 52, 2 (1998), 93ś100. https://doi.org/10.2307/2685466

[43] Alex Kendall and Yarin Gal. 2017. What Uncertainties Do We Need in Bayesian
Deep Learning for Computer Vision?. In Proceedings of the 31st International
Conference on Neural Information Processing Systems (Long Beach, California,
USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 5580ś5590.

[44] Osama U. Khan and David D. Wentzloff. 2016. Hardware Accelerator for Prob-
abilistic Inference in 65-nm CMOS. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems 24, 3 (2016), 837ś845. https://doi.org/10.1109/
TVLSI.2015.2420663

[45] Paresh Kharya. 2020. NVIDIA Blogs: TensorFloat-32 Accelerates AI Training HPC
upto 20x. https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-
format/

[46] Leslie Kish. 1965. Survey sampling. New York: John Wiley & Sons.
[47] Glenn G. Ko, Yuji Chai, Rob A. Rutenbar, David Brooks, and Gu-Yeon Wei. 2019.

Accelerating Bayesian Inference on Structured Graphs Using Parallel Gibbs
Sampling. In 2019 29th International Conference on Field Programmable Logic and
Applications (FPL). 159ś165. https://doi.org/10.1109/FPL.2019.00033

[48] Ranganath Krishnan and Omesh Tickoo. 2020. Improving model calibration with
accuracy versus uncertainty optimization. arXiv preprint (2020). arXiv:2012.07923

[49] Yongchan Kwon, Joong-Ho Won, Beom Joon Kim, and Myunghee Cho Paik. 2020.
Uncertainty quantification using Bayesian neural networks in classification:
Application to biomedical image segmentation. Computational Statistics & Data
Analysis 142 (2020), 106816. https://doi.org/10.1016/j.csda.2019.106816

[50] Jianhua Lin. 1991. Divergence measures based on the Shannon entropy. IEEE
Transactions on Information theory 37, 1 (1991), 145ś151. https://doi.org/10.1109/
18.61115

973

https://doi.org/10.1145/3297858.3304019
https://doi.org/10.1145/3297858.3304019
https://doi.org/10.1007/BF00054836
https://doi.org/10.1007/BF00054836
https://arxiv.org/abs/1701.02434
https://doi.org/10.1080/10618600.1998.10474787
https://doi.org/10.1145/3173162.3173212
https://doi.org/10.1109/DATE.2006.243978
http://proceedings.mlr.press/v84/chee18a.html
https://doi.org/10.1371/journal.pone.0162211
https://doi.org/10.1002/jcc.21638
https://doi.org/10.1142/S0129183194000726
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf
http://papers.nips.cc/paper/5647-binaryconnect-training-deep-neural-networks-with-binary-weights-during-propagations.pdf
https://doi.org/10.1080/01621459.1996.10476956
https://doi.org/10.1109/TPDS.2020.2972359
https://doi.org/10.5075/epfl-thesis-6343
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.3115/1219840.1219885
https://doi.org/10.1214/08-STS257
http://proceedings.mlr.press/v48/gal16.html
https://arxiv.org/abs/1812.00793
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1109/TPAMI.1984.4767596
https://doi.org/10.1109/TPAMI.1984.4767596
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292514
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6292514
https://doi.org/10.1038/nature14541
https://doi.org/10.1080/10618600.2015.1044092
https://www.jmlr.org/papers/volume13/gretton12a/gretton12a.pdf
https://www.jmlr.org/papers/volume13/gretton12a/gretton12a.pdf
https://arxiv.org/abs/1502.02551
https://doi.org/10.1016/j.cpc.2020.107312
https://doi.org/10.1093/ije/dyt043
https://doi.org/10.1109/ROBIO.2012.6491233
https://doi.org/10.1109/TWC.2017.2750667
https://arxiv.org/abs/1801.03783
https://doi.org/10.1109/12.210171
https://arxiv.org/abs/1910.09457
https://doi.org/10.1109/HPCA.2019.00049
https://www.intel.com/content/www/us/en/programmable/documentation/eis1410764818924.html
https://www.intel.com/content/www/us/en/programmable/documentation/eis1410764818924.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://arxiv.org/abs/1508.03387
https://doi.org/10.2307/2685466
https://doi.org/10.1109/TVLSI.2015.2420663
https://doi.org/10.1109/TVLSI.2015.2420663
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://doi.org/10.1109/FPL.2019.00033
https://arxiv.org/abs/2012.07923
https://doi.org/10.1016/j.csda.2019.106816
https://doi.org/10.1109/18.61115
https://doi.org/10.1109/18.61115

ASPLOS ’21, April 19–23, 2021, Virtual, USA Xiangyu Zhang, Ramin Bashizade, Yicheng Wang, Sayan Mukherjee, and Alvin R. Lebeck

[51] Mingjie Lin, Ilia Lebedev, and JohnWawrzynek. 2010. High-throughput Bayesian
Computing Machine with Reconfigurable Hardware. In Proceedings of the 18th
Annual ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(Monterey, California, USA) (FPGA ’10). ACM, New York, NY, USA, 73ś82. https:
//doi.org/10.1145/1723112.1723127

[52] Michael D. Linderman, Matthew Ho, David L. Dill, Teresa H. Meng, and Garry P.
Nolan. 2010. Towards Program Optimization Through Automated Analysis of Nu-
merical Precision. In Proceedings of the 8th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization (Toronto, Ontario, Canada) (CGO ’10).
ACM, New York, NY, USA, 230ś237. https://doi.org/10.1145/1772954.1772987

[53] Shuanglong Liu, Grigorios Mingas, and Christos-Savvas Bouganis. 2015. An
exact MCMC accelerator under custom precision regimes. In 2015 International
Conference on Field Programmable Technology (FPT). IEEE, 120ś127. https://
doi.org/10.1109/FPT.2015.7393138

[54] Divya Mahajan, Jongse Park, Emmanuel Amaro, Hardik Sharma, Amir Yaz-
danbakhsh, Joon Kyung Kim, and Hadi Esmaeilzadeh. 2016. Tabla: A unified
template-based framework for accelerating statistical machine learning. In High
Performance Computer Architecture (HPCA), 2016 IEEE International Symposium
on. IEEE, 14ś26. https://doi.org/10.1109/HPCA.2016.7446050

[55] Divya Mahajan, Amir Yazdanbakhsh, Jongse Park, Bradley Thwaites, and Hadi
Esmaeilzadeh. 2016. Towards Statistical Guarantees in Controlling Quality Trade-
offs for Approximate Acceleration. In 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA). 66ś77. https://doi.org/10.1109/
ISCA.2016.16

[56] Andrey Malinin and Mark Gales. 2018. Predictive Uncertainty Estimation via
Prior Networks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems (Montréal, Canada) (NIPS’18). Curran Associates
Inc., Red Hook, NY, USA, 7047ś7058.

[57] Vikash Mansinghka and Eric Jonas. 2014. Building fast Bayesian computing
machines out of intentionally stochastic, digital parts. arXiv preprint (2014).
arXiv:1402.4914

[58] Luca Martino, Víctor Elvira, David Luengo, Jukka Corander, and Francisco
Louzada. 2016. Orthogonal parallel MCMC methods for sampling and opti-
mization. Digital Signal Processing 58 (2016), 64ś84. https://doi.org/10.1016/
j.dsp.2016.07.013

[59] Mayler Martins, Jody Maick Matos, Renato P. Ribas, André Reis, Guilherme
Schlinker, Lucio Rech, and Jens Michelsen. 2015. Open Cell Library in 15Nm
FreePDK Technology. In Proceedings of the 2015 Symposium on International
Symposium on Physical Design (Monterey, California, USA) (ISPD ’15). ACM, New
York, NY, USA, 171ś178. https://doi.org/10.1145/2717764.2717783

[60] Patrick McClure, Nao Rho, John A. Lee, Jakub R. Kaczmarzyk, Charles Y. Zheng,
Satrajit S. Ghosh, Dylan M. Nielson, Adam G. Thomas, Peter Bandettini, and
Francisco Pereira. 2019. Knowing What You Know in Brain Segmentation Using
Bayesian Deep Neural Networks. Frontiers in Neuroinformatics 13 (2019), 67.
https://doi.org/10.3389/fninf .2019.00067

[61] GrigoriosMingas, Leonardo Bottolo, and Christos-Savvas Bouganis. 2017. Particle
MCMC algorithms and architectures for accelerating inference in state-space
models. International Journal of Approximate Reasoning 83 (2017), 413ś433.
https://doi.org/10.1016/j.ijar.2016.10.011

[62] Radford M. Neal. 2011. MCMC using Hamiltonian dynamics. Handbook of Markov
Chain Monte Carlo 2, 11 (2011), 2. arXiv:1206.1901

[63] Jongse Park, Emmanuel Amaro, Divya Mahajan, Bradley Thwaites, and Hadi
Esmaeilzadeh. 2016. AxGames: Towards Crowdsourcing Quality Target Determi-
nation in Approximate Computing. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating
Systems (Atlanta, Georgia, USA) (ASPLOS ’16). Association for Computing Ma-
chinery, New York, NY, USA, 623ś636. https://doi.org/10.1145/2872362.2872376

[64] Georg Ch Pflug. 1992. Gradient estimates for the performance of Markov chains
and discrete event processes. Annals of Operations Research 39, 1 (1992), 173ś194.
https://doi.org/10.1007/BF02060941

[65] Janis Postels, Francesco Ferroni, Huseyin Coskun, Nassir Navab, and Federico
Tombari. 2019. Sampling-free epistemic uncertainty estimation using approxi-
mated variance propagation. In Proceedings of the IEEE International Conference
on Computer Vision. 2931ś2940. https://doi.org/10.1109/ICCV.2019.00302

[66] Christian Robert and George Casella. 2013. Monte Carlo statistical methods.
Springer Science & Business Media. https://doi.org/10.1007/978-1-4757-4145-2

[67] Bita Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov,
Anna Vinogradsky, Sarah Massengill, Lita Yang, Ray Bittner, Alessandro Forin,
Haishan Zhu, Taesik Na, Prerak Patel, Shuai Che, Lok Chand Koppaka, Xia Song,
Subhojit Som, Kaustav Das, Saurabh Tiwary, Steve Reinhardt, Sitaram Lanka,
Eric Chung, and Doug Burger. 2020. Pushing the Limits of Narrow Precision
Inferencing at Cloud Scale with Microsoft Floating Point. In NeurIPS 2020. ACM.

https://www.microsoft.com/en-us/research/publication/pushing-the-limits-of-
narrow-precision-inferencing-at-cloud-scale-with-microsoft-floating-point/

[68] Feras A. Saad, Cameron E. Freer, Nathanael L. Ackerman, and Vikash K. Mans-
inghka. 2019. A Family of Exact Goodness-of-Fit Tests for High-Dimensional
Discrete Distributions. In The 22nd International Conference on Artificial Intelli-
gence and Statistics. 1640ś1649. http://proceedings.mlr.press/v89/saad19a.html

[69] Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. 2017. Analytical Guarantees
on Numerical Precision of Deep Neural Networks. In Proceedings of the 34th
International Conference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 70). PMLR, International Convention Centre, Sydney, Australia,
3007ś3016. http://proceedings.mlr.press/v70/sakr17a.html

[70] Daniel Scharstein and Richard Szeliski. 2002. A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms. International journal of computer
vision 47, 1-3 (2002), 7ś42. https://doi.org/10.1023/A:1014573219977

[71] Friederike Schmid and Nigel B. Wilding. 1996. Errors in Monte Carlo simulations
using shift register random number generators. International Journal of Modern
Physics C 6, 06 (1996), 781ś787. https://doi.org/10.1142/S0129183195000642

[72] Claude E. Shannon. 1948. A mathematical theory of communication. The Bell
system technical journal 27, 3 (1948), 379ś423. https://doi.org/10.1002/j.1538-
7305.1948.tb01338.x

[73] Priyesh Shukla, Ahish Shylendra, Theja Tulabandhula, and Amit R. Trivedi. 2020.
MC2RAM: Markov Chain Monte Carlo Sampling in SRAM for Fast Bayesian
Inference. In 2020 IEEE International Symposium on Circuits and Systems (ISCAS).
1ś5. https://doi.org/10.1109/ISCAS45731.2020.9180701

[74] David B. Thomas and Wayne Luk. 2009. Using FPGA resources for direct
generation of multivariate gaussian random numbers. In Field-Programmable
Technology, 2009. FPT 2009. International Conference on. IEEE, 344ś347. https:
//doi.org/10.1109/FPT.2009.5377680

[75] Madeleine B. Thompson. 2010. A comparison of methods for computing autocor-
relation time. arXiv preprint (2010). arXiv:1011.0175

[76] Tijmen Tieleman. 2008. Training restricted Boltzmannmachines using approxima-
tions to the likelihood gradient. In Proceedings of the 25th international conference
on Machine learning. 1064ś1071. https://doi.org/10.1145/1390156.1390290

[77] Seth D. Tribble. 2007. Markov chain Monte Carlo algorithms using completely
uniformly distributed driving sequences. Ph.D. Dissertation. Stanford University.

[78] Kush R. Varshney and Homa Alemzadeh. 2017. On the safety of machine learning:
Cyber-physical systems, decision sciences, and data products. Big data 5, 3 (2017),
246ś255. https://doi.org/10.1089/big.2016.0051

[79] Dootika Vats, James M. Flegal, and Galin L. Jones. 2015. Multivariate Output
Analysis for Markov chain Monte Carlo. arXiv preprint (2015). arXiv:1512.07713

[80] Dootika Vats and Christina Knudson. 2018. Revisiting the Gelman-Rubin Diag-
nostic. arXiv preprint (2018). arXiv:1812.09384

[81] Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. 2015.
Pareto smoothed importance sampling. arXiv preprint (2015). arXiv:1507.02646

[82] Shibo Wang and Pankaj Kanwar. 2019. BFloat16: the secret to high
performance on cloud TPUs. Google Cloud Blog (2019). https:
//cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-
high-performance-on-cloud-tpus

[83] Siyang Wang, Xiangyu Zhang, Yuxuan Li, Ramin Bashizade, Song Yang, Chris
Dwyer, and Alvin R. Lebeck. 2016. Accelerating Markov Random Field Inference
Using Molecular Optical Gibbs Sampling Units. In Proceedings of the 43rd Interna-
tional Symposium on Computer Architecture (Seoul, Republic of Korea) (ISCA ’16).
IEEE Press, Piscataway, NJ, USA, 558ś569. https://doi.org/10.1109/ISCA.2016.55

[84] Yu Emma Wang, Yuhao Zhu, Glenn G. Ko, Brandon Reagen, Gu-Yeon Wei, and
David Brooks. 2019. Demystifying Bayesian Inference Workloads. In 2019 IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS).
IEEE, 177ś189. https://doi.org/10.1109/ISPASS.2019.00031

[85] Max Welling and Yee Whye Teh. 2011. Bayesian Learning via Stochastic Gradient
Langevin Dynamics. In Proceedings of the 28th International Conference on Inter-
national Conference on Machine Learning (Bellevue, Washington, USA) (ICML’11).
Omnipress, Madison, WI, USA, 681ś688.

[86] Yuling Yao, Aki Vehtari, Daniel Simpson, and Andrew Gelman. 2018. Yes, but
Did It Work?: Evaluating Variational Inference. In Proceedings of the 35th Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 80), Jennifer Dy and Andreas Krause (Eds.). PMLR, Stockholmsmässan, Stock-
holm Sweden, 5581ś5590. http://proceedings.mlr.press/v80/yao18a.html

[87] Xiangyu Zhang, Ramin Bashizade, Craig LaBoda, Chris Dwyer, and Alvin R.
Lebeck. 2018. Architecting a stochastic computing unit with molecular optical
devices. In 2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 301ś314. https://doi.org/10.1109/ISCA.2018.00034

[88] Stephanie Zierke and Jason D. Bakos. 2010. FPGA acceleration of the phylogenetic
likelihood function for Bayesian MCMC inference methods. BMC bioinformatics
11, 1 (2010), 1ś12. https://doi.org/10.1186/1471-2105-11-184

974

https://doi.org/10.1145/1723112.1723127
https://doi.org/10.1145/1723112.1723127
https://doi.org/10.1145/1772954.1772987
https://doi.org/10.1109/FPT.2015.7393138
https://doi.org/10.1109/FPT.2015.7393138
https://doi.org/10.1109/HPCA.2016.7446050
https://doi.org/10.1109/ISCA.2016.16
https://doi.org/10.1109/ISCA.2016.16
https://arxiv.org/abs/1402.4914
https://doi.org/10.1016/j.dsp.2016.07.013
https://doi.org/10.1016/j.dsp.2016.07.013
https://doi.org/10.1145/2717764.2717783
https://doi.org/10.3389/fninf.2019.00067
https://doi.org/10.1016/j.ijar.2016.10.011
https://arxiv.org/abs/1206.1901
https://doi.org/10.1145/2872362.2872376
https://doi.org/10.1007/BF02060941
https://doi.org/10.1109/ICCV.2019.00302
https://doi.org/10.1007/978-1-4757-4145-2
https://www.microsoft.com/en-us/research/publication/pushing-the-limits-of-narrow-precision-inferencing-at-cloud-scale-with-microsoft-floating-point/
https://www.microsoft.com/en-us/research/publication/pushing-the-limits-of-narrow-precision-inferencing-at-cloud-scale-with-microsoft-floating-point/
http://proceedings.mlr.press/v89/saad19a.html
http://proceedings.mlr.press/v70/sakr17a.html
https://doi.org/10.1023/A:1014573219977
https://doi.org/10.1142/S0129183195000642
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1109/ISCAS45731.2020.9180701
https://doi.org/10.1109/FPT.2009.5377680
https://doi.org/10.1109/FPT.2009.5377680
https://arxiv.org/abs/1011.0175
https://doi.org/10.1145/1390156.1390290
https://doi.org/10.1089/big.2016.0051
https://arxiv.org/abs/1512.07713
https://arxiv.org/abs/1812.09384
https://arxiv.org/abs/1507.02646
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://doi.org/10.1109/ISCA.2016.55
https://doi.org/10.1109/ISPASS.2019.00031
http://proceedings.mlr.press/v80/yao18a.html
https://doi.org/10.1109/ISCA.2018.00034
https://doi.org/10.1186/1471-2105-11-184

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Probabilistic Computing and Uncertainties
	2.2 MCMC and Sampling Overhead
	2.3 Specialized Probabilistic Accelerators
	2.4 A Representative Probabilistic Accelerator

	3 Three Pillars of Statistical Robustness
	3.1 Pillar 1: Sampling Quality
	3.2 Pillar 2: Convergence Diagnostic
	3.3 Pillar 3: Goodness of Fit

	4 Analyzing Existing Hardware
	4.1 Methodology
	4.2 Results Analysis

	5 Design Space Exploration: A Case Study
	5.1 Design Trade-offs
	5.2 Evaluating Design Parameters
	5.3 Resource Usage

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

