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Abstract 

The increasing use of probabilistic algorithms from statistics 
and machine learning for data analytics presents new 
challenges and opportunities for the design of computing 
systems. One important class of probabilistic machine 
learning algorithms is Markov Chain Monte Carlo (MCMC) 
sampling, which can be used on a wide variety of 
applications in Bayesian Inference. However, this 
probabilistic iterative algorithm can be inefficient in practice 
on today’s processors, especially for problems with high 
dimensionality and complex structure. The source of 
inefficiency is generating samples from parameterized 
probability distributions. 

This paper seeks to address this sampling inefficiency 
and presents a new approach to support probabilistic 
computing that leverages the native randomness of 
Resonance Energy Transfer (RET) networks to construct 
RET-based sampling units (RSU).  Although RSUs can be 
designed for a variety of applications, we focus on the 
specific class of probabilistic problems described as Markov 
Random Field Inference. Our proposed RSU uses a RET 
network to implement a molecular-scale optical Gibbs 
sampling unit (RSU-G) that can be integrated into a 
processor / GPU as specialized functional units or organized 
as a discrete accelerator. We experimentally demonstrate the 
fundamental operation of an RSU using a macro-scale 
hardware prototype. Emulation-based evaluation of two 
computer vision applications for HD images reveal that an 
RSU augmented GPU provides speedups over a GPU of 3 
and 16. Analytic evaluation shows a discrete accelerator that 
is limited by 336 GB/s DRAM produces speedups of 21 and 
54 versus the GPU implementations. 

1. Introduction 
Statistical methods, machine learning in particular, are 

increasingly used to address important problems including, 
but not limited to: computer vision, robot/drone control, 
data mining, global health, computational biology, and 
environmental science. Many approaches in statistics and 
machine learning utilize probabilistic algorithms that 
generate samples from parameterized probability 
distributions (e.g., exponential distribution with a decay 
rate). Probabilistic algorithms offer the potential to create 

generalized frameworks with close ties to reality and in 
some cases are the only viable approach for solving certain 
classes of problems (e.g., high-dimensional inference). 

The challenge we propose is to develop new hardware 
that directly supports a wide variety of probabilistic 
algorithms [13]. This paper takes the first steps toward 
meeting this challenge by exploiting the physical properties 
of molecular-scale optical devices. We build on recent work 
that provides a theoretical foundation for creating novel 
probabilistic functional units based on Resonance Energy 
Transfer (RET) that can approximate virtually arbitrary 
probabilistic behavior and generate samples from general 
distributions [42].  

To meet the above challenge, we introduce the concept 
of a RET-based Sampling Unit (RSU), a hybrid 
CMOS/RET functional unit that generates samples from 
parameterized distributions. An RSU specializes the 
calculation of distribution parameters in CMOS and uses 
RET to generate samples from a parameterized distribution 
in only a few nanoseconds. There are a variety of 
distributions that could be implemented by an RSU; 
however, in this work we focus on an RSU that implements 
a distribution for use in a particular class of Bayesian 
Inference problems. 

Bayesian Inference is an important, generalized 
framework that estimates a hypothesis (i.e., values for 
random variables) using a combination of new evidence 
(observations) and prior knowledge. Markov Chain Monte 
Carlo (MCMC) sampling is a theoretically important and 
powerful technique for solving the inference problem that 
iteratively and strategically samples the random variables 
and ultimately converges to an exact result. However, 
MCMC becomes inefficient for many inference problems in 
practice, especially those with high dimensionality (many 
random variables) and complex structure. MCMC can 
require many iterations to converge to a solution and the 
inner loop incurs the overhead of sample generation from 
prescribed distributions. Although deterministic inference 
algorithms can be faster than MCMC, they sacrifice 
accuracy (e.g., by approximation) and require more complex 
mathematical derivation. Similarly, problem specific non-
Bayesian algorithms forego the benefit of a generalized 
framework and require reformulation for each problem. 



 

Markov Random Field (MRF) Bayesian Inference can be 
used for a broad class of applications, including image 
processing (e.g., image segmentation, motion estimation, 
stereo vision, texture modeling), associative memory, etc. 
The overall goal is often to determine the most likely value 
for each random variable given the observed data (i.e., 
marginal MAP estimates). Given a specified MRF model, 
this is achieved in MCMC by iteratively sampling the 
random variables according to the conditional dependencies 
and then identifying the mode of the generated samples.  

To accelerate MRF inference using MCMC, we 
introduce RSU-G, a Gibbs Sampling unit based on the ‘first-
to-fire’ exponential unit proposed elsewhere [42]. Our 
specific RSU-G unit supports first-order MRFs with a 
smoothness-based prior, which includes many image 
processing applications (e.g., image segmentation, motion 
estimation, stereo vision). A survey of possible applications 
is provided elsewhere [36]. 

We experimentally demonstrate the functional operation 
of a rudimentary RSU-G using a macro-scale prototype 
comprised of discrete components, including an FPGA, 
laser sources, RET devices, and a PC. We use the prototype 
to segment a small image into two regions. To our 
knowledge this is the first demonstration of a RET-based 
molecular-scale optical probabilistic functional unit, and 
represents a significant step forward for this technology. 
The discrete nature of the prototype renders performance 
evaluation meaningless. Therefore, we use a combination of 
emulation and analytic evaluation to obtain performance 
estimates of architectures that incorporate RSU-Gs. We 
obtain area and power estimates for our proposed RSU from 
a combination of synthesis of the Verilog circuits using the 
Synopsys tools, Cacti, and first principles for the RET 
components. The synthesized circuits are verified in 
Modelsim. 

To emulate the performance of RSU-G augmented 
processors, we replace appropriate code sequences with a 
sequence of instructions to emulate the latency of RSU-G 
instructions. This approach does not provide a functionally 
accurate evaluation but is sufficient to obtain performance 
estimates. We analytically investigate the performance for a 
discrete accelerator where the upper bound is dictated by 
memory bandwidth limitations. Our analysis shows that a 
GPU augmented with RSU-G units can achieve speedups of 
up to 3 and 16 for image segmentation and motion 
estimation, respectively. A discrete accelerator with 336 
RSU-G units achieves speedups of 21 and 54 assuming a 
336GB/s memory BW limitation. The novel optical 
components of RSU-G units consume very little power 
(0.16 mW) and area (0.0016 mm2). Synthesizing the CMOS 
portions of RSU-G in 15nm reveals power of 3.75 mW and 
area of 0.0013 mm2 for a total RSU-G power of 3.91 mW 
and area of 0.0029 mm2. 

Below we summarize our primary contributions: 
• Introduce functional units (RSU) that provide samples 

from parameterized probability distributions. 

• Design and implementation of RSU-G, a functional unit 
for Gibbs sampling in MCMC solvers for Bayesian 
Inference. 

• Experimental demonstration of an RSU-G in a 
macroscale prototype, to our knowledge the first such 
demonstration. 

• Performance evaluation of RSU-G augmented CPU and 
GPUs. 

The remainder of this paper is organized as follows. 
Section 2 provides background, motivation and related 
work. Section 3 provides an overview of a generic RSU and 
how it can be incorporated into processors or a stand alone 
accelerator. We present the RSU-G design in Section 4 and  
implementation in Section 5. Section 6 provides more 
details on RSU-based architectures. Experimental results are 
described in Section 7 and we evaluate integrated designs in 
Section 8. Section 9 discusses limitations and future work, 
while Section 10 concludes. 

2. Background, Motivation, and Related Work 
The increasing use of machine learning in data analytics 

presents new challenges and opportunities for the design of 
computing systems. This section provides a brief overview 
of probabilistic algorithms, their associated challenges, 
reviews recent proposals to use nanoscale optical devices to 
overcome these challenges, and presents related work. 

2.1 Probabilistic Algorithms 
Recent theoretical advances in statistics and probabilistic 

machine learning demonstrate that many application 
domains can benefit from probabilistic algorithms in terms 
of simplicity and performance [28, 29]. Example problems 
include, but are not limited to, statistical inference, rare 
event simulation, stochastic neural networks (e.g., 
Boltzmann machines), probabilistic cellular automata and 
hyper-encryption.  

Most probabilistic computations rely on sampling from 
application-specific distributions. For example, Bayesian 
Inference solvers often iteratively sample from common 
distributions such as gamma distribution and normal 
distribution, while rare event simulations may require many 
samples from a heavy-tailed distribution to obtain 
statistically significant results. The number of samples 
generated in these applications can be large; many 
thousands of samples per random variable with thousands of 
random variables. 

The importance of sampling from various distributions 
led to the C++11 standard library including implementations 
for 20 different distributions. Although this greatly 
simplifies program development, it does not address the 
inherent mismatch between conventional digital computers 
and probabilistic algorithms. In particular, sampling requires 
control over a parameterizable source of entropy used for 
random selection. Therefore, generating a sample includes 
two critical steps: 1) parameterizing a distribution and 2) 
sampling from the distribution. 



 

Consider Bayesian Inference, an important inference 
framework that combines new evidence and prior beliefs to 
update the probability estimate for a hypothesis. Consider D 
as the observed data and X as the latent random variable. p(X)  is the prior distribution of X , and p(D|X)  is the 
probability of observing D given a certain value of X . In 
Bayesian Inference, the goal is to retrieve the posterior 
distribution p(X|D)  of the random variable X  when D  is 
observed. As the dimension of X = [X ,… , X ] increases, it 
often becomes difficult or intractable to numerically derive 
the exact posterior distribution p(X|D) . One approach to 
solve these inference problems uses probabilistic Markov 
Chain Monte Carlo (MCMC) methods that converge to an 
exact solution by iteratively generating samples for random 
variables. Obtaining each sample incurs at least the 
overhead of computing the distribution parameters and 
sampling from the distribution. 

2.2 Sampling Overhead 
Parameterizing a distribution is application dependent 

and requires computing specific values for a given 
distribution. For example, computing the decay rate for an 
exponential, the mean and variance for a normal, etc. For a 
class of Bayesian Inference problems that we study this may 
include computing a sum of distance values and can take at 
least 100 cycles to compute on an Intel E5-2640 processor 
(compiled with gcc –O3), and could be much higher. Other 
probabilistic algorithms may have different computations 
with varying complexity.  Nonetheless, the time required to 
parameterize a distribution is an important source of 
overhead in probabilistic algorithms. 

The second component for sampling is to generate the 
sample from the parameterized distribution. Devroye [9] 
provides a comprehensive overview of techniques for 
computationally generating samples from various 
distributions. Samples from general continuous or discrete 
distributions can be generated using algorithms such as 
inverse transform sampling and rejection sampling. 
Unfortunately, it can take hundreds of cycles to generate a 
sample with these approaches, and more complex 
multivariate sampling can take over 10,000 cycles. Table 1 
shows how many cycles it takes to generate a sample for a 
few distributions using the C++11 library [1]. We obtain 
cycle counts on an Intel E5-2640 using the Intel 
Performance Counter Monitor and present the average of 
10,000 samples (-O3 optimization). 

Table 1: Cycles to Sample from Different Distributions. 
Distribution Type Cycles (average) 
Exponential  588 
Normal 633 
Gamma 800 

The overheads of calculating distribution parameters 
and sampling from the distribution are critically important 
to many probabilistic algorithms since they incur both 
overheads in their inner loop. Furthermore, multiple 
applications often use the same distribution and share the 

computation to parameterize the distribution. Therefore, 
accelerating sampling can have a significant impact on 
overall execution time. 

2.3 Resonance Energy Transfer Sampling 
Recent work provides a theoretical foundation for 

constructing physical samplers based on molecular-scale 
Resonance Energy Transfer (RET) networks [42].  RET is 
the probabilistic transfer of energy between two optically 
active molecules, called chromophores, through non-
radiative dipole-dipole coupling [41]. When placed a few 
nanometers apart and their emission and excitation spectra 
overlap, energy transfer can occur between a donor and 
acceptor chromophore pair. A RET network is constructed 
by placing multiple chromophores in a physical geometry 
where chromophores interact through RET.   

RET networks can approximate virtually arbitrary 
probabilistic behavior since they can implement sampling 
from phase-type distributions [42]. The probabilistic 
behavior of a RET network is determined by its physical 
geometry.  Typically, a given RET network corresponds to a 
specific distribution. Sampling from the distribution occurs 
by illuminating the RET network and observing output 
fluorescence as a function of time (within a few 
nanoseconds). RET-based samplers may also reduce power 
consumption since the samples are generated in the form of 
single fluorescent photons. 

Previous work outlined several possible samplers (e.g., 
Bernoulli and exponential) that can be composed to make 
more general samplers [42]. In this paper we focus on 
samplers for Markov Random Field (MRF) Bayesian 
Inference using Markov Chain Monte Carlo (MCMC) 
methods that utilize exponential samplers. We create 
probabilistic functional units that use CMOS specialization 
to accelerate distribution parameterization and RET 
networks to accelerate obtaining a sample from the 
parameterized distribution. 

RET networks are integrated with an on-chip light 
source, e.g., quantum-dot LEDs (QD-LEDs), waveguide, 
and single photon avalanche detector (SPAD) to create a 
RET circuit. Each RET circuit can contain an ensemble of 
RET networks. A fully specified RET network can be 
conveniently and economically fabricated with sub-
nanometer precision using hierarchical DNA self-assembly 
[19, 33]. RET circuits can also be integrated with hybrid 
electro-optical CMOS using back end of line processing [21, 
22]. Section 3 provides an overview of RET-based 
Sampling Units (RSU) and how these units can be used in 
processor architectures. The remainder of this section 
briefly discusses alternative approaches. 

2.4 Alternative Approaches and Related Work 
Reducing or avoiding the overhead of sampling can be 

achieved by using deterministic algorithms or by 
introducing hardware specialization. One approach to avoid 
the overhead of sampling is to use alternative discrete 



 

algorithms. For example, an alternative to MCMC is 
deterministic approximate inference methods such as 
Expectation Propagation (EP) and Variational Bayesian 
(VB). Although often more efficient in practice, these 
methods require more complex mathematical derivation and 
arbitrary assumptions that create divergence from the exact 
solution [27, 29, 43]. Domain scientists generally prefer the 
less complex mathematically, but more accurate pure 
solution if possible. 

Another approach to accelerate sampling, and the one we 
advocate in this paper, is through specialization that 
incorporates novel devices. A Stochastic Transition Circuit 
and an FPGA implementation was proposed to efficiently 
update random variables given the graphical model of an 
inference problem [24, 25]. Abstractly, our units are an 
instance of a Stochastic Transition Circuit; however, our 
approach differs in that we exploit the physical properties of 
RET and can implement complex distributions that would 
be difficult in CMOS. 

Similar to an RSU, other techniques propose using a 
physical process as a natural source of entropy to create 
samplers. The common physical processes used for this fall 
into four categories: noise, free running oscillator, chaos and 
quantum phenomena [35]. With a quantum-mechanical 
origin [16], RET provides true randomness and arbitrary 
sampling distributions. While previous works on RET 
between quantum dots support certain probabilistic 
computing applications [5, 30], RSUs are more general and 
can be used across a broad set of applications. Although 
often used in CMOS to generate random bits, thermal noise 
cannot provide provable randomness and requires complex 
post-processing to make the output appear more random. 
Further, its implementation is either difficult to parameterize 
or does not support arbitrary distributions, thus limits reuse 
across applications. 

The Intel Digital Random Number Generator (DRNG) 
uses a thermal noise-based entropy source and includes two 
stages of post-processing: an AES-based entropy 
conditioner and a Pseudo Random Number Generator 
(PRNG) [2]. Based on our synthesis of the 256-bit AES 
conditioner at 45nm technology [3], this stage alone is 
comparable to the RSU-G1 unit proposed later in terms of 
area, power consumption, and throughput. The full DRNG 
requires more area and power. 

Probabilistic CMOS (PCMOS) can implement discrete 
samplers by using thermal noise in electronic circuits to 
make probabilistic switches with a set of tunable parameters 
[8, 31]. Unfortunately, this requires amplifying the noise to 
a specific magnitude, and can be energy and area inefficient. 
The exact noise level of each probabilistic switch relies on 
the probabilities of all values and requires normalization. 
Furthermore, PCMOS switches essentially implement 
Bernoulli random variables, and cannot be flexibly 
organized to generate samples from general distributions. 

Other recent work explores augmenting processors with 
specialized Neural Processing Units (NPU) [4, 10] to 

achieve speedup and power savings using analog circuits, 
but focuses specifically on using neural networks to 
approximate deterministic functions. 

RSUs can implement a broad class of distributions, can 
be easily parameterized dynamically by changing RET 
circuit inputs (e.g., QD-LED intensity values), and eliminate 
normalization for some cases by using relative ratios of 
distribution parameters (e.g., exponential decay rates). 
RSUs provide an efficient hardware platform for 
probabilistic programming languages [7, 24] by providing 
native probabilistic support. Exploring language support for 
RSUs is an interesting future direction, but first we must 
develop specific units and provide an architecture for 
probabilistic computing. 

3. Architecture Overview 
There are many possible ways to expose an RSU to 

software, ranging from adding functional units to an 
existing processor to a discrete accelerator. Our goal in this 
section is to present a general approach for constructing 
functional units with RET-based samplers and high-level 
architectures that utilize these units. We present two 
potential architectures: 1) augmenting a GPU with sampling 
units and 2) a discrete accelerator designed to maximize 
memory bandwidth utilization. 

A generic RSU is a hybrid of CMOS and RET 
technology, and its inputs and outputs are unsigned integers 
that correspond to values of interest to the application. A 
block diagram of an RSU is shown in Figure 1. An RSU 
performs a series of three operations: 1) map application 
values to RET inputs, 2) generate samples, 3) map RET 
output to application value.  Steps 1 and 3 are implemented 
using conventional CMOS specialization, whereas step 2 is 
a RET circuit that exploits the probabilistic behavior of RET 
networks. Step 1 is where distribution parameterization 
occurs, and involves converting application values into RET 
circuit inputs (e.g., QD-LED intensity values). Step 2 
samples from the parameterized distribution using one or 
more RET circuits, and step 3 converts the RET circuit 
output value back to an application data type for the sample. 
Section 4 presents details of a specific RSU to support 
Bayesian Inference using MCMC. 

 
Figure 1: Generic RSU Block Diagram. 
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Figure 2 shows a GPU architecture (single streaming 
processor) modified to include RSUs and Figure 3 shows a 
custom discrete accelerator design using RSUs. Augmenting 
a conventional CPU would be similar to the GPU design. 
For processor integration, additional instructions are 
required to access the RSU, and we discuss these in more 
detail in the context of our specific RSU in Section 6. From 
a program’s perspective, an RSU is a multi-cycle, pipelined 
functional unit that takes several random variable values as 
input and produces a single random variable value as output. 
The values are represented as unsigned integers. 

A discrete accelerator would operate similar to existing 
encryption, motion, or other specialized unit. Generally, 
these systems first place relevant data at a specified memory 
address, the accelerator then iterates over the data using 
custom control logic, and the CPU is notified of completion. 
Accelerators can often achieve much higher performance 
than programmable systems since they can be tailored to 
specific problems, they also serve as a method to analyze 
performance bounds. 

RSUs can be designed for a variety of probabilistic 
algorithms, and exploring the large design space requires 
many man hours. In this paper we explore a small region of 
the overall design space by focusing on an RSU designed 
specifically to accelerate certain types of inference 
problems. 

4. A RET-based Gibbs Sampling Unit 
This section presents an RSU designed specifically for 

Markov Random Field inference using MCMC. We first 
summarize Markov Random Fields and MCMC approaches 
to perform inference, and then present our RSU designed to 
accelerate this broad class of applications. 

4.1 Markov Random Fields 
A Markov Random Field (MRF) is a type of graphical 

model used in Bayesian Inference. An MRF is a set of 
random variables that satisfies the Markov properties 
described by an undirected graph [20]. MRFs are suitable 
for many interesting and important applications such as low-
level computer vision and associative memory [12, 20, 36]. 
In this paper, we focus on first-order MRFs with 
smoothness-based priors, homogeneity and isotropy (i.e., 
position and orientation independence), with discrete 
random variables. Extending our work to other types of 
MRFs is future work.  

Figure 4 shows an example first-order MRF where each 
random variable has four neighbors and is conditionally 
independent of all non-adjacent random variables when 
conditioned on the four neighbors. More specifically, the 
full conditional probability of each random variable X ,  is 
the exponential of the sum of five clique potential energies 
(with normalization):  p X , X ( , ), D  ∝ exp 1T Ec X , , D Ec X , , X , Ec X , , X ,Ec X , , X , Ec X , , X , .		(1) X ,  is a random variable that can take on M possible 
values, or more commonly called labels in this context. Ec X , , D  is the singleton clique potential energy that 
relates X ,  to the observed data D, and Ec X , , X ,  is the 
doubleton clique potential energy that relates X ,  to a 
neighboring random variable. T is a fixed constant. 

4.2 MCMC and Gibbs Sampling 
For many problems, directly solving the equations above 

can be computationally expensive. Therefore, MCMC 
methods are often employed. Among the algorithms for 
generating MCMC samples, Gibbs sampling and Metropolis 

 
Figure 2: GPU Augmented with RSUs. 
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Figure 4: A First-order MRF. 

 
Figure 3: A Discrete Accelerator using RSUs. 
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sampling are the most commonly used [29], and for our 
applications we use Gibbs sampling. 

Gibbs sampling generates a new sample of a random 
variable (X , ) directly from its full conditional distribution 
when conditioned on the current labels of the other random 
variables. In a first-order MRF, this is achieved by 
calculating the probability for each of the M possible labels 
a random variable can take on using Equation (1) and 
randomly selecting a label according to the discrete 
distribution. 

Each MCMC iteration updates all random variables once 
to obtain one MCMC sample. The number of operations per 
iteration linearly depends on the number of possible labels 
for each random variable and the number of random 
variables. However, different labels can be evaluated 
simultaneously and random variables that are conditionally 
independent can be updated concurrently, exposing 
significant parallelism for some problems. Specifically, the 
first-order MRF in Figure 4 allows all the gray random 
variables to be updated simultaneously. Similarly, all the 
white random variables can be updated simultaneously. 

4.3 RSU-G Design 
A discrete sampler with M  outcomes can be constructed 

using M exponential samplers parameterized by the 
probabilities of taking each outcome [42]. Generating one 
new sample for X ,  requires M different samples, each from 
uniquely parameterized exponential distributions. We 
exploit this observation to construct a RET-based Gibbs 
Sampling Unit (RSU-G1) using a single RET circuit (G1). 

In this paper we consider only MRFs with smoothness-
based priors where the energy (i.e., logarithm of probability) 
of taking on a label is the sum of four doubleton clique 
pontential energies and one singleton clique potential energy 
[36]. Each doubleton clique potential energy is a measure of 
distance between the label being evaluated and the current 
label of a neighbor. Typically, the distance measure is 
defined for the label space and is problem specific, here we 
consider grayscale valued images and use a simple squared 
difference norm as the metric (Equation 2). The singleton 
clique potential energy is application specific; RSU-G 
implements it as the squared difference between two data 
values to directly support applications such as image 
segmentation, motion estimation and stereo vision and is 
extendable to other applications by precomputing their 
singleton energy externally and sending into one data input. Ec Xi,j = x, Xi 1,j = x′  = EcD X , = [x1, … , xn], X , = [x1 , … , xn ] 	= d (x, x′) = w (xk xk ) 	(2) 

RSU-G utilizes the ‘first-to-fire’ design based on the 
property of competing exponential random variables [42]. In 
this design, a RET circuit is used as an exponential sampler 
that generates exponentially distributed samples. The M 
exponential samplers are parameterized by the energies of 

taking on each label. The key aspect in this design is 
parameterizing the exponential samplers, based on the 
neighboring random variables’ current labels and the 
singleton energy, and recording the time to fluorescence 
(TTF) from each exponential sample. The label that 
produces the shortest TTF is chosen as the label for X , . 
4.4 Limited Precision 

Previous work found that 8-bit precision for energy 
calculations is sufficient for many applications [25]. Given 
the specific distance measure we use here, only 3 bits are 
needed for scalar values and 6 bits for vector values in the 
doubleton calculation, as described later. Although extra bits 
can increase the number of possible labels, the energies of 
different labels start to overlap resulting in equal selection 
probability. These close or redundant labels do not 
necessarily improve the solution quality; however the time 
required to update one random variable increases since there 
are more labels to be sampled. In these cases, we 
recommend collapsing the equally likely labels into a single 
label before execution. 

5. RSU-G1 Implementation 
An RSU-G implementation can take many forms. On one 

end of the spectrum it could be constructed to iterate over 
the M possible labels using a single RET circuit (RSU-G1). 
On the other extreme end of the spectrum it could use M 
distinct RET circuits to simultaneously evaluate all M 
possible labels in a single step (RSU-GM). In the middle are 
designs with K RET circuits that take M/K steps to obtain 
the result (RSU-Gk). 

5.1 Overview 
Our preliminary RSU-G1 implementation, shown in 

Figure 5, evaluates one possible label for a random variable 
(K = 1) per step, and iterates to evaluate all M labels. Given 
the limited label precision, we use 6-bit unsigned integers to 
represent random variable labels (M <= 64).  RSU-G1 is a 
multicycle pipelined functional unit that takes 7+(M-1) 
cycles to obtain a random variable sample in steady state.  

Figure 5: An RSU-G1 Implementation Diagram. 
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The design can be easily extended to evaluate up to 64 
labels (RSU-G64) in 12 cycles at the expense of additional 
area. Exploring a configurabe RSU design is part of our 
future work. 

 There are five main components in any RSU-G 
implementation: 1) label decrement/input, 2) energy 
computation, 3) energy to intensity mapping, 4) RET 
circuits (for sampling), and 5) selection. Label decrement is 
used to iterate over all M possible labels. The energy 
computation performs the distance calculation to obtain the 
exponential decay rate which maps through a lookup table 
to a QD-LED intensity. The RET circuit samples the 
exponential distribution and the resulting TTF for the 
sample is used in the selection block to choose the lowest 
from all M possible labels. 

For many applications M is fixed and an initial down 
counter value can be set at the start of the program. To 
obtain a sample for a random variable X , , RSU-G requires 
five 6-bit inputs, one for each neighbor and its data value. 
Some applications need an additional data value that 
changes for each possible label. The output is a single 6-bit 
value that represents the new label for the random variable. 

5.2 Pipeline Stages  
Here we describe each of the stages in our initial RSU-G1 

pipeline implementation. This does not necessarily represent 
the most optimized design. 

Label. The first stage sets the inputs necessary for 
evaluating a given possible value for the random variable. 
This includes the given value to evaluate, the current values 
of the four neighboring random variables, and the input data 
values. The down counter is initialized with the maximum 
possible value for the random variable (M-1), and the other 
inputs are stored in registers.  We assume this initialization 
is overlapped with evaluations of previous random 
variables. On subsequent evaluation cycles the down 
counter is decremented to iterate over the values, and the 
other values (except for the second data value) remain 
unchanged until the next random variable evaluation. 

Energy Calculation. The second stage computes the 
clique potential energies, a first step in distribution 
parameterization. Each cycle a new energy is computed 
since the down counter changes. The 6-bit value can 
represent either a 2D vector or a scalar. For the 2D vector [x1, x2], the 6-bit value is split into 3 bits for x1 and 3 bits 
for x2. The distance measure is calculated separately for the 
two entries between two neighboring random variables and 
then summed to obtain the doubleton energy. When the 
value of the random variable is a scalar, only the first entry 
(3 bits) is used and the second entry is set to zero. We found 
this limited precision to be sufficient for many applications. 
Similarly, the singleton energy is a distance measure 
between two data inputs, a calculation that is application 
dependent, e.g., in motion estimation it can be a weighted 
squared difference between two grayscale values. We 
assume that any scalar weights in the singleton calculation 

are pre-factored from the input data. The 8-bit energy for a 
possible label is calculated by summing the five clique 
potential energies and passed onto the next stage. 

Intensity Mapping. The third stage implements the 
second component of distribution paramaterization by 
mapping the 8-bit energy value to a corresponding QD-LED 
intensity. We use a lookup table to find the corresponding 4-
bit signal that provides the input to a RET circuit to control 
the binary on/off state of its four QD-LEDs. The QD-LEDs 
are sized to provide a suitably large dynamic range of 
intensities to match the precision in relative probabilities we 
demonstrate with the RSU-G2 hardware prototype described 
later. 

RET Sampling. This stage activates a RET circuit to 
obtain a sample from the RET network. We simultaneously 
enable the QD-LEDs and the SPAD of the given RET 
circuit. The time to the first photon detection (TTF) is 
recorded using an 8-bit shift register that is clocked 8x faster 
than the system clock. It may take multiple system clock 
cycles before a RET circuit generates an output and can be 
reused for another evaluation. We elaborate on this later and 
use replicated RET circuits to sustain single cycle operation 
of the RSU-G pipeline. 

Selection. In the final stage, the selection block records 
the shortest TTF for each possible label. Each cycle the 
previously shortest TTF is compared against the new TTF 
and the shorter is recorded as the current best TTF (with its 
label). After evaluating all labels (i.e., the down counter 
reaches zero), the best label is returned as the new sample of 
the random variable X , . 
5.3 Replicated RET Circuits 

The TTF of a RET circuit is probabilistic, and for RSU-
G follows an exponential distribution. Samples from the tail 
of this distribution can become arbitrarily long and the delay 
depends on the fluorescent lifetime of the chromophores in 
the RET networks. The RSU-G1 design presented here 
requires four 1ns cycles for the RET circuits to reach a 
quiescent state, ensuring it is safe to proceed with a new 
sampling operation.  

  However, the four cycle delay creates a structural 
hazard in the pipeline. We use four replicated RET circuits 
in RSU-G1 to overcome the hazard. This allows us to share 
the parameterization, timing and selection logic among all 
four replicates. We use a simple two-bit counter for round-
robin scheduling of sampling operations across the four 
RET circuits and sustain a throughput of one label sample 
per cycle (requiring M cycles for a single random variable). 

The above design represents the smallest RSU-G1 design 
that produces one possible label evaluation per cycle. 
Utilizing more RET circuits can further reduce latency by 
evaluating multiple possible labels per cycle. The extreme is 
RSU-G64 that evaluates up to the maximum of 64 possible 
labels simultaneously by using 256 RET circuits. This 
design can sustain a throughput of one random variable 



 

sample per cycle. Exploring the space of RSU design is 
ongoing work. 

6. RSU Architectures 
There are many possible ways to expose sampling units 

to software, ranging from adding functional units to an 
existing processor to a discrete accelerator. In this section 
we present two potential designs: 1) augmenting a GPU 
with RSU-G units and 2) a discrete accelerator designed to 
maximize memory bandwidth utilization. 

The operation of the RSU-G unit can be viewed in terms 
of operations performed once: 1) per application, 2) per 
MCMC iteration, 3) per random variable evaluated (a pixel 
in our applications), and 4) per potential random variable 
label. Each RSU-G unit requires initializing the intensity 
map table and down counter (max label value) at the start of 
each application. For each random variable (pixel in our 
applications), RSU-G requires the four neighbor labels (for 
doubleton calculations) and its associated data (e.g., 
grayscale value for singleton calculations). Finally, for each 
potential label, the singleton calculation may also need 
information from a target location (pixel grayscale). 

6.1 Augmenting Processors with RSU-G Units 
To augment a processor or GPU with RSU-G units 

requires instructions to perform each of the four steps 
described above. To achieve this, we introduce a single 
instruction RSU op, regsrc, regdest that includes an 
operation, a source register and a destination register. The 
op field specifies a target RSU-G control register and if the 
instruction should read a result from the RSU-G unit. The 
instruction stalls if a result is not yet ready, and resets the 
unit to begin the next evaluation when it returns the result. 
Depending on the specific ISA, this instruction can be 
encoded in a variety of ways. Our current RSU-G design 
requires 3 bits to specify one of 6 control registers (map 
table hi, map table low, down counter, neighbor 0-3, 
singleton A, singleton D) and an additional bit for reading 
the result. We assume an RSU instruction takes one cycle to 
execute and that a thread can issue only one per cycle (i.e., 
32 for a 32-wide warp/wavefront). 

Initialization. The intensity map table is 128 total bytes 
(256 entries x 4 bits) and can be initialized using the RSU 
instruction twice by packing values into a 64-bit register. 
The down counter is initialized with a single 6-bit value 
using the RSU instruction. The total initialization time is 
only 3 cycles. 

Execution. The remaining values transferred to the RSU-
G unit are 6-bit quantities and we assume are packed into 32 
or 64-bit registers. This allows for a peak sustained 
initiation rate of one random variable sample per cycle, but 
is application dependent. 

We assume the per pixel instructions can be overlapped 
with the final iterations of the down counter, when 
necessary, and staged to begin executing the next pixel as 

soon as possible for example by using software pipelining. 
When the RSU instruction that reads a result completes (i.e., 
returns a new label), a new pixel execution can begin. This 
requires a small amount of control circuitry to reset the 
down counter and write values into neighbor and singleton 
control registers. 

Context Switches. An RSU-G may maintain state over 
many cycles (i.e., iterating over many labels). On a general-
purpose core, the operating system could save and restore 
the intermediate state of each RSU-G unit when an 
exception/interrupt occurs. This allows switching between 
multiple applications that are all using the RSU-G units. 
This requires saving the map tables, counter, neighbor 
labels, singleton data, and any potential solutions stored in 
the selection unit. To reduce this state we can identify each 
instance of random variable evaluation (step 3 above) as the 
boundary for an idempotent sequence and restart execution 
at step three [14, 18]. This reduces the state to only per 
application (map tables and initial counter value) and would 
add only a few cycles per RSU-G unit. GPUs currently do 
not support context switches, so it is not an issue. 

6.2 Discrete Accelerator 
An alternative to augmenting an existing processor or 

GPU with RSU-G units is to design a custom discrete 
accelerator. This removes the constraints placed on general-
purpose cores to support a wide variety of applications and 
instead allows us to focus on achieving the maximum 
performance. This design assumes that all control and data 
movement is implemented using custom logic where 
datapaths and register sizes can be specialized to match 
RSU-G’s. We expect this to be the highest performing 
approach and analytically investigate this upper limit on 
performance. 

7. A Macro-Scale RSU-G2 Prototype 
To experimentally demonstrate the operation of a RET-

based sampling unit we developed a macro-scale prototype 
of an un-pipelined RSU-G2. Figure 6 shows a block diagram 
and a picture of our setup. We use this prototype to 
demonstrate the ability to parameterize a distribution for 
sampling and for use in a proof-of-concept image 
application. These experiments are an important step 
forward in the development of RET-based sampling units. 

The prototype RSU follows the basic design of a generic 
RSU, with parameterization and a RET circuit for sampling 
the distribution. Macro-scale lasers are used to illuminate 
two RET networks and two SPADs to detect the output 
fluorescence from each network, or channel, to implement a 
RSU-G2 (two-wide). The FPGA implements the time-to-
fluorescence circuitry with sufficient timing precision to 
resolve 250ps differences in photon arrival times. 
Parameterization is performed in software on the PC by 
varying the laser source intensity to achieve different 
relative probabilities of photon detection between channels. 



 

Our first experiment demonstrates the ability to 
parameterize the distribution. We vary the ratio of relative 
probabilities for the two RET circuits from 1 to 255 and 
observe that the prototype can achieve desired pairwise 
relative probabilities within 10% when the ratio is below 30, 
and 24% for higher ratios. A finer characterization and 
control of the prototype components could further improve 
the accuracy. 

We also use the prototype on a simple image 
segmentation problem with only two possible labels (e.g., 
foreground and background). In this demonstration a PC 
executes the outer loop of an MCMC solver for the image 
segmentation MRF. Energy (singleton and doubleton) 
calculation and intensity mapping is also performed in 
software and the RSU-G2 is used to sample from the output 
label distribution. 

 Figure 7 shows an input image (50x67) and 
representative output after 10 iterations of the MCMC. The 
prototype RSU-G2 sampling takes no longer than ~2μs per 
pixel (since these are discrete components the hardware 

incurs significant electrical delays) but is dwarfed by the 
delays incurred to interface the proprietary laser controller 
(60 sec/image-iteration). These delays can be reduced 
significantly by electro-optical integration with CMOS. 

We conclude from the prototype demonstration that the 
fundamental operational principle of the RSU-G is sound 
and that it can be used as the underpinning for MRF based 
Bayesian Inference problems. Next, we evaluate the 
potential performance of the RSU-G.  

8. Evaluation 
This section provides preliminary analysis of RSU based 

systems in terms of performance, power and area. 

8.1 Methodology 
We use several image-processing applications (image 

segmentation, stereo vision matching, and dense motion 
estimation) for evaluation. Our image segmentation 
application assigns one of five possible values (labels) to 
each pixel by grouping similar pixels based on intensity [11, 
37]. The stereo vision application similarly assigns one of 5 
labels to align two images [39]. The dense motion 
estimation application searches over a 7x7 block to find the 
most likely position of a pixel in a subsequent frame (49 
possible values) [17]. Although application specific 
implementations for these problems exist, our goal is to 
demonstrate the potential of RSU-G for the general MRF-
MCMC Bayesian Inference framework. We use a single 
core of an Intel E5-2640 for image segmentation and stereo 
vision, but focus primarily on using an NVIDIA GTX Titan 
X GPU, for image segmentation and motion estimation. We 
functionally verify against MATLAB versions of the 
algorithms. 

For performance evaluation, we first create best-effort 
implementations for the two applications via standard 
MCMC in C/C++ and CUDA as baselines. Then we replace 
select code sequences in the baseline implementations 
whose functionality is encapsulated in RSU-G units with 
appropriate instructions to match the theoretical timing of 
RSU instructions. We examine the assembly to ensure that 
all loads and stores are still present in the modified 
programs. We run image segmentation for 5,000 MCMC 
iterations and motion estimation for 400 iterations and 
measure the time to complete all iterations. 

The standard MCMC process could be optimized by pre-
calculating singleton values for each pixel and storing them 
in memory. Singletons are constant over all iterations, and 
thus can be pre-calculated and loaded from memory when 
needed rather than computed again. However, this 
optimization doesn’t scale well; the memory required grows 
linearly with the number of pixels and the number of labels. 
Moreover, GPUs have limited global memory and this 
optimization will not work well for large images and large 
label sets. Nonetheless, we implement this optimization as 
an additional comparison for two of our applications. 

 
(a) Functional Block Diagram 

 
(b) Photo of Prototype 

Figure 6: Macroscale RSU-G Prototype. 
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Figure 7: Image Segmentation on the Prototype: (a) Input 
Image and (b) the Sample at the 10th Iteration.  



 

We use the OpenMP omp_get_wtime routine on the CPU 
and the CUDA nvprof profiling tool to time all the iterations 
for the baseline implementations and the RSU-G emulated 
versions. This approach ignores the area overhead required 
to support the RSU-G units; however, it provides an 
estimate of how future chip area could be used to improve 
performance. Developing a more detailed, cycle accurate 
evaluation framework is ongoing work. 

Finally, we analytically bound the speedup of RSU-G 
units using memory bandwidth as the limiter, which can be 
regarded as organizing RSU-G units in a specialized 
discrete accelerator. Based on memory bandwidth limits and 
the number of bytes needed for each pixel each iteration, we 
calculate an upper bound on performance for our current 
RSU-G design. 

8.2 Performance 
Figure 8 illustrates the speedups for our two applications 

with different image sizes on a GPU augmented with RSUs. 
For image segmentation, RSU-G1 systems provides speedup 
of 3.2 over the baseline GPU for images of size 320x320, 
and 3.0 for HD images of size 1080x1920. Speedups over 
the optimized GPU implementation are 2.5 and 2.4 for small 
and HD images, respectively. For dense motion estimation, 
RSU-G1 systems provides speedup of 6.4 and 12.8 for 
320x320 images and achieve 7.5 and 16.06 for HD images. 
Dense motion estimation benefits from a wider RSU-G4 
design since it has more labels to evaluate (M=49) and 
achieves speedups of 23 for small images and 34 for HD 
images over the baseline GPU implementation. 

Table 2: Application Execution Time (seconds). 
Size GPU Opt GPU RSU-G1 RSU-G4 

Image Segmentation 
Small 0.3 0.23 0.09 0.09 
HD 3.2 2.6 1.1 1.1 

Dense Motion Estimation 
Small 0.55 0.27 0.04 0.02 
HD 7.17 3.35 0.45 0.21 

Our applications spend approximately equal time 
between energy calculations (parameterization) and 
sampling; therefore, the performance improvement is 
equally divided between the CMOS specialization of 
parameterization and RET-based sampling. Secondary 
effects from using RSU-G also influence speedup. Fewer 
instructions take less time to execute, but also reduces 
register pressure and increases processor occupancy. These 
two factors both contribute to our observed speedups. 

We also ran sequential versions of image segmentation 
and stereo vision on an Intel E5-2640. The achieved 
speedup of an RSU-G1 augmented processor was over 100; 
however, the GPU is a better comparison given the 
embarrassingly parallel nature of the applications. 

Discrete Accelerator. GPUs have many architecture 
features that keep RSU-G units from providing their 
maximum performance, such as memory architecture, warp 

granularity, and scheduling policy. A discrete accelerator 
could achieve even better performance by trading off 
flexibility. We use DRAM bandwidth to bound the best-
case performance that a discrete accelerator can achieve by 
considering how much data is required for each application.  

For image segmentation, each pixel needs 5 bytes (1 
initial intensity, 4 neighboring pixels’ labels) per MCMC 
iteration. Motion estimation needs 54 bytes (49 destination 
intensities and 1 initial intensity for singleton calculation, 4 
neighboring pixels’ labels) per pixel per MCMC iteration. 
Using image sizes and DRAM bandwidth limits, we can 
compute execution time. 

Assuming DRAM bandwidth is 336GB/s, the GTX Titan 
X bandwidth, and the accelerator consumes data at DRAM 
bandwidth. For image segmentation, the accelerator 
achieves an additional 12.1x and 7x speedup over the RSU-
G1 augmented GPU for 320x320 and 1080x1920 (HD) 
images, respectively. Dense motion estimation achieves 
additional speedup of 6.5x and 3.4x for 320x320 and 
1080x1920 images, respectively. The lower speedup for HD 
images is because HD images saturate the GPU while 
320x320 images don’t. Thus, for a discrete accelerator, the 
upper bound of speedups over standard MCMC on the GPU 
is 39 (image segmentation) and 84 (dense motion 
estimation) for 320x320 images and 21 and 54 for HD 
images. The discrete accelerator achieves speedup of only 
1.55x over the RSU-G4 augmented GPU for motion 
estimation of HD images, since RSU-G4 nearly saturates 
memory BW. The number of RSU-G units required to 
achieve these speedups is #units = 
BW/frequency/bytes_per_cycle. Assuming the Titan X 
1GHz frequency and that each unit consumes only 1 byte of 
data per cycle. Achieving these speedups requires 
approximately 336 RSU-G1 units in the accelerator. Further 
speedups are possible by using on-chip storage to increase 
memory bandwidth and staging image frames. The number 

 
Figure 8: RSU Speedup over GPU. 
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of RSU-G units needed scales linearly with available 
memory bandwidth. 

8.3 Power & Area 
We obtain power and area estimates of RSU-G1 from 

the synthesized Verilog in 45nm, Cacti, and a predictive 
15nm  process [26] for the CMOS portions and first 
principles for the RET circuit [6, 15, 23, 32, 34]. We do not 
scale the RET circuit. 

Power. The power for a single RSU-G1 in 15nm is 
3.91mW and is dominated by the electrical power 3.75mW, 
the RET circuits consume only 0.16mW. A GPU augmented 
with RSU-G units (3072 in total) consumes 12W of 
additional power when they are all active. The accelerator 
with 336 units bounded by 336GB/s DRAM consumes only 
1.3W for the RSU-G units. Additional power would be 
consumed for the memory controller and the control logic. 
Table 3 lists the power consumption breakdown by RSU-G1 
component. 

Table 3: Power Consumption for a Single RSU-G1. 
Power(mW) 45nm (590MHz) 15nm (1GHz) 
Logic 7.20 2.33 
RET Circuit 0.16 0.16 
LUT 3.92 1.42* 
Total 11.28 3.91 

*theoretically scaling LUT from 32nm to 15nm [40]. 
Area. We estimate area of a RSU-G unit by first 

observing that the SPAD (~1μm2 [6, 23, 32]) and QD-LEDs 
(~16*25μm2 [15, 34]) dominate the RET circuit area 
requirements. The volume of RET network ensemble 
(~N*20*20*2nm3) is very small and can reside in a layer 
above the SPAD. Therefore, we estimate a single RET 
circuit requires 400μm2 and all the RET circuits in an RSU-
G1 unit require 0.0016mm2. Table 4 lists the area breakdown 
by RSU-G1 component.  

Table 4: Area for a Single RSU-G1. 
Area(μm2) 45nm 15nm 
Logic 2275 642 
RET Circuit 1600 1600 
LUT 1798 656* 
Total 5673 2898 

*theoretically scaling LUT from 32nm to 15nm [38, 40]. 

9. Limitations and Future Work 
The current RSU-G implementation is for very specific 

MRF problems. Extending the design to support other MRF 
problems is a short-term goal. We are actively investigating 
the width and depth of RSU pipelines, including 
configurable width for single cycle random variable 
sampling. Our performance evaluation is only approximate 
since we use emulation and we are actively developing a 
more accurate performance evaluation platform. 

Although different aspects of integration with CMOS 
have been demonstrated, a complete integration has not 
been demonstrated. Another issue is chromophore (RET 
Network) longevity; the presence of oxygen limits the 

number of excitation cycles through the equivalent of a 
wear-out process. We can address this issue in two ways: 1) 
using a larger number of RET networks per RET circuit and 
2) encapsulating the chromophores to protect against 
oxygen. 

Exploring a generalized RSU that allows 
programmability across parameterization and distribution is 
an interesting, but challenging area of future work. The 
long-term goal is to explore using the RSU for general 
problems in statistical inference and stochastic neural 
networks as well as domain specific applications such as 
rare event simulation.  

10. Conclusion 
Markov Random Field Bayesian Inference is a common 

problem in probabilistic machine learning. MCMC is a 
probabilistic algorithm for solving these problems that relies 
on sampling from parameterized distributions. We present 
RSU-G, a molecular-scale optical Gibbs sampling unit 
based on Resonance Energy Transfer between 
chromophores to accelerate MRF Inference. By 
implementing specified clique potentials, an RSU-G unit 
can be designed for any first-order MRF problem. We 
present a specific RSU-G for first-order MRFs with 
smoothness-based priors, which encompasses a large 
number of applications in low-level computer vision.  

We experimentally demonstrate the basic operation of 
RSU-G to provide samples from parameterized exponential 
distributions. We explore the architectural integration of 
RSU-G units in two designs: 1) augmenting processors 
(CPU/GPU) with RSU-G units and 2) a custom discrete 
accelerator. Evaluation of these architectures shows 
significant potential speedup for low-level vision 
applications with low power consumption and reasonable 
area. 

There are many possible ways to implement samplers 
using RET in different applications, and we explore a small 
portion of the overall space. Nonetheless, the work 
presented here represents a significant step forward for 
exploiting emerging technologies to provide architectural 
support for probabilistic algorithms. 
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