

Accelerating Markov Random Field Inference Using
Molecular Optical Gibbs Sampling Units

Siyang Wang, Xiangyu Zhang, Yuxuan Li, Ramin Bashizade, Song Yang, Chris Dwyer, Alvin R. Lebeck
Duke University

Durham, NC 27708
{siyang.wang, xiangyu.zhang, yuxuan.li, ramin.bashizade, song.yang, c.dwyer, alvy}@duke.edu

Abstract

The increasing use of probabilistic algorithms from statistics
and machine learning for data analytics presents new
challenges and opportunities for the design of computing
systems. One important class of probabilistic machine
learning algorithms is Markov Chain Monte Carlo (MCMC)
sampling, which can be used on a wide variety of
applications in Bayesian Inference. However, this
probabilistic iterative algorithm can be inefficient in practice
on today’s processors, especially for problems with high
dimensionality and complex structure. The source of
inefficiency is generating samples from parameterized
probability distributions.

This paper seeks to address this sampling inefficiency
and presents a new approach to support probabilistic
computing that leverages the native randomness of
Resonance Energy Transfer (RET) networks to construct
RET-based sampling units (RSU). Although RSUs can be
designed for a variety of applications, we focus on the
specific class of probabilistic problems described as Markov
Random Field Inference. Our proposed RSU uses a RET
network to implement a molecular-scale optical Gibbs
sampling unit (RSU-G) that can be integrated into a
processor / GPU as specialized functional units or organized
as a discrete accelerator. We experimentally demonstrate the
fundamental operation of an RSU using a macro-scale
hardware prototype. Emulation-based evaluation of two
computer vision applications for HD images reveal that an
RSU augmented GPU provides speedups over a GPU of 3
and 16. Analytic evaluation shows a discrete accelerator that
is limited by 336 GB/s DRAM produces speedups of 21 and
54 versus the GPU implementations.

1. Introduction
Statistical methods, machine learning in particular, are

increasingly used to address important problems including,
but not limited to: computer vision, robot/drone control,
data mining, global health, computational biology, and
environmental science. Many approaches in statistics and
machine learning utilize probabilistic algorithms that
generate samples from parameterized probability
distributions (e.g., exponential distribution with a decay
rate). Probabilistic algorithms offer the potential to create

generalized frameworks with close ties to reality and in
some cases are the only viable approach for solving certain
classes of problems (e.g., high-dimensional inference).

The challenge we propose is to develop new hardware
that directly supports a wide variety of probabilistic
algorithms [13]. This paper takes the first steps toward
meeting this challenge by exploiting the physical properties
of molecular-scale optical devices. We build on recent work
that provides a theoretical foundation for creating novel
probabilistic functional units based on Resonance Energy
Transfer (RET) that can approximate virtually arbitrary
probabilistic behavior and generate samples from general
distributions [42].

To meet the above challenge, we introduce the concept
of a RET-based Sampling Unit (RSU), a hybrid
CMOS/RET functional unit that generates samples from
parameterized distributions. An RSU specializes the
calculation of distribution parameters in CMOS and uses
RET to generate samples from a parameterized distribution
in only a few nanoseconds. There are a variety of
distributions that could be implemented by an RSU;
however, in this work we focus on an RSU that implements
a distribution for use in a particular class of Bayesian
Inference problems.

Bayesian Inference is an important, generalized
framework that estimates a hypothesis (i.e., values for
random variables) using a combination of new evidence
(observations) and prior knowledge. Markov Chain Monte
Carlo (MCMC) sampling is a theoretically important and
powerful technique for solving the inference problem that
iteratively and strategically samples the random variables
and ultimately converges to an exact result. However,
MCMC becomes inefficient for many inference problems in
practice, especially those with high dimensionality (many
random variables) and complex structure. MCMC can
require many iterations to converge to a solution and the
inner loop incurs the overhead of sample generation from
prescribed distributions. Although deterministic inference
algorithms can be faster than MCMC, they sacrifice
accuracy (e.g., by approximation) and require more complex
mathematical derivation. Similarly, problem specific non-
Bayesian algorithms forego the benefit of a generalized
framework and require reformulation for each problem.

Markov Random Field (MRF) Bayesian Inference can be
used for a broad class of applications, including image
processing (e.g., image segmentation, motion estimation,
stereo vision, texture modeling), associative memory, etc.
The overall goal is often to determine the most likely value
for each random variable given the observed data (i.e.,
marginal MAP estimates). Given a specified MRF model,
this is achieved in MCMC by iteratively sampling the
random variables according to the conditional dependencies
and then identifying the mode of the generated samples.

To accelerate MRF inference using MCMC, we
introduce RSU-G, a Gibbs Sampling unit based on the ‘first-
to-fire’ exponential unit proposed elsewhere [42]. Our
specific RSU-G unit supports first-order MRFs with a
smoothness-based prior, which includes many image
processing applications (e.g., image segmentation, motion
estimation, stereo vision). A survey of possible applications
is provided elsewhere [36].

We experimentally demonstrate the functional operation
of a rudimentary RSU-G using a macro-scale prototype
comprised of discrete components, including an FPGA,
laser sources, RET devices, and a PC. We use the prototype
to segment a small image into two regions. To our
knowledge this is the first demonstration of a RET-based
molecular-scale optical probabilistic functional unit, and
represents a significant step forward for this technology.
The discrete nature of the prototype renders performance
evaluation meaningless. Therefore, we use a combination of
emulation and analytic evaluation to obtain performance
estimates of architectures that incorporate RSU-Gs. We
obtain area and power estimates for our proposed RSU from
a combination of synthesis of the Verilog circuits using the
Synopsys tools, Cacti, and first principles for the RET
components. The synthesized circuits are verified in
Modelsim.

To emulate the performance of RSU-G augmented
processors, we replace appropriate code sequences with a
sequence of instructions to emulate the latency of RSU-G
instructions. This approach does not provide a functionally
accurate evaluation but is sufficient to obtain performance
estimates. We analytically investigate the performance for a
discrete accelerator where the upper bound is dictated by
memory bandwidth limitations. Our analysis shows that a
GPU augmented with RSU-G units can achieve speedups of
up to 3 and 16 for image segmentation and motion
estimation, respectively. A discrete accelerator with 336
RSU-G units achieves speedups of 21 and 54 assuming a
336GB/s memory BW limitation. The novel optical
components of RSU-G units consume very little power
(0.16 mW) and area (0.0016 mm2). Synthesizing the CMOS
portions of RSU-G in 15nm reveals power of 3.75 mW and
area of 0.0013 mm2 for a total RSU-G power of 3.91 mW
and area of 0.0029 mm2.

Below we summarize our primary contributions:
• Introduce functional units (RSU) that provide samples

from parameterized probability distributions.

• Design and implementation of RSU-G, a functional unit
for Gibbs sampling in MCMC solvers for Bayesian
Inference.

• Experimental demonstration of an RSU-G in a
macroscale prototype, to our knowledge the first such
demonstration.

• Performance evaluation of RSU-G augmented CPU and
GPUs.

The remainder of this paper is organized as follows.
Section 2 provides background, motivation and related
work. Section 3 provides an overview of a generic RSU and
how it can be incorporated into processors or a stand alone
accelerator. We present the RSU-G design in Section 4 and
implementation in Section 5. Section 6 provides more
details on RSU-based architectures. Experimental results are
described in Section 7 and we evaluate integrated designs in
Section 8. Section 9 discusses limitations and future work,
while Section 10 concludes.

2. Background, Motivation, and Related Work
The increasing use of machine learning in data analytics

presents new challenges and opportunities for the design of
computing systems. This section provides a brief overview
of probabilistic algorithms, their associated challenges,
reviews recent proposals to use nanoscale optical devices to
overcome these challenges, and presents related work.

2.1 Probabilistic Algorithms
Recent theoretical advances in statistics and probabilistic

machine learning demonstrate that many application
domains can benefit from probabilistic algorithms in terms
of simplicity and performance [28, 29]. Example problems
include, but are not limited to, statistical inference, rare
event simulation, stochastic neural networks (e.g.,
Boltzmann machines), probabilistic cellular automata and
hyper-encryption.

Most probabilistic computations rely on sampling from
application-specific distributions. For example, Bayesian
Inference solvers often iteratively sample from common
distributions such as gamma distribution and normal
distribution, while rare event simulations may require many
samples from a heavy-tailed distribution to obtain
statistically significant results. The number of samples
generated in these applications can be large; many
thousands of samples per random variable with thousands of
random variables.

The importance of sampling from various distributions
led to the C++11 standard library including implementations
for 20 different distributions. Although this greatly
simplifies program development, it does not address the
inherent mismatch between conventional digital computers
and probabilistic algorithms. In particular, sampling requires
control over a parameterizable source of entropy used for
random selection. Therefore, generating a sample includes
two critical steps: 1) parameterizing a distribution and 2)
sampling from the distribution.

Consider Bayesian Inference, an important inference
framework that combines new evidence and prior beliefs to
update the probability estimate for a hypothesis. Consider D
as the observed data and X as the latent random variable. p(X) is the prior distribution of X , and p(D|X) is the
probability of observing D given a certain value of X . In
Bayesian Inference, the goal is to retrieve the posterior
distribution p(X|D) of the random variable X when D is
observed. As the dimension of X = [X ,… , X] increases, it
often becomes difficult or intractable to numerically derive
the exact posterior distribution p(X|D) . One approach to
solve these inference problems uses probabilistic Markov
Chain Monte Carlo (MCMC) methods that converge to an
exact solution by iteratively generating samples for random
variables. Obtaining each sample incurs at least the
overhead of computing the distribution parameters and
sampling from the distribution.

2.2 Sampling Overhead
Parameterizing a distribution is application dependent

and requires computing specific values for a given
distribution. For example, computing the decay rate for an
exponential, the mean and variance for a normal, etc. For a
class of Bayesian Inference problems that we study this may
include computing a sum of distance values and can take at
least 100 cycles to compute on an Intel E5-2640 processor
(compiled with gcc –O3), and could be much higher. Other
probabilistic algorithms may have different computations
with varying complexity. Nonetheless, the time required to
parameterize a distribution is an important source of
overhead in probabilistic algorithms.

The second component for sampling is to generate the
sample from the parameterized distribution. Devroye [9]
provides a comprehensive overview of techniques for
computationally generating samples from various
distributions. Samples from general continuous or discrete
distributions can be generated using algorithms such as
inverse transform sampling and rejection sampling.
Unfortunately, it can take hundreds of cycles to generate a
sample with these approaches, and more complex
multivariate sampling can take over 10,000 cycles. Table 1
shows how many cycles it takes to generate a sample for a
few distributions using the C++11 library [1]. We obtain
cycle counts on an Intel E5-2640 using the Intel
Performance Counter Monitor and present the average of
10,000 samples (-O3 optimization).

Table 1: Cycles to Sample from Different Distributions.
Distribution Type Cycles (average)
Exponential 588
Normal 633
Gamma 800

The overheads of calculating distribution parameters
and sampling from the distribution are critically important
to many probabilistic algorithms since they incur both
overheads in their inner loop. Furthermore, multiple
applications often use the same distribution and share the

computation to parameterize the distribution. Therefore,
accelerating sampling can have a significant impact on
overall execution time.

2.3 Resonance Energy Transfer Sampling
Recent work provides a theoretical foundation for

constructing physical samplers based on molecular-scale
Resonance Energy Transfer (RET) networks [42]. RET is
the probabilistic transfer of energy between two optically
active molecules, called chromophores, through non-
radiative dipole-dipole coupling [41]. When placed a few
nanometers apart and their emission and excitation spectra
overlap, energy transfer can occur between a donor and
acceptor chromophore pair. A RET network is constructed
by placing multiple chromophores in a physical geometry
where chromophores interact through RET.

RET networks can approximate virtually arbitrary
probabilistic behavior since they can implement sampling
from phase-type distributions [42]. The probabilistic
behavior of a RET network is determined by its physical
geometry. Typically, a given RET network corresponds to a
specific distribution. Sampling from the distribution occurs
by illuminating the RET network and observing output
fluorescence as a function of time (within a few
nanoseconds). RET-based samplers may also reduce power
consumption since the samples are generated in the form of
single fluorescent photons.

Previous work outlined several possible samplers (e.g.,
Bernoulli and exponential) that can be composed to make
more general samplers [42]. In this paper we focus on
samplers for Markov Random Field (MRF) Bayesian
Inference using Markov Chain Monte Carlo (MCMC)
methods that utilize exponential samplers. We create
probabilistic functional units that use CMOS specialization
to accelerate distribution parameterization and RET
networks to accelerate obtaining a sample from the
parameterized distribution.

RET networks are integrated with an on-chip light
source, e.g., quantum-dot LEDs (QD-LEDs), waveguide,
and single photon avalanche detector (SPAD) to create a
RET circuit. Each RET circuit can contain an ensemble of
RET networks. A fully specified RET network can be
conveniently and economically fabricated with sub-
nanometer precision using hierarchical DNA self-assembly
[19, 33]. RET circuits can also be integrated with hybrid
electro-optical CMOS using back end of line processing [21,
22]. Section 3 provides an overview of RET-based
Sampling Units (RSU) and how these units can be used in
processor architectures. The remainder of this section
briefly discusses alternative approaches.

2.4 Alternative Approaches and Related Work
Reducing or avoiding the overhead of sampling can be

achieved by using deterministic algorithms or by
introducing hardware specialization. One approach to avoid
the overhead of sampling is to use alternative discrete

algorithms. For example, an alternative to MCMC is
deterministic approximate inference methods such as
Expectation Propagation (EP) and Variational Bayesian
(VB). Although often more efficient in practice, these
methods require more complex mathematical derivation and
arbitrary assumptions that create divergence from the exact
solution [27, 29, 43]. Domain scientists generally prefer the
less complex mathematically, but more accurate pure
solution if possible.

Another approach to accelerate sampling, and the one we
advocate in this paper, is through specialization that
incorporates novel devices. A Stochastic Transition Circuit
and an FPGA implementation was proposed to efficiently
update random variables given the graphical model of an
inference problem [24, 25]. Abstractly, our units are an
instance of a Stochastic Transition Circuit; however, our
approach differs in that we exploit the physical properties of
RET and can implement complex distributions that would
be difficult in CMOS.

Similar to an RSU, other techniques propose using a
physical process as a natural source of entropy to create
samplers. The common physical processes used for this fall
into four categories: noise, free running oscillator, chaos and
quantum phenomena [35]. With a quantum-mechanical
origin [16], RET provides true randomness and arbitrary
sampling distributions. While previous works on RET
between quantum dots support certain probabilistic
computing applications [5, 30], RSUs are more general and
can be used across a broad set of applications. Although
often used in CMOS to generate random bits, thermal noise
cannot provide provable randomness and requires complex
post-processing to make the output appear more random.
Further, its implementation is either difficult to parameterize
or does not support arbitrary distributions, thus limits reuse
across applications.

The Intel Digital Random Number Generator (DRNG)
uses a thermal noise-based entropy source and includes two
stages of post-processing: an AES-based entropy
conditioner and a Pseudo Random Number Generator
(PRNG) [2]. Based on our synthesis of the 256-bit AES
conditioner at 45nm technology [3], this stage alone is
comparable to the RSU-G1 unit proposed later in terms of
area, power consumption, and throughput. The full DRNG
requires more area and power.

Probabilistic CMOS (PCMOS) can implement discrete
samplers by using thermal noise in electronic circuits to
make probabilistic switches with a set of tunable parameters
[8, 31]. Unfortunately, this requires amplifying the noise to
a specific magnitude, and can be energy and area inefficient.
The exact noise level of each probabilistic switch relies on
the probabilities of all values and requires normalization.
Furthermore, PCMOS switches essentially implement
Bernoulli random variables, and cannot be flexibly
organized to generate samples from general distributions.

Other recent work explores augmenting processors with
specialized Neural Processing Units (NPU) [4, 10] to

achieve speedup and power savings using analog circuits,
but focuses specifically on using neural networks to
approximate deterministic functions.

RSUs can implement a broad class of distributions, can
be easily parameterized dynamically by changing RET
circuit inputs (e.g., QD-LED intensity values), and eliminate
normalization for some cases by using relative ratios of
distribution parameters (e.g., exponential decay rates).
RSUs provide an efficient hardware platform for
probabilistic programming languages [7, 24] by providing
native probabilistic support. Exploring language support for
RSUs is an interesting future direction, but first we must
develop specific units and provide an architecture for
probabilistic computing.

3. Architecture Overview
There are many possible ways to expose an RSU to

software, ranging from adding functional units to an
existing processor to a discrete accelerator. Our goal in this
section is to present a general approach for constructing
functional units with RET-based samplers and high-level
architectures that utilize these units. We present two
potential architectures: 1) augmenting a GPU with sampling
units and 2) a discrete accelerator designed to maximize
memory bandwidth utilization.

A generic RSU is a hybrid of CMOS and RET
technology, and its inputs and outputs are unsigned integers
that correspond to values of interest to the application. A
block diagram of an RSU is shown in Figure 1. An RSU
performs a series of three operations: 1) map application
values to RET inputs, 2) generate samples, 3) map RET
output to application value. Steps 1 and 3 are implemented
using conventional CMOS specialization, whereas step 2 is
a RET circuit that exploits the probabilistic behavior of RET
networks. Step 1 is where distribution parameterization
occurs, and involves converting application values into RET
circuit inputs (e.g., QD-LED intensity values). Step 2
samples from the parameterized distribution using one or
more RET circuits, and step 3 converts the RET circuit
output value back to an application data type for the sample.
Section 4 presents details of a specific RSU to support
Bayesian Inference using MCMC.

Figure 1: Generic RSU Block Diagram.

 Map application values → RET Inputs
 (Parameterize Distribution) CMOS

 Generate samples from parameterized
 distribution RET Circuit

 Map RET samples → application values
CMOS

RSU

Inputs
unsigned int

Outputs
unsigned int

Figure 2 shows a GPU architecture (single streaming
processor) modified to include RSUs and Figure 3 shows a
custom discrete accelerator design using RSUs. Augmenting
a conventional CPU would be similar to the GPU design.
For processor integration, additional instructions are
required to access the RSU, and we discuss these in more
detail in the context of our specific RSU in Section 6. From
a program’s perspective, an RSU is a multi-cycle, pipelined
functional unit that takes several random variable values as
input and produces a single random variable value as output.
The values are represented as unsigned integers.

A discrete accelerator would operate similar to existing
encryption, motion, or other specialized unit. Generally,
these systems first place relevant data at a specified memory
address, the accelerator then iterates over the data using
custom control logic, and the CPU is notified of completion.
Accelerators can often achieve much higher performance
than programmable systems since they can be tailored to
specific problems, they also serve as a method to analyze
performance bounds.

RSUs can be designed for a variety of probabilistic
algorithms, and exploring the large design space requires
many man hours. In this paper we explore a small region of
the overall design space by focusing on an RSU designed
specifically to accelerate certain types of inference
problems.

4. A RET-based Gibbs Sampling Unit
This section presents an RSU designed specifically for

Markov Random Field inference using MCMC. We first
summarize Markov Random Fields and MCMC approaches
to perform inference, and then present our RSU designed to
accelerate this broad class of applications.

4.1 Markov Random Fields
A Markov Random Field (MRF) is a type of graphical

model used in Bayesian Inference. An MRF is a set of
random variables that satisfies the Markov properties
described by an undirected graph [20]. MRFs are suitable
for many interesting and important applications such as low-
level computer vision and associative memory [12, 20, 36].
In this paper, we focus on first-order MRFs with
smoothness-based priors, homogeneity and isotropy (i.e.,
position and orientation independence), with discrete
random variables. Extending our work to other types of
MRFs is future work.

Figure 4 shows an example first-order MRF where each
random variable has four neighbors and is conditionally
independent of all non-adjacent random variables when
conditioned on the four neighbors. More specifically, the
full conditional probability of each random variable X , is
the exponential of the sum of five clique potential energies
(with normalization): p X , X (,), D ∝ exp 1T Ec X , , D Ec X , , X , Ec X , , X ,Ec X , , X , Ec X , , X , .		(1) X , is a random variable that can take on M possible
values, or more commonly called labels in this context. Ec X , , D is the singleton clique potential energy that
relates X , to the observed data D, and Ec X , , X , is the
doubleton clique potential energy that relates X , to a
neighboring random variable. T is a fixed constant.

4.2 MCMC and Gibbs Sampling
For many problems, directly solving the equations above

can be computationally expensive. Therefore, MCMC
methods are often employed. Among the algorithms for
generating MCMC samples, Gibbs sampling and Metropolis

Figure 2: GPU Augmented with RSUs.

Instructions: Instructions:
Core
LD/ST
SFU

Register File

Shared Memory L1 Cache Read-only Data Cahce

L2 Cache

DRAM

SM

Data & neighbor
 values Application Values

 →RET Inputs
New Value

RET
Sampler

New Core

RET Samples
→Application Values

Dispatch Dispatch Dispatch Dispatch

Dispatch Port
Operand Collector

Result Queue

RSUFP Unit INT
Unit

Dispatch Port
Operand Collector

Result Queue

RSU

CMOS

CMOS

RET
Circuit

Figure 4: A First-order MRF.

Figure 3: A Discrete Accelerator using RSUs.

I/O Interface

Application Values
 →RET Inputs

 RET Sampler

RET samples
→Application values

RSU

RSU

RSU

RSU RSU

RSU

Lo
ca

l M
em

or
y

CMOS

CMOS

RET
Circuit

RSU

RSU

RSU

RSU

RSU

RSU

RSU

Controller

sampling are the most commonly used [29], and for our
applications we use Gibbs sampling.

Gibbs sampling generates a new sample of a random
variable (X ,) directly from its full conditional distribution
when conditioned on the current labels of the other random
variables. In a first-order MRF, this is achieved by
calculating the probability for each of the M possible labels
a random variable can take on using Equation (1) and
randomly selecting a label according to the discrete
distribution.

Each MCMC iteration updates all random variables once
to obtain one MCMC sample. The number of operations per
iteration linearly depends on the number of possible labels
for each random variable and the number of random
variables. However, different labels can be evaluated
simultaneously and random variables that are conditionally
independent can be updated concurrently, exposing
significant parallelism for some problems. Specifically, the
first-order MRF in Figure 4 allows all the gray random
variables to be updated simultaneously. Similarly, all the
white random variables can be updated simultaneously.

4.3 RSU-G Design
A discrete sampler with M outcomes can be constructed

using M exponential samplers parameterized by the
probabilities of taking each outcome [42]. Generating one
new sample for X , requires M different samples, each from
uniquely parameterized exponential distributions. We
exploit this observation to construct a RET-based Gibbs
Sampling Unit (RSU-G1) using a single RET circuit (G1).

In this paper we consider only MRFs with smoothness-
based priors where the energy (i.e., logarithm of probability)
of taking on a label is the sum of four doubleton clique
pontential energies and one singleton clique potential energy
[36]. Each doubleton clique potential energy is a measure of
distance between the label being evaluated and the current
label of a neighbor. Typically, the distance measure is
defined for the label space and is problem specific, here we
consider grayscale valued images and use a simple squared
difference norm as the metric (Equation 2). The singleton
clique potential energy is application specific; RSU-G
implements it as the squared difference between two data
values to directly support applications such as image
segmentation, motion estimation and stereo vision and is
extendable to other applications by precomputing their
singleton energy externally and sending into one data input. Ec Xi,j = x, Xi 1,j = x′ = EcD X , = [x1, … , xn], X , = [x1 , … , xn] 	= d (x, x′) = w (xk xk) 	(2)

RSU-G utilizes the ‘first-to-fire’ design based on the
property of competing exponential random variables [42]. In
this design, a RET circuit is used as an exponential sampler
that generates exponentially distributed samples. The M
exponential samplers are parameterized by the energies of

taking on each label. The key aspect in this design is
parameterizing the exponential samplers, based on the
neighboring random variables’ current labels and the
singleton energy, and recording the time to fluorescence
(TTF) from each exponential sample. The label that
produces the shortest TTF is chosen as the label for X , .
4.4 Limited Precision

Previous work found that 8-bit precision for energy
calculations is sufficient for many applications [25]. Given
the specific distance measure we use here, only 3 bits are
needed for scalar values and 6 bits for vector values in the
doubleton calculation, as described later. Although extra bits
can increase the number of possible labels, the energies of
different labels start to overlap resulting in equal selection
probability. These close or redundant labels do not
necessarily improve the solution quality; however the time
required to update one random variable increases since there
are more labels to be sampled. In these cases, we
recommend collapsing the equally likely labels into a single
label before execution.

5. RSU-G1 Implementation
An RSU-G implementation can take many forms. On one

end of the spectrum it could be constructed to iterate over
the M possible labels using a single RET circuit (RSU-G1).
On the other extreme end of the spectrum it could use M
distinct RET circuits to simultaneously evaluate all M
possible labels in a single step (RSU-GM). In the middle are
designs with K RET circuits that take M/K steps to obtain
the result (RSU-Gk).

5.1 Overview
Our preliminary RSU-G1 implementation, shown in

Figure 5, evaluates one possible label for a random variable
(K = 1) per step, and iterates to evaluate all M labels. Given
the limited label precision, we use 6-bit unsigned integers to
represent random variable labels (M <= 64). RSU-G1 is a
multicycle pipelined functional unit that takes 7+(M-1)
cycles to obtain a random variable sample in steady state.

Figure 5: An RSU-G1 Implementation Diagram.

LABEL_NBR_1 [5:0]
LABEL_NBR_2 [5:0]
LABEL_NBR_3 [5:0]
LABEL_NBR_4 [5:0]

C
O

M
PA

R
E

AN
D

 U
PD

AT
E

LABEL [5:0]

DATA1 [5:0]

LABEL_TO_EVAL
[5:0]

D
O

W
N

C
O

U
N

TE
R

8 4 4 8

EN EN

4

R
ET

 C
irc

ui
t

DATA2 [5:0]

The design can be easily extended to evaluate up to 64
labels (RSU-G64) in 12 cycles at the expense of additional
area. Exploring a configurabe RSU design is part of our
future work.

 There are five main components in any RSU-G
implementation: 1) label decrement/input, 2) energy
computation, 3) energy to intensity mapping, 4) RET
circuits (for sampling), and 5) selection. Label decrement is
used to iterate over all M possible labels. The energy
computation performs the distance calculation to obtain the
exponential decay rate which maps through a lookup table
to a QD-LED intensity. The RET circuit samples the
exponential distribution and the resulting TTF for the
sample is used in the selection block to choose the lowest
from all M possible labels.

For many applications M is fixed and an initial down
counter value can be set at the start of the program. To
obtain a sample for a random variable X , , RSU-G requires
five 6-bit inputs, one for each neighbor and its data value.
Some applications need an additional data value that
changes for each possible label. The output is a single 6-bit
value that represents the new label for the random variable.

5.2 Pipeline Stages
Here we describe each of the stages in our initial RSU-G1

pipeline implementation. This does not necessarily represent
the most optimized design.

Label. The first stage sets the inputs necessary for
evaluating a given possible value for the random variable.
This includes the given value to evaluate, the current values
of the four neighboring random variables, and the input data
values. The down counter is initialized with the maximum
possible value for the random variable (M-1), and the other
inputs are stored in registers. We assume this initialization
is overlapped with evaluations of previous random
variables. On subsequent evaluation cycles the down
counter is decremented to iterate over the values, and the
other values (except for the second data value) remain
unchanged until the next random variable evaluation.

Energy Calculation. The second stage computes the
clique potential energies, a first step in distribution
parameterization. Each cycle a new energy is computed
since the down counter changes. The 6-bit value can
represent either a 2D vector or a scalar. For the 2D vector [x1, x2], the 6-bit value is split into 3 bits for x1 and 3 bits
for x2. The distance measure is calculated separately for the
two entries between two neighboring random variables and
then summed to obtain the doubleton energy. When the
value of the random variable is a scalar, only the first entry
(3 bits) is used and the second entry is set to zero. We found
this limited precision to be sufficient for many applications.
Similarly, the singleton energy is a distance measure
between two data inputs, a calculation that is application
dependent, e.g., in motion estimation it can be a weighted
squared difference between two grayscale values. We
assume that any scalar weights in the singleton calculation

are pre-factored from the input data. The 8-bit energy for a
possible label is calculated by summing the five clique
potential energies and passed onto the next stage.

Intensity Mapping. The third stage implements the
second component of distribution paramaterization by
mapping the 8-bit energy value to a corresponding QD-LED
intensity. We use a lookup table to find the corresponding 4-
bit signal that provides the input to a RET circuit to control
the binary on/off state of its four QD-LEDs. The QD-LEDs
are sized to provide a suitably large dynamic range of
intensities to match the precision in relative probabilities we
demonstrate with the RSU-G2 hardware prototype described
later.

RET Sampling. This stage activates a RET circuit to
obtain a sample from the RET network. We simultaneously
enable the QD-LEDs and the SPAD of the given RET
circuit. The time to the first photon detection (TTF) is
recorded using an 8-bit shift register that is clocked 8x faster
than the system clock. It may take multiple system clock
cycles before a RET circuit generates an output and can be
reused for another evaluation. We elaborate on this later and
use replicated RET circuits to sustain single cycle operation
of the RSU-G pipeline.

Selection. In the final stage, the selection block records
the shortest TTF for each possible label. Each cycle the
previously shortest TTF is compared against the new TTF
and the shorter is recorded as the current best TTF (with its
label). After evaluating all labels (i.e., the down counter
reaches zero), the best label is returned as the new sample of
the random variable X , .
5.3 Replicated RET Circuits

The TTF of a RET circuit is probabilistic, and for RSU-
G follows an exponential distribution. Samples from the tail
of this distribution can become arbitrarily long and the delay
depends on the fluorescent lifetime of the chromophores in
the RET networks. The RSU-G1 design presented here
requires four 1ns cycles for the RET circuits to reach a
quiescent state, ensuring it is safe to proceed with a new
sampling operation.

 However, the four cycle delay creates a structural
hazard in the pipeline. We use four replicated RET circuits
in RSU-G1 to overcome the hazard. This allows us to share
the parameterization, timing and selection logic among all
four replicates. We use a simple two-bit counter for round-
robin scheduling of sampling operations across the four
RET circuits and sustain a throughput of one label sample
per cycle (requiring M cycles for a single random variable).

The above design represents the smallest RSU-G1 design
that produces one possible label evaluation per cycle.
Utilizing more RET circuits can further reduce latency by
evaluating multiple possible labels per cycle. The extreme is
RSU-G64 that evaluates up to the maximum of 64 possible
labels simultaneously by using 256 RET circuits. This
design can sustain a throughput of one random variable

sample per cycle. Exploring the space of RSU design is
ongoing work.

6. RSU Architectures
There are many possible ways to expose sampling units

to software, ranging from adding functional units to an
existing processor to a discrete accelerator. In this section
we present two potential designs: 1) augmenting a GPU
with RSU-G units and 2) a discrete accelerator designed to
maximize memory bandwidth utilization.

The operation of the RSU-G unit can be viewed in terms
of operations performed once: 1) per application, 2) per
MCMC iteration, 3) per random variable evaluated (a pixel
in our applications), and 4) per potential random variable
label. Each RSU-G unit requires initializing the intensity
map table and down counter (max label value) at the start of
each application. For each random variable (pixel in our
applications), RSU-G requires the four neighbor labels (for
doubleton calculations) and its associated data (e.g.,
grayscale value for singleton calculations). Finally, for each
potential label, the singleton calculation may also need
information from a target location (pixel grayscale).

6.1 Augmenting Processors with RSU-G Units
To augment a processor or GPU with RSU-G units

requires instructions to perform each of the four steps
described above. To achieve this, we introduce a single
instruction RSU op, regsrc, regdest that includes an
operation, a source register and a destination register. The
op field specifies a target RSU-G control register and if the
instruction should read a result from the RSU-G unit. The
instruction stalls if a result is not yet ready, and resets the
unit to begin the next evaluation when it returns the result.
Depending on the specific ISA, this instruction can be
encoded in a variety of ways. Our current RSU-G design
requires 3 bits to specify one of 6 control registers (map
table hi, map table low, down counter, neighbor 0-3,
singleton A, singleton D) and an additional bit for reading
the result. We assume an RSU instruction takes one cycle to
execute and that a thread can issue only one per cycle (i.e.,
32 for a 32-wide warp/wavefront).

Initialization. The intensity map table is 128 total bytes
(256 entries x 4 bits) and can be initialized using the RSU
instruction twice by packing values into a 64-bit register.
The down counter is initialized with a single 6-bit value
using the RSU instruction. The total initialization time is
only 3 cycles.

Execution. The remaining values transferred to the RSU-
G unit are 6-bit quantities and we assume are packed into 32
or 64-bit registers. This allows for a peak sustained
initiation rate of one random variable sample per cycle, but
is application dependent.

We assume the per pixel instructions can be overlapped
with the final iterations of the down counter, when
necessary, and staged to begin executing the next pixel as

soon as possible for example by using software pipelining.
When the RSU instruction that reads a result completes (i.e.,
returns a new label), a new pixel execution can begin. This
requires a small amount of control circuitry to reset the
down counter and write values into neighbor and singleton
control registers.

Context Switches. An RSU-G may maintain state over
many cycles (i.e., iterating over many labels). On a general-
purpose core, the operating system could save and restore
the intermediate state of each RSU-G unit when an
exception/interrupt occurs. This allows switching between
multiple applications that are all using the RSU-G units.
This requires saving the map tables, counter, neighbor
labels, singleton data, and any potential solutions stored in
the selection unit. To reduce this state we can identify each
instance of random variable evaluation (step 3 above) as the
boundary for an idempotent sequence and restart execution
at step three [14, 18]. This reduces the state to only per
application (map tables and initial counter value) and would
add only a few cycles per RSU-G unit. GPUs currently do
not support context switches, so it is not an issue.

6.2 Discrete Accelerator
An alternative to augmenting an existing processor or

GPU with RSU-G units is to design a custom discrete
accelerator. This removes the constraints placed on general-
purpose cores to support a wide variety of applications and
instead allows us to focus on achieving the maximum
performance. This design assumes that all control and data
movement is implemented using custom logic where
datapaths and register sizes can be specialized to match
RSU-G’s. We expect this to be the highest performing
approach and analytically investigate this upper limit on
performance.

7. A Macro-Scale RSU-G2 Prototype
To experimentally demonstrate the operation of a RET-

based sampling unit we developed a macro-scale prototype
of an un-pipelined RSU-G2. Figure 6 shows a block diagram
and a picture of our setup. We use this prototype to
demonstrate the ability to parameterize a distribution for
sampling and for use in a proof-of-concept image
application. These experiments are an important step
forward in the development of RET-based sampling units.

The prototype RSU follows the basic design of a generic
RSU, with parameterization and a RET circuit for sampling
the distribution. Macro-scale lasers are used to illuminate
two RET networks and two SPADs to detect the output
fluorescence from each network, or channel, to implement a
RSU-G2 (two-wide). The FPGA implements the time-to-
fluorescence circuitry with sufficient timing precision to
resolve 250ps differences in photon arrival times.
Parameterization is performed in software on the PC by
varying the laser source intensity to achieve different
relative probabilities of photon detection between channels.

Our first experiment demonstrates the ability to
parameterize the distribution. We vary the ratio of relative
probabilities for the two RET circuits from 1 to 255 and
observe that the prototype can achieve desired pairwise
relative probabilities within 10% when the ratio is below 30,
and 24% for higher ratios. A finer characterization and
control of the prototype components could further improve
the accuracy.

We also use the prototype on a simple image
segmentation problem with only two possible labels (e.g.,
foreground and background). In this demonstration a PC
executes the outer loop of an MCMC solver for the image
segmentation MRF. Energy (singleton and doubleton)
calculation and intensity mapping is also performed in
software and the RSU-G2 is used to sample from the output
label distribution.

 Figure 7 shows an input image (50x67) and
representative output after 10 iterations of the MCMC. The
prototype RSU-G2 sampling takes no longer than ~2μs per
pixel (since these are discrete components the hardware

incurs significant electrical delays) but is dwarfed by the
delays incurred to interface the proprietary laser controller
(60 sec/image-iteration). These delays can be reduced
significantly by electro-optical integration with CMOS.

We conclude from the prototype demonstration that the
fundamental operational principle of the RSU-G is sound
and that it can be used as the underpinning for MRF based
Bayesian Inference problems. Next, we evaluate the
potential performance of the RSU-G.

8. Evaluation
This section provides preliminary analysis of RSU based

systems in terms of performance, power and area.

8.1 Methodology
We use several image-processing applications (image

segmentation, stereo vision matching, and dense motion
estimation) for evaluation. Our image segmentation
application assigns one of five possible values (labels) to
each pixel by grouping similar pixels based on intensity [11,
37]. The stereo vision application similarly assigns one of 5
labels to align two images [39]. The dense motion
estimation application searches over a 7x7 block to find the
most likely position of a pixel in a subsequent frame (49
possible values) [17]. Although application specific
implementations for these problems exist, our goal is to
demonstrate the potential of RSU-G for the general MRF-
MCMC Bayesian Inference framework. We use a single
core of an Intel E5-2640 for image segmentation and stereo
vision, but focus primarily on using an NVIDIA GTX Titan
X GPU, for image segmentation and motion estimation. We
functionally verify against MATLAB versions of the
algorithms.

For performance evaluation, we first create best-effort
implementations for the two applications via standard
MCMC in C/C++ and CUDA as baselines. Then we replace
select code sequences in the baseline implementations
whose functionality is encapsulated in RSU-G units with
appropriate instructions to match the theoretical timing of
RSU instructions. We examine the assembly to ensure that
all loads and stores are still present in the modified
programs. We run image segmentation for 5,000 MCMC
iterations and motion estimation for 400 iterations and
measure the time to complete all iterations.

The standard MCMC process could be optimized by pre-
calculating singleton values for each pixel and storing them
in memory. Singletons are constant over all iterations, and
thus can be pre-calculated and loaded from memory when
needed rather than computed again. However, this
optimization doesn’t scale well; the memory required grows
linearly with the number of pixels and the number of labels.
Moreover, GPUs have limited global memory and this
optimization will not work well for large images and large
label sets. Nonetheless, we implement this optimization as
an additional comparison for two of our applications.

(a) Functional Block Diagram

(b) Photo of Prototype

Figure 6: Macroscale RSU-G Prototype.

PC

FPGALaser
control

Laser RET SPAD

Laser RET SPAD

 (a) (b)

Figure 7: Image Segmentation on the Prototype: (a) Input
Image and (b) the Sample at the 10th Iteration.

We use the OpenMP omp_get_wtime routine on the CPU
and the CUDA nvprof profiling tool to time all the iterations
for the baseline implementations and the RSU-G emulated
versions. This approach ignores the area overhead required
to support the RSU-G units; however, it provides an
estimate of how future chip area could be used to improve
performance. Developing a more detailed, cycle accurate
evaluation framework is ongoing work.

Finally, we analytically bound the speedup of RSU-G
units using memory bandwidth as the limiter, which can be
regarded as organizing RSU-G units in a specialized
discrete accelerator. Based on memory bandwidth limits and
the number of bytes needed for each pixel each iteration, we
calculate an upper bound on performance for our current
RSU-G design.

8.2 Performance
Figure 8 illustrates the speedups for our two applications

with different image sizes on a GPU augmented with RSUs.
For image segmentation, RSU-G1 systems provides speedup
of 3.2 over the baseline GPU for images of size 320x320,
and 3.0 for HD images of size 1080x1920. Speedups over
the optimized GPU implementation are 2.5 and 2.4 for small
and HD images, respectively. For dense motion estimation,
RSU-G1 systems provides speedup of 6.4 and 12.8 for
320x320 images and achieve 7.5 and 16.06 for HD images.
Dense motion estimation benefits from a wider RSU-G4
design since it has more labels to evaluate (M=49) and
achieves speedups of 23 for small images and 34 for HD
images over the baseline GPU implementation.

Table 2: Application Execution Time (seconds).
Size GPU Opt GPU RSU-G1 RSU-G4

Image Segmentation
Small 0.3 0.23 0.09 0.09
HD 3.2 2.6 1.1 1.1

Dense Motion Estimation
Small 0.55 0.27 0.04 0.02
HD 7.17 3.35 0.45 0.21

Our applications spend approximately equal time
between energy calculations (parameterization) and
sampling; therefore, the performance improvement is
equally divided between the CMOS specialization of
parameterization and RET-based sampling. Secondary
effects from using RSU-G also influence speedup. Fewer
instructions take less time to execute, but also reduces
register pressure and increases processor occupancy. These
two factors both contribute to our observed speedups.

We also ran sequential versions of image segmentation
and stereo vision on an Intel E5-2640. The achieved
speedup of an RSU-G1 augmented processor was over 100;
however, the GPU is a better comparison given the
embarrassingly parallel nature of the applications.

Discrete Accelerator. GPUs have many architecture
features that keep RSU-G units from providing their
maximum performance, such as memory architecture, warp

granularity, and scheduling policy. A discrete accelerator
could achieve even better performance by trading off
flexibility. We use DRAM bandwidth to bound the best-
case performance that a discrete accelerator can achieve by
considering how much data is required for each application.

For image segmentation, each pixel needs 5 bytes (1
initial intensity, 4 neighboring pixels’ labels) per MCMC
iteration. Motion estimation needs 54 bytes (49 destination
intensities and 1 initial intensity for singleton calculation, 4
neighboring pixels’ labels) per pixel per MCMC iteration.
Using image sizes and DRAM bandwidth limits, we can
compute execution time.

Assuming DRAM bandwidth is 336GB/s, the GTX Titan
X bandwidth, and the accelerator consumes data at DRAM
bandwidth. For image segmentation, the accelerator
achieves an additional 12.1x and 7x speedup over the RSU-
G1 augmented GPU for 320x320 and 1080x1920 (HD)
images, respectively. Dense motion estimation achieves
additional speedup of 6.5x and 3.4x for 320x320 and
1080x1920 images, respectively. The lower speedup for HD
images is because HD images saturate the GPU while
320x320 images don’t. Thus, for a discrete accelerator, the
upper bound of speedups over standard MCMC on the GPU
is 39 (image segmentation) and 84 (dense motion
estimation) for 320x320 images and 21 and 54 for HD
images. The discrete accelerator achieves speedup of only
1.55x over the RSU-G4 augmented GPU for motion
estimation of HD images, since RSU-G4 nearly saturates
memory BW. The number of RSU-G units required to
achieve these speedups is #units =
BW/frequency/bytes_per_cycle. Assuming the Titan X
1GHz frequency and that each unit consumes only 1 byte of
data per cycle. Achieving these speedups requires
approximately 336 RSU-G1 units in the accelerator. Further
speedups are possible by using on-chip storage to increase
memory bandwidth and staging image frames. The number

Figure 8: RSU Speedup over GPU.

0
0.5

1
1.5

2
2.5

3
3.5

RSU_G1

0

10

20

30

40

320X320 320X320

320X320

320X320

RSU_G4

RSU_G1 RSU_G4

1080X1920 1080X1920

1080X1920

1080X1920

Speedup over GPU Speedup over Opt GPU

of RSU-G units needed scales linearly with available
memory bandwidth.

8.3 Power & Area
We obtain power and area estimates of RSU-G1 from

the synthesized Verilog in 45nm, Cacti, and a predictive
15nm process [26] for the CMOS portions and first
principles for the RET circuit [6, 15, 23, 32, 34]. We do not
scale the RET circuit.

Power. The power for a single RSU-G1 in 15nm is
3.91mW and is dominated by the electrical power 3.75mW,
the RET circuits consume only 0.16mW. A GPU augmented
with RSU-G units (3072 in total) consumes 12W of
additional power when they are all active. The accelerator
with 336 units bounded by 336GB/s DRAM consumes only
1.3W for the RSU-G units. Additional power would be
consumed for the memory controller and the control logic.
Table 3 lists the power consumption breakdown by RSU-G1
component.

Table 3: Power Consumption for a Single RSU-G1.
Power(mW) 45nm (590MHz) 15nm (1GHz)
Logic 7.20 2.33
RET Circuit 0.16 0.16
LUT 3.92 1.42*
Total 11.28 3.91

*theoretically scaling LUT from 32nm to 15nm [40].
Area. We estimate area of a RSU-G unit by first

observing that the SPAD (~1μm2 [6, 23, 32]) and QD-LEDs
(~16*25μm2 [15, 34]) dominate the RET circuit area
requirements. The volume of RET network ensemble
(~N*20*20*2nm3) is very small and can reside in a layer
above the SPAD. Therefore, we estimate a single RET
circuit requires 400μm2 and all the RET circuits in an RSU-
G1 unit require 0.0016mm2. Table 4 lists the area breakdown
by RSU-G1 component.

Table 4: Area for a Single RSU-G1.
Area(μm2) 45nm 15nm
Logic 2275 642
RET Circuit 1600 1600
LUT 1798 656*
Total 5673 2898

*theoretically scaling LUT from 32nm to 15nm [38, 40].

9. Limitations and Future Work
The current RSU-G implementation is for very specific

MRF problems. Extending the design to support other MRF
problems is a short-term goal. We are actively investigating
the width and depth of RSU pipelines, including
configurable width for single cycle random variable
sampling. Our performance evaluation is only approximate
since we use emulation and we are actively developing a
more accurate performance evaluation platform.

Although different aspects of integration with CMOS
have been demonstrated, a complete integration has not
been demonstrated. Another issue is chromophore (RET
Network) longevity; the presence of oxygen limits the

number of excitation cycles through the equivalent of a
wear-out process. We can address this issue in two ways: 1)
using a larger number of RET networks per RET circuit and
2) encapsulating the chromophores to protect against
oxygen.

Exploring a generalized RSU that allows
programmability across parameterization and distribution is
an interesting, but challenging area of future work. The
long-term goal is to explore using the RSU for general
problems in statistical inference and stochastic neural
networks as well as domain specific applications such as
rare event simulation.

10. Conclusion
Markov Random Field Bayesian Inference is a common

problem in probabilistic machine learning. MCMC is a
probabilistic algorithm for solving these problems that relies
on sampling from parameterized distributions. We present
RSU-G, a molecular-scale optical Gibbs sampling unit
based on Resonance Energy Transfer between
chromophores to accelerate MRF Inference. By
implementing specified clique potentials, an RSU-G unit
can be designed for any first-order MRF problem. We
present a specific RSU-G for first-order MRFs with
smoothness-based priors, which encompasses a large
number of applications in low-level computer vision.

We experimentally demonstrate the basic operation of
RSU-G to provide samples from parameterized exponential
distributions. We explore the architectural integration of
RSU-G units in two designs: 1) augmenting processors
(CPU/GPU) with RSU-G units and 2) a custom discrete
accelerator. Evaluation of these architectures shows
significant potential speedup for low-level vision
applications with low power consumption and reasonable
area.

There are many possible ways to implement samplers
using RET in different applications, and we explore a small
portion of the overall space. Nonetheless, the work
presented here represents a significant step forward for
exploiting emerging technologies to provide architectural
support for probabilistic algorithms.

Acknowledgments
This project is supported in part by the Defense

Advanced Research Projects Agency (DARPA) (grant
W911NF-13-1-0096) and the National Security Science and
Engineering Faculty Fellowship (NSSEFF) ONR (grant
N00014-15-1-0032).

References
[1] C++ Pseudo-Random Number Generation Library. Available:

http://en.cppreference.com/w/cpp/numeric/random
[2] Intel® Digital Random Number Generator (DRNG) Software

Implementation Guide. Available:
https://software.intel.com/sites/default/files/managed/4d/91/DRNG_S
oftware_Implementation_Guide_2.0.pdf

[3] Verilog Implementation of AES as Specified in NIST FIPS 197.
Available: https://github.com/secworks/aes

[4] R. S. Amant, A. Yazdanbakhsh, J. Park, B. Thwaites, H.
Esmaeilzadeh, A. Hassibi, L. Ceze, and D. Burger, "General-Purpose
Code Acceleration with Limited-Precision Analog Computation,"
Proceedings of the 41st Annual International Symposium on
Computer Architecture (ISCA), 2014 2014.

[5] M. Aono, M. Naruse, S.-J. Kim, M. Wakabayashi, H. Hori, M. Ohtsu,
and M. Hara, "Amoeba-Inspired Nanoarchitectonic Computing:
Solving Intractable Computational Problems Using Nanoscale
Photoexcitation Transfer Dynamics," Langmuir, vol. 29, pp. 7557-
7564, 2014/07/28 2013.

[6] S. Assefa, F. Xia, and Y. A. Vlasov, "Reinventing Germanium
Avalanche Photodetector for Nanophotonic on-Chip Optical
Interconnects," Nature, vol. 464, pp. 80-84, 03/04/print 2010.

[7] J. Bornholt, T. Mytkowicz, and K. S. McKinley, "Uncertain<T>: A
First-Order Type for Uncertain Data," in Asplos '14: Proceedings of
the 19th international conference on Architectural support for
programming languages and operating systems, 2014, pp. 51-66.

[8] L. N. Chakrapani, B. E. S. Akgul, S. Cheemalavagu, P. Korkmaz, K.
V. Palem, and B. Seshasayee, "Ultra-Efficient (Embedded) Soc
Architectures Based on Probabilistic CMOS (PCMOS) Technology,"
in Design, Automation and Test in Europe, 2006. DATE '06.
Proceedings, 2006, pp. 1-6.

[9] L. Devroye, Non-Uniform Random Variate Generation: Springer-
Verlag, 1986.

[10] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, "Neural
Acceleration for General-Purpose Approximate Programs," in
Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012, pp. 449-460.

[11] S. Geman and D. Geman, "Stochastic Relaxation, Gibbs
Distributions, and the Bayesian Restoration of Images," Pattern
Analysis and Machine Intelligence, IEEE Transactions on, pp. 721-
741, 1984.

[12] S. Geman and C. Graffigne, "Markov Random Field Image Models
and Their Applications to Computer Vision," in Proceedings of the
International Congress of Mathematicians, 1986, p. 2.

[13] G. D. Hager, M. D. Hill, and K. Yelick, Opportunities and
Challenges for Next Generation Computing (White Paper).
Computing Community Consortium, 2015.

[14] M. Hampton and K. Asanović, "Implementing Virtual Memory in a
Vector Processor with Software Restart Markers," in Proceedings of
the 20th annual international conference on Supercomputing, Cairns,
Queensland, Australia, 2006, pp. 135-144.

[15] M. T. Hill and M. C. Gather, "Advances in Small Lasers," Nat
Photon, vol. 8, pp. 908-918, 12//print 2014.

[16] G. Juzeliūnas and D. L. Andrews, "Quantum Electrodynamics of
Resonance Energy Transfer," in Advances in Chemical Physics, ed:
John Wiley & Sons, Inc., 2007, pp. 357-410.

[17] J. Konrad and E. Dubois, "Bayesian Estimation of Motion Vector
Fields," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, pp. 910-927, 1992.

[18] M. d. Kruijf and K. Sankaralingam, "Idempotent Processor
Architecture," in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, Porto Alegre, Brazil,
2011, pp. 140-151.

[19] C. LaBoda, H. Duschl, and C. L. Dwyer, "DNA-Enabled Integrated
Molecular Systems for Computation and Sensing," Accounts of
chemical research, vol. 47, pp. 1816-1824, 2014.

[20] S. Z. Li and S. Singh, Markov Random Field Modeling in Image
Analysis vol. 26: Springer, 2009.

[21] L. Luan, R. D. Evans, N. M. Jokerst, and R. B. Fair, "Integrated
Optical Sensor in a Digital Microfluidic Platform," Sensors Journal,
IEEE, vol. 8, pp. 628-635, 2008.

[22] L. Luan, M. W. Royal, R. Evans, R. B. Fair, and N. M. Jokerst, "Chip
Scale Optical Microresonator Sensors Integrated with Embedded
Thin Film Photodetectors on Electrowetting Digital Microfluidics
Platforms," Sensors Journal, IEEE, vol. 12, pp. 1794-1800, 2012.

[23] S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, "A Wide
Spectral Range Single-Photon Avalanche Diode Fabricated in an

Advanced 180 nm CMOS Technology," Optics express, vol. 20, pp.
5849-5857, 2012.

[24] V. K. Mansinghka, "Natively Probabilistic Computation," PhD, Brain
and Cognitive Sciences, MIT, 2009.

[25] V. K. Mansinghka and E. Jonas, "Building Fast Bayesian Computing
Machines out of Intentionally Stochastic, Digital Parts," Computing
Research Repository (ArXiv), vol. abs/1402.4914, 2014.

[26] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech,
and J. Michelsen, "Open Cell Library in 15nm Freepdk Technology,"
in Proceedings of the 2015 Symposium on International Symposium
on Physical Design, Monterey, California, USA, 2015, pp. 171-178.

[27] T. P. Minka, "Expectation Propagation for Approximate Bayesian
Inference," in Proceedings of the Seventeenth conference on
Uncertainty in artificial intelligence, 2001, pp. 362-369.

[28] M. Mitzenmacher and E. Upfal, Probability and Computing:
Randomized Algorithms and Probabilistic Analysis: Cambridge
University Press, 2005.

[29] K. P. Murphy, Machine Learning: A Probabilistic Perspective: MIT
press, 2012.

[30] M. Naruse, M. Aono, and S.-J. Kim, "Nanoscale Photonic Network
for Solution Searching and Decision Making Problems," IEICE
Transactions on Communications, vol. E96.B, pp. 2724-2732, 2013.

[31] K. V. Palem, "Energy Aware Computing through Probabilistic
Switching: A Study of Limits," Computers, IEEE Transactions on,
vol. 54, pp. 1123-1137, 2005.

[32] D. Palubiak, M. M. El-Desouki, O. Marinov, M. Deen, and Q. Fang,
"High-Speed, Single-Photon Avalanche-Photodiode Imager for
Biomedical Applications," Sensors Journal, IEEE, vol. 11, pp. 2401-
2412, 2011.

[33] C. Pistol and C. Dwyer, "Scalable, Low-Cost, Hierarchical Assembly
of Programmable DNA Nanostructures," Nanotechnology, vol. 18,
pp. 125305-9, 2007.

[34] G. Shambat, B. Ellis, J. Petykiewicz, M. A. Mayer, A. Majumdar, T.
Sarmiento, J. S. Harris, E. E. Haller, and J. Vuckovic, "Electrically
Driven Photonic Crystal Nanocavity Devices," IEEE Journal of
Selected Topics in Quantum Electronics, vol. 18, pp. 1700-1710,
2012.

[35] M. Stipčević and Ç. K. Koç, "True Random Number Generators," in
Open Problems in Mathematics and Computational Science, ed:
Springer, 2014, pp. 275-315.

[36] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A.
Agarwala, M. Tappen, and C. Rother, "A Comparative Study of
Energy Minimization Methods for Markov Random Fields with
Smoothness-Based Priors," Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. 30, pp. 1068-1080, 2008.

[37] T. Szirányi, J. Zerubia, L. Czúni, D. Geldreich, and Z. Kato, "Image
Segmentation Using Markov Random Field Model in Fully Parallel
Cellular Network Architectures," Real-Time Imaging, vol. 6, pp. 195-
211, 2000.

[38] S. Taejoong, R. Woojin, J. Jonghoon, Y. Giyong, P. Jaeho, P.
Sunghyun, B. Kang-Hyun, B. Sanghoon, O. Sang-Kyu, J. Jinsuk, K.
Sungbong, K. Gyuhong, K. Jintae, L. YoungKeun, K. Kee Sup, S.
Sang-Pil, Y. Jong Shik, and C. Kyu-Myung, "13.2 a 14nm FinFET
128Mb 6T SRAM with VMIN-Enhancement Techniques for Low-
Power Applications," in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2014 IEEE International, 2014, pp. 232-
233.

[39] M. F. Tappen and W. T. Freeman, "Comparison of Graph Cuts with
Belief Propagation for Stereo, Using Identical MRF Parameters," in
Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on, 2003, pp. 900-906.

[40] S. Thoziyoor, N. Muralimanohar, J. Ahn, and N. Jouppi, "Cacti 5.3,"
HP Laboratories, Palo Alto, CA, 2008.

[41] B. Valeur and M. N. Berberan-Santos, Molecular Fluorescence:
Principles and Applications: John Wiley & Sons, 2012.

[42] S. Wang, A. R. Lebeck, and C. Dwyer, "Nanoscale Resonance
Energy Transfer-Based Devices for Probabilistic Computing," Micro,
IEEE, vol. 35, pp. 72-84, 2015.

[43] J. M. Winn and C. M. Bishop, "Variational Message Passing," in
Journal of Machine Learning Research, 2005, pp. 661-694.

