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Bayesian Networks and Informative Priors:
Transcriptional Regulatory Network Models
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Abstract

We discuss the use of Bayesian networks as robust probabilistic models of the
multivariate statistical dependencies among interacting variables in transcrip-
tional regulatory networks. We explain how principled scores can be computed
to compare network models with one another in terms of their ability to explain
observed data simply. With principled scores, we can automatically learn static
or dynamic network models that provide simple explanations for a variety of
high-throughput data. We make a case for, and demonstrate the utility of, infor-
mative priors over network structures and parameters: informative priors can be
used to incorporate different kinds of data into the learning process, and also to
guide the learning process toward network models that exhibit greater biolog-
ical plausibility. Results from both simulated and experimental data illustrate
the benefits of this modeling framework.

21.1 Introduction

Proteins are the primary molecular workhorses of the cell, playing signifi-
cant roles in metabolism, biosynthesis and degradation, transport, homeostasis,
structure and scaffolding, motility, sensing, signaling and signal transduction,
replication, and repair. However, one of the most intriguing roles for proteins
is that of transcriptional regulation: control of precisely which genes are being
transcribed into RNA at any given time. Since ribosomes subsequently trans-
late most of this RNA into protein, proteins are in large part responsible for
regulating their own existence. Although much has been learned about the large
network of molecular interactions that regulate transcription, it would probably
be fair to say that far more still remains to be learned.

Discovering and understanding the operation of large transcriptional regula-
tory networks is clearly an important problem in both molecular and synthetic
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biology. Progress has been accelerated by the advent of high-density DNA
microarrays, which can be used to profile levels of RNA expression across
the entire genome. When this expression data started becoming available after
1996, the first generation of methods for analyzing it were data-driven, initially
unsupervised (e.g., clustering, correlation, and visualization) and later also
supervised (e.g., classification). While these kinds of data-driven methods are
useful in uncovering interesting patterns in the data, they typically provide little
traction for explaining the biological mechanisms that give rise to these pat-
terns. To overcome this limitation, model-driven methods for analyzing RNA
expression data began to be developed.

The suggestion that probabilistic graphical models — and Bayesian networks
in particular — might serve as an appropriate framework for representing tran-
scriptional regulatory networks and learning models of their structure in the
presence of noisy high-throughput RNA expression data was made indepen-
dently in 1999 at least twice (and, in all likelihood, more than twice): by Murphy
and Mian in an unpublished technical report [23], and by Hartemink and col-
leagues in an invited talk [11]. The first publications demonstrating the utility
of this approach seem to be the independent work of Friedman et al. [8] and
Hartemink et al. [14], shortly thereafter. These papers share a common theme
beyond the choice of Bayesian network models: both realized that there was not
enough available expression data to accurately learn large networks (a fact that
has later been demonstrated repeatedly through simulation studies [18, 34]).
Friedman and colleagues responded by focusing on network features that occur
with high frequency in a bootstrap analysis, while Hartemink and colleagues
restricted their attention to small sets of network models and investigated the
utility of biologically relevant informative parameter priors.

However, RNA expression data is not the only high-throughput data available
for providing insight into transcriptional regulatory networks: DNA sequence,
protein-DNA binding, and protein—protein interaction data are also available.
Protein-DNA binding can be assayed in vitro using a protein binding microar-
ray (PBM) [22] or in vivo using chromatin immunoprecipitation followed by
microarray (ChIP-chip; sometimes called transcription factor binding location
analysis, or location analysis for short) [26]. Protein-protein interactions can
be queried experimentally using techniques like yeast two-hybrid (Y2H) or
affinity purification followed by mass spectrometry (AP-MS). Incorporating
evidence from multiple kinds of data can often overcome the limitations of any
one kind of data, because data collected using different technologies usually
offer different perspectives on a problem; jointly analyzing such data in a single
framework enables a consensus perspective to emerge. In addition, analysis of
many kinds of data together is likely to produce more accurate results since
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noise characteristics and biases of the various technologies should be largely
independent.

Many have recognized the value in jointly analyzing disparate kinds of
biological data. Marcotte and colleagues made substantial early progress in re-
fining our understanding of protein-protein interactions by integrating multiple
kinds of data (see, e.g., [21]), while Ideker and colleagues used both RNA and
protein expression data in predicting the effects of perturbations on regulatory
networks [19]. Our work in 2001 [12] and early 2002 [15] introduced two new
concepts: first, using various kinds of data to derive informative structure priors
for guiding Bayesian inference, an idea later extended by Nariai et al. [24] to
protein-protein interaction data; and second, combining RNA expression data
with protein-DNA binding data, an idea which has been the basis of many later
developments in the field (see, e.g., [2, 28] and [32] (this volume)).

After a brief introduction to Bayesian networks and Bayesian network infer-
ence (see also [4] (this volume), which provides a more lengthy introduction),
we summarize our work on the use of informative priors for learning Bayesian
models of transcriptional regulatory networks. We also present examples of the
application of this approach to both simulated and actual experimental data.

21.2 Bayesian Networks and Bayesian Network Inference

Imagine a set of N random variables X = {X ,-}fV: , and consider how these
variables may depend on one another. At one end of the spectrum, the variables
may be completely independent; at the other end of the spectrum, they may be
completely interdependent, which is to say that no two random variables are
independent of one another, even conditioned on a subset of the other variables.
Bayesian networks are a class of models for representing and reasoning about
sets of random variables with conditional dependence relationships within
this full range of possibilities — from complete independence to complete
interdependence.

A Bayesian network (BN) is a graphical model: it uses a graph to represent
information about the conditional independencies among random variables. In
our context of modeling transcriptional regulatory networks, variables might
represent RNA concentrations, protein concentrations, protein modifications
or complexes, metabolites or other small molecules, experimental conditions,
genotypic information, or conclusions such as diagnosis or prognosis. Variables
can be discrete or continuous. To simplify exposition, we consider only discrete
variables for the remainder of this chapter. Each variable is thus in one of a
finite set of states, and the number of states used to model a variable represents a
tradeoff between on the one hand, capturing a variable’s behavior with sufficient
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precision, and on the other hand, retaining an ability to interpret what the states
of the variable mean, as well as managing the computational and statistical
complexity of learning models over variables with large numbers of states.

Each directed edge in the graph represents a conditional dependency be-
tween a pair of random variables; more precisely, the absence of a directed
edge between two vertices represents a conditional independency between the
corresponding pair of random variables. These conditional independencies are
all summarized by the so-called Markov property: variables are conditionally
independent of their nondescendants given their parents. The fewer edges a
model has, the more constrained the model is. Thus, a graph over completely
independent random variables is empty, while a graph over completely inter-
dependent random variables is complete. In practice, we seek sparser (simpler)
models because they are able to explain “indirect” dependencies through more
“direct” dependencies mediated by other variables.

In characterizing the conditional dependencies among a set of random vari-
ables, not only does a BN provide a qualitative description in the form of
a graph, but it also provides a quantitative description. Following from the
Markov property, the joint probability distribution over the space of variables
can be factored into a product over variables, where each term is a probability
distribution for that variable conditioned on the set of its parent variables:

N
Pr(X) = Pr(Xi,.... Xy) = [ [ Pr(X; | Pa(X))). @21.1)

i=1

We will denote by 0 the parameters that collectively characterize the conditional
probability distributions on the right-hand side of (21.1).

Because variables can have many parents, BNs are not limited to pairwise
interactions between genes, but rather can describe arbitrary combinatorial
control of transcriptional regulation; this is particularly straightforward when
working with discrete variables. Also, due to their probabilistic nature, BNs are
robust in the face of both noisy data and imperfectly specified transcriptional
regulatory networks.

21.2.1 Dynamic Bayesian Networks

A dynamic Bayesian network (DBN) [9] extends the notion of a BN to model
the stochastic evolution of a set of random variables over time; the structure
of a DBN thus describes the qualitative nature of the dependencies that exist
between variables in a temporal process. We use X;[¢] to denote the random
variable X; at time ¢ and the set X[7] is defined analogously. Here, the evolution
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of the temporal process is assumed to occur over discrete time points indexed
by the variable t € {1, ..., T}, although continuous time DBNs also exist [25].
Under such an assumption, we have 7 x N interacting random variables where
previously we had N. The resultant joint probability distribution is

T N
Pr(x(1],.... XIT) =[] {]—[ Pr(X,[]| Pa(X; [z]))] : (21.2)

t=1 Li=1

To simplify the situation, we make two further assumptions. First, we as-
sume that each variable depends only on variables that temporally precede it.
This fairly innocuous assumption still allows us to model natural cyclic phe-
nomena like feedback loops, but guarantees that the underlying graph will be
acyclic. It also greatly simplifies the computational complexity of learning.
As one example, if we were to further restrict variables in our network to
have at most k parents, we could find the globally optimal network in poly-
nomial time: O(N**t1). Second, we assume the process is a stationary first-
order Markov process, which means that Pr(X[¢] | X[r — 1], ..., X[1],¢) =
Pr(X[¢] | X[t — 1]). Given these two assumptions, the variables in Pa(X;[¢])
are a subset of X[t — 1]. The underlying acyclic graph with 7" x N vertices
can now be compactly represented by a (possibly cyclic) graph with N vertices,
where an edge from X; to X; indicates that X ;[¢] depends on X[t — 1].

21.2.2 Scoring Models with the Bayesian Scoring Metric

To learn a network model from observed data, we want to maximize some
scoring function that describes the ability of a network to explain the observed
data simply. In the case of BNs, we can employ the Bayesian scoring metric
(BSM). The scores produced by the BSM permit us to rank alternative models,
and the score difference for any two models leads to a direct significance
measure for determining how strongly one should be preferred over the other.
According to the BSM, the score of a model is defined as the logarithm of the
probability of the model being correct given the observed data. Formally,

BSM(S) = log Pr(S | D) = log Pr(S) +logPr(D | S) + ¢, (21.3)

where the first term in the last expression is the log prior distribution of the
model structure S, the second term is the log (marginal) likelihood of the
observed data D given S, and ¢ is a constant that does not depend on S and can
thus be safely ignored when comparing structures on the basis of their scores.
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The marginal likelihood term can be expanded as

Pr(D|S)=/Pr(D,0|S)d0=/Pr(D|0,S) Prd|S)de, (21.4)
[ [

and is analytically tractable when the data are complete and the variables
in the network are discrete [16], as we assume here. Marginalizing in this
way introduces an inherent penalty for model complexity, thereby balancing
a model’s ability to explain observed data with its ability to do so simply.
Consequently, it guards against overfitting models to data when data are limited.

21.2.3 Learning Networks: Model Selection and Averaging

Finding the highest-scoring model under the BSM for a given set of data is
known to be NP-complete in the general case [5] (although see the discus-
sion of DBNs above). As a result, in the general case, we resort to heuris-
tic search strategies to find good models. Commonly used strategies include
greedy hill-climbing, greedy random, genetic algorithms, Metropolis, and sim-
ulated annealing. We have implemented each of these search strategies and
have observed that in our own context, simulated annealing seems to find the
highest-scoring models, although in many cases greedy methods identify the
same models in much less time. The temperature schedule we employ allows
for “reannealing” after the temperature becomes sufficiently low.

We need not select only a single maximum a posteriori model. A more
principled Bayesian approach is to compute probabilities of features of interest
by averaging over the posterior model distribution. Using model averaging in
this way reduces the risk of overfitting the data by considering a multitude of
models when computing probabilities of features of interest. For example, if
we are interested in determining whether the data D support the inclusion of
an edge from variable X; to variable X ;, we compute

Pr(&; | D)= Pr(&; | D.S)-Pr(S| D)= 1;(S)- M,
N S

where &;; is a binary random variable representing the existence of an edge
from X; to X, and 1;;(S) is an indicator function that is 1 if and only if
S has an edge from X; to X;. However, this sum is difficult to compute
because the number of structures S is enormous. Fortunately, it is possible to
approximate this sum by sampling, or since the vast bulk of its mass lies among
the highest-scoring models, to further approximate by restricting our attention
to the highest-scoring models we encounter in our search. We then compute
an appropriately normalized version of the last expression using only these
models.
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21.2.4 Prior Establishment

In a Bayesian setting, we need to establish prior distributions both over param-
eters @ and over network structures S. In a discrete BN satisfying reasonable
assumptions, the prior over parameters must be a product-of-Dirichlet distribu-
tion [17]. If prior information about parameters is available, this can be captured
in the form of an equivalent prior network [17]. Otherwise, an uninformative
prior is frequently employed. In either case, an “equivalent sample size” needs
to be specified, which is a measure of how confident we are in the prior relative
to the quantity of data.

An especially common choice for the prior over structures is to assume that it
is uniform; in this case, the corresponding term in (21.3) can be safely ignored
since it is the same for all structures. In the rare instance where an informative
prior is chosen, it is typically hand-constructed by domain experts [ 16]. Here, we
summarize a novel approach for automatically constructing informative priors
over network structures based on evidence provided by other kinds of data.

21.3 Adding Informative Structure Priors

To complement RNA expression data, we can extend our BN framework to
include data describing the genome-wide DNA binding locations of protein
transcription factors. If a transcription factor is reported to bind DNA upstream
of a particular gene, it provides evidence that the factor is involved in the
regulation of that gene. We can incorporate this evidence when scoring our
BN models by modifying the prior distribution over structures. The Bayesian
methodology has a natural provision for incorporating prior information into its
scoring metric; in practice, determining appropriate weights for diverse sources
of information poses a significant challenge.

We can incorporate an informative structure prior in two ways. First, we
can adopt what we call a “hard” prior, which is uniform except that it gives
zero probability to structures that do not satisfy constraints specifying which
edges are required to be present and which are required to be absent. We
can implement this prior by restricting our search algorithms to move only
through the space of valid network structures. While this means we search in
a smaller space, it is inconsistent with the notion that high-throughput data are
generally quite noisy. Second, and alternatively, we can adopt what we call a
“soft” prior, with varying but positive weights on all networks, down-weighting
rather than excluding structures that do not satisfy the constraints. In such a
setting, protein-DNA binding location data provides evidence as to whether a
regulatory relationship exists, and the more significant the location data (lower
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the p value), the more likely the edge is to be included. As a consequence,
this prior is subtler and more robust; nevertheless, it remains factorable in the
context of a DBN, enabling computationally efficient local search. In fact, we
can learn a DBN model using a soft informative structure prior in essentially
the same amount of time as with an uninformative uniform prior. We describe
this in more detail in the following sections.

21.3.1 Probability of an Edge Being Present

Transcription factor binding location data provides (noisy) evidence regarding
the existence of regulatory relationships between a transcription factor and each
of the genes in the genome. This evidence is reported as a p value, and the
probability of an edge being present in the true regulatory network is inversely
related to this p value: the smaller the p value, the more likely the edge is to exist
in the true structure. In previously published work [3], we provide a detailed
derivation of a function for mapping p values to corresponding probabilities of
edges being present in structure S, but here we simply state the results. Let 8
denote Pr(&;;), the prior probability that an edge exists from X; to X ;, which
we take to be constant for all / and j. Using Bayes’ rule, we can show that the
probability of &;; after observing the corresponding p value is

re B
re B4 (1 —e )1 —p)

where X is a parameter controlling the amount of confidence we place in the
reported p values as accurate indicators of binding and nonbinding. Some
insight into the role of A can be gained by considering the value p* obtained
by solving the equation Pr,(&;; | P;; = p*) = 1/2, which yields

e o O ()
P= °g[ 1B }

A
For any fixed value of A, an edge from X; to X; is more likely to be present
than absent if the corresponding p value is below this critical value p* (and
vice versa). As we increase the value of A, the value of p* decreases and we
become more stringent about how low a p value must be before we consider it
as prior evidence for edge presence. Conversely, as A decreases, p* increases
and we become less stringent; indeed, in the limit as A — 0, we have that
Pr.(&; | Pij = p) — P independent of p, revealing that if we have no con-
fidence in the location data, the probability of &; is the same value 8 both
before and after seeing the corresponding p value, as expected. Thus, A acts

Pr.(&j | Pij = p) =

(21.5)

(21.6)
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as a tunable parameter indicating the degree of confidence in the evidence
provided by the location data; this allows us to model our belief about the noise
level inherent in the location data and correspondingly, the amount of weight
its evidence should be given.

One approach to suitably weighing the evidence of the location data would
be to select a single value for A, either through parameter estimation or by some
heuristic like finding the value of A that corresponds to a certain “magic” value
for p*, such as 0.001. Instead, we adopt a Bayesian approach that places a prior
on X and then marginalizes over it. The net effect of marginalization is an edge
probability that is a smoother function of the reported p values than without
marginalization.

21.3.2 Prior Probability of a Structure

The prior probability of a structure Pr(S) is proportional to the following
product over the edges in S:

Pr(é'ij |7Dij = p) :|
I1 - 21.7)
i 1;(8)=1) [1 — Pr(&; | Pij = p)

The normalizing constant can be safely ignored since it is the same for all
structures. Analogous to the likelihood calculations, the calculations required
for updating the structure prior under a local change to S are computationally
efficient because the structure prior factors over the edges in S, as shown
in (21.7). In particular, we need not recompute the entire prior from scratch
with each local change.

Note that in the absence of location data pertaining to a particular edge, we
simply use the probability Pr(&;;) = 8 for that edge. Our informative prior is
thus a natural generalization of traditional priors: in the absence of any location
data whatsoever, the prior probability of a network structure is exponential in
the number of edges in the graph, with edges favored if we choose 8 > 0.5 and
edges penalized if we choose 8 < 0.5. In the special case where 8 = 0.5, the
prior over structures is uniform.

21.4 Applications of Informative Structure Priors

In this section, we present two examples of how BN models and informative
structure priors can be used to elucidate transcriptional regulatory networks
in the yeast Saccharomyces cerevisiae. We examine networks responsible for
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controlling the expression of various genes that code for proteins involved in
pheromone response and in cell cycle regulation. With respect to the former,
the protein Stel2 is the ultimate target of the pheromone response signaling
pathway and binds DNA as a transcriptional activator for a number of other
genes. Transcription factor binding location data indicates which intergenic
regions in the yeast genome are bound by Stel2, both in the presence and
absence of pheromone [26]. With respect to the latter, a number of known cell
cycle transcription factors have also been profiled by location analysis [20, 29].

To demonstrate the full range of methods discussed above, in the first example
we use a model averaging approach with a hard informative structure prior to
learn a static BN model, while in the second example we use a model selection
approach with a soft informative structure prior to learn a dynamic BN model.

21.4.1 Pheromone Response: Static Network, Model Averaging

In the case of pheromone response, we used a set of 320 samples of unsynchro-
nized S. cerevisiae populations of various wild-type and mutant strains grown
under a variety of environmental conditions including exposure to different
nutritive media as well as exposure to stresses like heat, oxidative species,
excessive acidity, and excessive alkalinity. Genome-wide RNA expression data
for each of these 320 observations were collected using four low-density 50 pm
Affymetrix Ye6100 GeneChips per observation (roughly a quarter of the
genome can be measured on each chip). The reported “average differ-
ence” values from these 1,280 Affymetrix GeneChips were normalized us-
ing maximum a posteriori normalization methods based on exogenous spiked
controls [13].

From the 6,135 genes of the S. cerevisiae genome, 32 were selected either
on the basis of their participation in the pheromone response signaling cascade
or as being known to affect other aspects of mating response in yeast. The nor-
malized levels of RNA expression for these 32 genes were log-transformed and
discretized using discretization level coalescence methods that incrementally
reduce the number of discretization levels for each gene while preserving as
much total mutual information between genes as possible [12]. In this case, each
gene was discretized to have four levels of discretization while preserving over
98% of the original total mutual information between pairs of genes [12]. In ad-
dition to the 32 variables representing levels of RNA expression, an additional
variable named mating_type was considered. The variable mating_type rep-
resents the mating type of the various haploid strains of yeast used in the 320
observations and can take one of two values, corresponding to the MATa and
MAT« mating types of yeast, respectively.
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21.4.1.1 Results Using Experimental Data

We used simulated annealing to visit high-scoring regions of the model posterior
and present the results of two of those runs here. In the first run, we traversed the
model space with a uniform structure prior. In the second run, we incorporated
a hard informative structure prior using available location data by requiring
edges from STE12 to FUS1, FUS3, AGA1, and FAR1 which had p values less
than 0.001.

After gathering the 500 highest-scoring models that were visited during each
run of the search algorithm, we computed the probability of edges being present
using model averaging, as discussed above. Thus, the estimated probability of
an edge can be exactly 1 if (and only if) the edge appears in all 500 highest-
scoring models.

We then compiled a composite network for each run that consists of all
edges with estimated posterior probability over 0.5. These networks are shown
in Figure 21.1. Nodes have been augmented with color to indicate groups of
variables known in the literature to have some commonality with one another.
Edges have also been augmented with color: solid black edges have posterior
probability of 1, solid blue edges have probability between 1 and 0.99, dashed
blue edges have probability between 0.99 and 0.75, and dotted blue edges have
probability between 0.75 and 0.5. The strength of an edge does not indicate how
significantly a parent node contributes to the ability to explain the child node
but rather an approximate measure of how /ikely a parent node is to contribute
to the ability to explain the child node.

In both of the networks presented in Figure 21.1, we observe a number of
interesting properties. In each case, the mating_type variable is at the root of
the graph, and contributes to the ability to predict the state of a large number
of variables, which is to be expected. The links are generally quite strong indi-
cating that their presence was fairly consistent among the 500 highest-scoring
models. Almost all the links between mating_type and genes known to be ex-
pressed only in MATa or MAT« strains occur with posterior probability above
0.99. Moreover, in both networks there exists a directly connected subgraph
consisting of genes expressed only in MATa cells (magenta) and a directly
connected subgraph consisting of genes expressed only in MAT« cells (red).
In each case the subgraph has the mating_type variable as a direct ancestor
with strong predictive power, as expected.

The heterotrimeric G-protein complex components GPA1, STE4, and STE18
(green) form a directly connected component with the informative prior but
only GPA1 and STE18 are connected with the uniform prior. Indeed, even the
link between GPA1 and STE4 with the informative prior is fairly weak. On
the other hand, SWI1 and SNF2 (aqua) are weakly adjacent with a uniform
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Fig. 21.1. Bayesian network models learned by model averaging over the 500 highest-
scoring models visited during the simulated annealing search runs with a uniform prior
and hard informative prior, respectively. Edges are included in the figure if and only if
their posterior probability exceeds 0.5. Node and edge color descriptions are included
in the text. (See color plate 21.1.)

prior, but not adjacent with an informative prior, though in both cases they
are close descendants of TUP1. STE11 and STES, two of the core elements
of the primary signaling cascade complex (yellow), are seen as descendants
of G-protein complex genes, indicating statistical dependence that may be the
result of common or serial regulatory control. STE7 occurs elsewhere, however.
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Auxiliary signaling cascade genes (orange) are always descendants of TUPI,
sometimes directly and sometimes more indirectly, but STE50 and KSS1 are
siblings in both cases. In general, the auxiliary cascade elements do not tend to
cluster with the core elements, suggesting that the regulation of their transcript
levels may occur by a different mechanism than those of the genes in the core
signal transduction complex.

In both networks, TUP1 appears with a large number of children, consistent
with its role as a general repressor of RNA polymerase II transcription. Both
networks have MCM1 and SIN3 as children of TUPI; Tupl and Mcml are
known to interact in the cell [10] and this result that the level of Tupl is helpful
in predicting the level of Mcml suggests a possible regulatory relationship
between the two. FAR1 is a parent of TEC1 and GPA1 in both networks. Farl,
Tecl, and Gpal are all known to be cell-cycle-regulated and all three are clas-
sified as being transcribed during early G, phase [6]. This result suggests that
Farl may play a role in regulating the expression of Tecl and Gpal, providing
a possible mechanism for their previously observed G; phase coexpression.

Though it is produced at higher levels in MATa cells, it is known that Agal is
produced in both MATa and MAT« cells [27]. The networks are each consistent
with this knowledge, including a frequent predictive edge from mating_type
to AGAI, but not clustering AGA1 with other mating type specific genes
(magenta and red) as it is likely regulated differently. In both networks, AGA1
and SST?2 are adjacent, consistent with the fact that the two are expressed very
similarly, both peaking at the M/G; phase of the cell cycle [31].

21.4.2 Cell Cycle: Dynamic Network, Model Selection

Turning our attention now to the cell cycle, we earlier assumed that the stochas-
tic dynamics of variables in a DBN arise from a stationary process. This poses
a bit of a problem in the case of the cell cycle since we may have a different
underlying transcriptional regulatory network during each phase of the cycle.
To overcome this problem, we can employ an additional variable ¢ that can
be used by the model to explain how each variable’s regulators depend on the
cell cycle phase, allowing us to model a different stationary process within
each phase. The phase variable ¢ is multinomial and the number of states is
simply the number of phases we choose to model as having distinct regulatory
networks. If we can label each of the time points with the appropriate phase,
the inference problem remains an instance of learning network structure from
complete data. We prefer this option to the alternative of learning a hidden phase
variable because in our context, the quantity of available cell cycle expression
data is quite limited; besides, the state of ¢ changes smoothly and predictably,
so labeling each time point with the appropriate phase is straightforward. A
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Fig. 21.2. Simplified schematic of a first-order Markov DBN model of the cell cycle.
On the left, variables X; through X, are shown both at time ¢ and 7 + 1; variable ¢
represents the cell cycle phase; dashed edges are stipulated to be present whereas solid
edges are recovered by the learning algorithm. On the right, a compact representation
of the same DBN model in which the cycle between X4, X3, and X, is apparent.

simplified schematic of such a DBN model of the cell cycle is depicted in
Figure 21.2.

In the context of the cell cycle, we conducted tests with both simulated and
actual experimental data. We used a synthetic cell cycle model to evaluate
the accuracy of our algorithm and determine the relative utility of different
quantities of available RNA expression data. The synthetic cell cycle model
involves 100 genes and a completely different regulatory network operates in
each of the three modeled phases of the cycle. The 100 genes include synthetic
transcription factors, only some of which are involved in the cell cycle, and
only some of which have simulated location data available. The target genes
of the transcription factors are sometimes activated and sometimes repressed;
some are under cell cycle control, but many are not. In addition, we include
a number of additional genes whose expression is random and not regulated
by genes in the model. The simulated expression data are generated using the
(stochastic) Boolean Glass gene model [7]. The expression data are discretized
into two states because the generating model is Boolean. Noisy p values for the
simulated location data associated with a subset of the regulators are generated
with noise models of varying intensity.

For experimental data, we use publicly available cell cycle RNA expression
data [31] and transcription factor binding location data [20]. The expression
data consist of 69 time points collected over eight cell cycles. Since these
belong to different phases, the resultant number of time points in each phase is
quite small. As a consequence, we choose to use only three states for the phase
variable, by splitting the shortest phase G, in half and lumping the halves with
the adjacent phases. Thus, the three states of our phase variable correspond
roughlyto G, S + G2,and G, + M. We assign a phase label for each time point
by examining the behavior of characteristic genes known to be regulated during
specific phases [31]. This is done separately for each of the four synchronization
protocols in the data set (alpha, cdc15, cdc28, and elu). We then select a set
of 25 genes to model in our network, of which 10 are known transcription
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factors for which we have available location data. The only important cell
cycle transcription factor missing from this set for which we have location data
is FKH2; we are not able to use it in our analysis because RNA expression
levels are missing for many of the time points. The remaining 15 genes in our
set are selected on the basis of their known regulation by one or more of these
10 transcription factors. The experimental expression data are discretized into
three states using interval discretization [12].

Because space is quite limited here, we provide only a brief description of
the basic structure of each of our experiments. The discretized data in each case
are used to compute the marginal likelihood component of the BSM. The soft
informative prior component is computed using (21.7), where individual edge
probabilities are computed from the location data p values using (21.5) with
A marginalized out. The parameter X is marginalized uniformly in the interval
[AL, Agl, with A, =1 to avoid problems near zero (A, = 1 corresponds to
p* =0.459) and Ly = 10,000 to avoid problems near infinity (A5 = 10,000
corresponds to p* = 0.001). We set 8 = 0.5 so that edges for which we have
no location data are equally likely to be present or absent in the graph; as
a consequence, without location data, edge presence in the graph depends
on expression data alone. The output of our DBN inference algorithm is the
network structure with the highest BSM score among all those visited by the
heuristic search during its execution.

21.4.2.1 Results Using Simulated Data

We repeatedly conduct the following three experiments: score network struc-
tures with expression data alone, ignoring the log prior component in (21.3);
score network structures with location data alone, ignoring the log marginal
likelihood component in (21.3); and score network structures with both ex-
pression and location data. We use these experiments to evaluate the effects
of location data with different noise characteristics, expression data of varying
quantity, and different choices for .

Each of our experiments is conducted on five independently generated syn-
thetic data sets and results are averaged over those five data sets. Figure 21.3
offers a representative result. The vertical axis measures the (average) total
number of errors: the sum of false positives and false negatives in the learned
network. As expected, the total number of errors drops sharply as the amount
of available expression data increases. The figure demonstrates that our joint
learning algorithm consistently reduces the total number of false positives and
false negatives learned when compared to the error rate obtained using either
expression or location data alone. Also, observe that the availability of location
data means that we require typically only half as much expression data to
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Error plot using simulated data
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Fig. 21.3. Total number of errors while learning a synthetic cell cycle network using
(noisy simulated) expression and location data, separately and with both types of data
together. The graph shows the effect of increasing the number of cell cycles worth
of expression data, both with and without location data. The dashed horizontal line
represents learning using location data alone.

achieve the same error rate as would be achieved with expression data alone,
suggesting that the availability of location data can be used to compensate for
small quantities of expression data.

21.4.2.2 Results Using Experimental Data

We next apply our soft informative prior in learning networks describing the
regulation of transcription during the cell cycle in yeast. As with the simulated
data, we learn network structures using expression data alone, using location
data alone, and jointly from both expression and location data. In the latter
case, we compare our soft informative prior to our hard informative prior with
a cutoff of p = 0.001 [15].

As an evaluation criterion (which is more difficult in this context than in the
synthetic network context), we create a “gold standard” network consisting of
the set of edges that are known to exist from one of the 10 transcription factors
with both expression and location data to any one of the other genes in our set;
we do not count edges from the other 15 genes when comparing with our gold
standard since it would be difficult to determine whether recovered edges are
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Table 21.1. Comparison of the Highest-Scoring Networks Found in Four
Different Experiments with the Gold Standard Network

Experiment TP TN FP FN
Expression data only 7 181 20 32
Location data only 25 184 17 14
Expression and location data (hard prior) 23 187 19 11
Expression and location data (soft prior) 28 189 12 11

Note: As discussed in the text, the gold standard contains edges from only the 10
variables for which both location and expression data are available.

true or false positives, and whether omitted edges are true or false negatives.
The gold standard comes from a compiled list of evidence in the literature and
from the Saccharomyces Genome Database (http://www.yeastgenome.org), but
we have tried to ensure that it depends on neither the specific expression data
nor the specific location data used in these experiments. Note also that the
gold standard is likely not the true underlying regulatory network, but rather is
the best we can do given the current understanding of the yeast cell cycle (a
“bronze standard”?).

With these caveats in place, Table 21.1 shows the total number of positives
and negatives that are true and false for the networks found in the four experi-
ments, with respect to the gold standard network. We see that the location data
by itself does noticeably better than the expression data, suggesting that this
particular set of location data are quite insightful or that this particular set of
expression data are quite limited in quantity or quality. Despite the relatively
poor performance of the expression data when considered in isolation, when
we use our soft informative prior to include evidence from the location data
along with the expression data, the number of false positives and the number of
false negatives are both reduced; in contrast, the hard prior reduces the number
of false negatives and increases the number of true negatives, but also increases
the number of false positives and reduces the number of true positives. The soft
prior uniformly outperforms the other three.

From Table 21.1, we see that combining expression and location data with our
soft informative prior results in three fewer false negatives as compared to loca-
tion data alone. These three are the regulation of SIC1 by ACE2 (p = 0.010),
of ACE2 by FKHI (p = 0.006), and of CLN2 by SWI4 (p = 0.005). These
edges are detected because while the evidence of the location data in isolation is
below threshold for inclusion, during the joint learning it is reinforced with evi-
dence from expression data. In contrast, consider the regulation of transcription
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factor FKHI by the transcription factor MBP1: although this interaction is re-
covered with expression data alone, it is not included when both location and
expression data are used because the corresponding p value of 0.93 is so high
that the quantity of expression data is insufficient to overcome the location data
evidence against inclusion of the edge. Among the supposed false positives, we
observe that both location and expression data provide evidence for the regula-
tion of cyclin PCL2 by the transcription factor SWI6, although this interaction
was not reported in the gold standard network. However, SWI6 participates
in the SBF complex with SWI4, and SBF is currently believed to regulate the
expression of PCL2 [1], reinforcing the notion that our gold standard network
is not without flaws.

21.5 Adding Informative Parameter Priors

Thus far, we have discussed the utility of informative priors over structures,
but informative priors over parameters are also useful. As with priors over
structures, informative priors over parameters can be formulated as a hard prior
where parameters that are inconsistent with a set of known constraints are
eliminated in advance [14], or as a soft prior where different sets of parameters
are relatively up- or down-weighted based on their degree of conformance to
the constraints. In the case of a hard prior, the data are not forced to obey the
constraints (after all, the data are noisy) but the parameters that characterize
the distributions used to model the data are forced to obey these constraints.

What benefit will either of these choices have? The marginal likelihood
component of a model’s score can be viewed as the average probability of
generating the observed data over all possible values of the parameter vector
0. From a sampling perspective, the contribution of the likelihood term to
the score can be viewed as a two-level data generation process whereby a
realization of @ is selected at random from its prior distribution, and then the
probability of generating the observed data is calculated using this realization of
0. The probability of generating the data is averaged over repeated samplings
to compute the marginal likelihood. This interpretation reveals that a model
will score poorly if there is not a sufficiently large mass of realizations in
the complete distribution of @ that are capable of generating the data with
sufficiently high probability. On the other hand, if the model is constrained by
a prior in the sense that the distribution of # has more of its mass concentrated
on realizations that are capable of generating the data with sufficiently high
probability, then the constrained model will score better under the BSM. In
short, if the constraint permits the model to avoid unnecessary complexity, then
the model’s score will increase.
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In the case of a hard prior, we simply modify the scoring metric so that
the marginal likelihood term is now the average probability of generating the
observed data over all possible values of the parameter vector # that satisfy
the constraints [14]. In the case of a soft prior, we adjust the pseudocounts
associated with the Dirichlet priors over parameters so that they are not all the
same [33].

21.6 Discussion

BNs have certain limitations when used to model transcriptional regulatory
networks. The most important of these is the caution with which models must
be interpreted. While graphs are highly interpretable structures for representing
statistical dependencies, they have the potential to be misleading if interpreted
incorrectly. In particular, it is important to distinguish between statistical inter-
action and physical interaction.

For example, if the data strongly supports the inclusion of an edge between
two variables X; and X ;, that may indicate a physical interaction between these
two factors in the cell. Alternatively, it is possible that an unmodeled variable
Y actually intermediates between X; and X; or is a latent common cause of
X; and X; such that X; and X ; exhibit statistical dependence but no physical
interaction. Caution must be used when interpreting models that may be missing
critical explanatory variables. In contrast, if the data strongly supports the
exclusion of an edge between two variables X; and X ;, that may indicate no
physical interaction between these two factors in the cell. Alternatively, we may
not have observed the cell under an appropriate set of conditions where this
interaction could have been observed. Incorporating additional complementary
sources of data like transcription factor binding location can sometimes clarify
the situation.

In general, multiple biological mechanisms may map to the same set of
statistical dependencies and thus be hard to distinguish on the basis of statis-
tical tests alone. Moreover, if sufficient data do not exist to observe a system
in a number of different configurations, we may not be able to uncover cer-
tain dependencies. These two limitations are not specific to this methodology,
however, but rather are true for scientific inquiry in general.

Similarly, although the interactions in our dynamic models can be oriented
unambiguously (because time cannot flow backwards), that does not neces-
sarily imply that the interactions are causal since we cannot account for cel-
lular interactions that have not been measured, as mentioned above. One of
the main hopes of this line of research is that more direct causal informa-
tion from alternative assays like transcription factor binding location data and
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protein-protein interaction data will ameliorate this problem when we can in-
clude them in the analysis framework in a principled way.

From a computational perspective, BN structure inference should scale fine
to networks of hundreds of interacting variables, as we have demonstrated here
and elsewhere [30]. The primary factor in its ability to scale is not so much com-
putational as statistical, and not so much with respect to the number of variables
but with respect to the number of parents for each variable. As this number
increases, larger and larger quantities of data are needed to learn an accurate
model [35]. On arelated note, while nothing precludes us computationally from
modeling a higher-order Markov process in our DBNs, we are often constrained
statistically by the limited quantity of available time-series expression data.

Successful elucidation of transcriptional regulatory networks will not likely
be a batch learning process. Rather, we will need to increasingly consider learn-
ing that is incremental and algorithms that are online. In particular, gathering
data sampled even sparsely from the joint probability space over all relevant
variables in cellular regulatory networks would require an inordinate amount
of data. To overcome this, it will be important to carefully design experiments
to learn information about the specific portions of these networks that remain
ambiguous. Being able to suggest the next series of experiments to conduct is
especially valuable when learning from high-throughput data because the data
are often costly to gather. Knowing in advance which are likely to be the most
informative experiments to conduct for elucidating biological mechanisms of
interest would be quite useful.

This field is known as “active learning” and an existing literature can be
applied and extended in this domain. Of special interest is the ability to suggest
experiments for collecting not only observational data but also interventional
data. In the context of transcriptional regulatory networks, this can be imple-
mented by deleting a gene so that it cannot be expressed, or by constitutively
overexpressing a gene from a heterologous promoter. Interventional data needs
to be treated differently from observational data in the context of learning, but
the framework easily extends to handle interventional data.

Finally, we should offer one last note on the viability of BNs as models
of transcriptional regulatory networks in higher eukaryotes. From a biological
perspective, regulation in multicellular organisms is quite a bit more compli-
cated owing to extra spatial and temporal complexity, for example in the form
of intercellular signaling and differentiation of cell types. From an experi-
mental perspective, collecting data is often more challenging in this context
as well because multiple cell types need to be profiled and because there are
often technical, financial, or ethical limitations to data collection. However,
provided that the models are flexible enough to capture the complexity of
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these organisms and provided that sufficient data can be collected, there does
not seem to be any fundamental limitation of BNs as useful models for repre-
senting and elucidating transcriptional regulation in higher eukaryotes.

21.7 Availability of Papers and Banjo Software

This chapter summarizes a large body of work from our research group over
the past six years. As such, it borrows heavily from papers written during
this period, but offers a broader and more unified perspective on the research
program as a whole. We have in some places omitted details that have been
published previously; readers interested in greater detail are encouraged to read
the original papers.

In addition to the work on BNs as models of transcriptional regulation
summarized in this chapter, our group has undertaken research along a num-
ber of other directions related to the various topics treated elsewhere in this
book. These include analysis of microarray data, analysis of proteomic spec-
tra, modeling of the eukaryotic cell cycle, motif identification, integration of
diverse kinds of data, and disease diagnosis and other classification tasks in
high-dimensional systems biology. Bayesian statistical formulations and infor-
mative priors arise as common themes in all this work. Papers from our group
are available from http://www.cs.duke.edu/~amink.

Finally, we have recently developed a software package called Banjo —
Bayesian network inference with Java objects — to perform network inference
in static and dynamic Bayesian networks of discrete variables. Banjo is designed
to be efficient, modular, and extensible. The program and complete source code
are available under a noncommercial use license, and commercial licensing
opportunities are available as well. For more information, visit http://www.
cs.duke.edu/~amink/software/banjo.
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