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ABSTRACT

High-resolution, multimodal microscopy grants an intimate
view of the inner workings of cells. Complex processes like
cell division can be monitored with microscope images, as-
suming identification of cells and their cell-cycle markers:
cellular structures indicative of cell-cycle progress. Here,
we explore how spatial relationships between these markers
can facilitate their identification. We grew and synchronized
Saccharomyces cerevisiae cell cultures and then acquired
multimodal image data as the cells proceeded through the
cell cycle. We trained a conditional random field model to
capture pixel-level spatial relationships among three different
cell-cycle markers observable in our images. We observed
good predictive performance of this pixel-level model on
three held-out test images, and performance improved when
we used marker-level information from our training data to
prune model predictions. Our results support the use of con-
ditional random fields in bioimage labeling and encourage the
use of as much multiscale information as available in training
data when identifying cell-cycle markers.

Index Terms— Cell cycle, budding yeast, conditional
random field, multimodal imaging, fluorescence imaging,
multiscale information.

1. INTRODUCTION

Saccharomyces cerevisiae, or budding yeast, has proven an
indispensable model organism for the study of numerous
complex biological processes. Many such processes, in-
cluding cell division, can be more finely dissected with
microscopy methods [1, 2]. To characterize cell division,
traditionally one manually counts a large number of cells
(∼200–500) from fixed samples collected over time, and
records the proportion of cells in each time-point sample that
show different markers: structures indicative of cell-cycle
progress that can be visualized under the microscope. The
classical marker of cell-cycle progression in Saccharomyces

cerevisiae is the bud, or nascent daughter cell (Figure 1, left).
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Fig. 1. A single cell imaged using the four modalities of this
study. Cell-cycle markers are indicated by white arrows in
each panel. From left to right, modalities (and markers): DIC
(bud), blue fluorescence (nucleus), green fluorescence (spin-
dle pole bodies), and red fluorescence (myosin ring).

Fluorescence microscopy grants us access to many other
markers of cell-cycle progression such as nuclei, spindle pole
bodies (SPBs), and myosin rings (Figure 1, center left, center
right, right, respectively), enabling a higher-resolution view
of cell division [2].

Many image processing techniques ignore informative
spatial relationships between markers that might aid in their
identification. For example, since we know that spindle pole
bodies are embedded in the nuclear envelope [3], we might
expect SPB pixels to occur near nuclear pixels. Conditional
random fields (CRFs) are a class of probabilistic graphical
models that leverage these kinds of spatial dependencies, as
well as rich sets of data-derived features, to represent dis-
tributions over label assignments for sequence and image
data [4, 5, 6]. CRFs and their extensions have begun to
appear in the cell-cycle image analysis community, having
been successfully applied to time-lapse microscopy images
to detect mitotic events in HeLa cells [7].

In this study, we acquired images of fixed samples of di-
viding budding yeast cell populations using differential inter-
ference contrast (DIC) and fluorescence imaging modalities
in order to track three different markers of cell-cycle progres-
sion: nuclei, myosin rings, and SPBs. We then trained a CRF
model using a combination of both pixel-level and regional
intensity features taken from each of the different fluores-
cence imaging modalities. We demonstrate good performance
in predicting markers for three held-out test images with the
pixel-level model. We make use of additional marker-level
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information in our training data, namely marker size, to im-
prove CRF predictions, and we see further improvement in
performance. We close by discussing the importance of mul-
tiscale information for cell-cycle marker identification, and its
implications for cell counting and cell-cycle phenotyping.

2. PIXEL-LEVEL CRF MODEL

2.1. Model Details

We assign one of five different categorical labels to each pixel
(1 = myosin ring, 2 = SPB, 3 = nucleus, 4 = general intracellu-
lar, 5 = noncellular). We implement a simple 4-neighbor CRF
(Figure 2) to model local spatial dependence between pixel
labels, as well as the dependence of those labels on a collec-
tion of image-derived features [8]. We assume the model is
spatially invariant: the network topology and parameters are
the same everywhere across the image. In a CRF, the prob-
ability of any labeling Y, given features X, is given by the
following normalized factor product:
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is a normalization constant or partition function. The sum in
the partition function is over all possible pixel labelings, Y∗.

Here, I is the set of pixels and E is the set of edges con-
necting neighboring pixels. Y is a particular labeling of a set
of pixels, X is the set of all features at every pixel, and Yi

and Xi are the label and feature set at pixel i. Our feature set
consists of the red, green, and blue fluorescence intensities at
each pixel as well as the median green and blue intensities of
pixels in three rings (with radii of one, two, and five pixels)
centered at each pixel.

The factors in the conditional probability above are also
known as node (φ) and edge (ψ) potentials, and are defined as
follows:

φ(l, f1, . . . , fK) = exp{θl,0 +
K
∑

k=1

θl,kfk}

ψ(l,m) = exp{λl,m,0}

θ and λ are parameters of the CRF model. The scope of the
node potential includes the label l and all K relevant node
features. The scope of the edge potential includes the two
labels, l and m, at each endpoint of an edge. The parameters
θl,0 and λl,m,0 are bias terms.

Yi Yj

Xi Xj

Fig. 2. Graphical model representation of pixel-level CRF.
Our 4-neighbor CRF models the dependence of each label Yi

on a set of features Xi as well as on the labels of its four
connected neighbors (here, Yj and the three other pixels con-
nected to Yi).

2.2. Model Training

We built a training data set for the CRF model by hand-
labeling 55 cell regions, 55 nuclei, 64 SPBs, and 26 myosin
rings in the DIC and fluorescence images of three fields of
view. To these pixels, we added pixels from the bounding
boxes surrounding each cell region. This procedure resulted
in 629,945 total training pixels. We then fit our CRF model
by finding the parameters θ and λ that maximize the pseudo-
likelihood function, an approximation to the full conditional
probability above [6, 9]:

argmax
θ,λ
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Here, the outer product in the maximization is over the three
training images, It is the set of all pixels in training image t,
and Ni is the set of indices of neighbors of pixel i. We also
trained the model using the sum-product loopy belief propa-
gation algorithm ([10] and references therein), but we did not
see much difference in final performance (see Supplement for
details). As such, all following results are based on training
with the pseudo-likelihood approximation.

2.3. Generating Model Predictions

For the sake of computational speed, we generate predictions
in a held-out test image only for subregions that potentially
include cell and marker pixels. We locate these subregions by
using a custom watershed algorithm (Figure 3, center left),
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Fig. 3. Algorithmic pipeline for pixel labeling. 1) We take as
input an image set for a field of view (shown here with reg-
istered modalities overlaid). 2) We apply a custom watershed
algorithm to identify potential cell regions. 3) We generate
a maximum-of-marginals decoding with our CRF model. 4)
We remove spurious marker predictions by applying a size fil-
ter learned from training data. Myosin ring: red; SPB: green;
nucleus: blue; intracellular: white; noncellular: black.

and placing a bounding box around each. We then predict
labels for every pixel in the bounding boxes. This resulted in
502,174 pixels to be labeled across all three test images.

To predict the labels for every pixel, we calculate node
and edge potentials based on the features at each pixel and the
learned parameters, θ and λ. We then use the sum-product
loopy belief propagation algorithm to infer the approximate
marginal distributions over marker labels at each pixel. We
take the label with maximal marginal probability to be the
predicted label (Figure 3, center right).

3. IMAGE ACQUISITION & PRE-PROCESSING

We grew overnight cultures of two haploid yeast strains in
rich media (genotype information in [2]). The populations
were synchronized and then released into the cell cycle, with
samples collected from the population over time. We fixed the
samples and prepared them for imaging. For each time-point
sample, we acquired images of at least five fields of view.
For each field of view, we acquired a DIC image as well as
red, green, and blue fluorescence images. For the green and
red fluorescence channels, we imaged z-stacks composed of
approximately 20 to 40 slices of 0.2µm thickness; we decon-
volved these z-stacks and computed the sum of slices in each
deconvolved stack to produce a single green or red fluores-
cence image. Three fields of view served as training images,
and three as test images.

4. MODEL PERFORMANCE ON CELL-CYCLE
MARKER LABELING

We found that CRF marker predictions were generally bio-
logically sound (Figure 4). Across the three held-out test im-
ages, the model often reasonably segmented cell regions from
background, predicted one nucleus for each cell, and identi-
fied plausible myosin rings and SPBs. However, as seen in

Raw Truth Pre-Filter Post-Filter

Fig. 4. Marker labeling successes. CRF predictions are gener-
ally biologically plausible, though in some cases (second and
third rows), the size filter improves correspondence between
CRF predictions and ground truth. Columns from left to right:
overlaid DIC and fluorescent images (raw), hand-labeled cell
regions and markers (ground truth), CRF-predicted pixel la-
bels (pre-filter), and model labels after applying size filter
(post-filter). Colors are as in Figure 3.

Figures 4 and 5 (third column), the CRF sometimes predicts
extra myosin rings and SPBs. To more quantitatively measure
predictive performance, we hand-labeled cell-cycle markers
in our test images and compared these labelings to predicted
labelings from the CRF model. We determined the sensitiv-
ity and positive predictive value (PPV) of our CRF model for
each marker. As shown in Table 1, the CRF performs well
in finding nuclei and SPBs, and more poorly when predicting
myosin rings (Table 1). The combination of high sensitiv-
ity and lower PPV for myosin rings—and to a lesser extent
for SPBs—indicates that while the model overpredicts these
markers, the set of model predictions generally includes the
set of true markers.

5. INCLUSION OF MARKER-LEVEL
INFORMATION VIA LEARNED SIZE FILTERS

We noticed that some of the CRF’s extra myosin ring and SPB
predictions are small in size compared with the hand-labeled
markers in our training data (Figures 4 and 5, third column);
some are no more than a few pixels. Our training data not only
enables us to learn marker characteristics at the pixel level but
also at the (coarser) whole-marker level. So, we decided to
incorporate this marker-level information. We computed the
minimum pixel area of all myosin rings and SPBs in our train-
ing set. We then removed any CRF-predicted myosin ring (or
SPB) less than one tenth (or one fifth) the area of the smallest
hand-labeled marker of that type (see Supplement for details).
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Image+ Marker+ Sensitivity∗ PPV∗

SBY1404-t10 (14) Myosin Ring (2) 1.00 / 1.00 0.08 / 0.14
SPB (15) 1.00 / 1.00 1.00 / 1.00

Nucleus (14) 1.00 0.88

SBY1643-t13 (24) Myosin Ring (15) 0.80 / 0.80 0.57 / 0.63
SPB (35) 0.91 / 0.86 0.60 / 0.65

Nucleus (24) 1.00 0.86

SBY1643-t15 (24) Myosin Ring (14) 1.00 / 0.93 1.00 / 1.00
SPB (33) 0.97 / 0.97 1.00 / 1.00

Nucleus (24) 1.00 0.86

Total (62) Myosin Ring (31) 0.90 / 0.87 0.47 / 0.59
SPB (83) 0.95 / 0.93 0.79 / 0.83

Nucleus (62) 1.00 0.86

Table 1. +Shown in parentheses are true numbers of cell re-
gions and markers. ∗Results pre-size filter / post-size filter.

Particularly for myosin ring predictions and slightly for SPB
predictions, we found that overall PPV improved (Table 1)
with little to no drop in sensitivity. These results are not sur-
prising since coarser-scale information like marker size and
shape is not available to the pixel-level CRF. Thus, exploit-
ing available multiscale information appears to be helpful in
accurately identifying cell-cycle markers.

6. DISCUSSION & FUTURE DIRECTIONS

We have developed a multimodal image acquisition and anal-
ysis pipeline to automatically identify markers of cell-cycle
progression in images of dividing budding yeast cells. The
core of the pipeline is a CRF model that integrates pixel-level
features from the different imaging channels and accounts
for spatial relationships among markers, at least at the pixel
level. Our results demonstrate both the strengths and the lim-
itations of a CRF. While it performs well enough to approx-
imately segment cells from background, and to predict cell-
cycle markers reasonably accurately, its discriminative power
is limited by the spatial scale of the information at its disposal
([5] and references therein). For example, we may not want to
label a patch of pixels as a myosin ring unless we also know
marker-level information like the size and shape of the patch,
or the distance between the patch and the edge of a cell. An-
other layer of complexity in marker identification comes from
the cell-cycle biology of budding yeast. Specifically, certain
numbers and combinations of markers are not plausible in cer-
tain budding yeast cells. For example, in the strains we used,
a cell cannot contain more than two SPBs, or more than one
myosin ring. We are currently investigating model-based ap-
proaches to take into account these inter-marker dependencies
as well as incorporate more marker-level features, but this de-
pends on precise determination of individual cells (which can
be difficult when budded cells are clumped together). In the
long term, we will use our size-filtered marker predictions and
approximate cell boundaries to automate counting cells with

Raw Truth Pre-Filter Post-Filter

Fig. 5. Marker labeling failures. Some spurious CRF pre-
dictions are not removed with a size filter (fourth column).
Column layout is the same as in Figure 4. Colors are as in
Figures 3 and 4.

different cell-cycle phenotypes. This work is an important
step toward that goal, and thus toward more accurate charac-
terization of cell-cycle progression.
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