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ABSTRACT

Motivation: Transcriptional regulation is directly enacted by the inter-

actions between DNA and many proteins, including transcription fac-

tors (TFs), nucleosomes and polymerases. A critical step in

deciphering transcriptional regulation is to infer, and eventually predict,

the precise locations of these interactions, along with their strength

and frequency. While recent datasets yield great insight into these

interactions, individual data sources often provide only partial informa-

tion regarding one aspect of the complete interaction landscape. For

example, chromatin immunoprecipitation (ChIP) reveals the binding

positions of a protein, but only for one protein at a time. In contrast,

nucleases like MNase and DNase can be used to reveal binding pos-

itions for many different proteins at once, but cannot easily determine

the identities of those proteins. Currently, few statistical frameworks

jointly model these different data sources to reveal an accurate, hol-

istic view of the in vivo protein–DNA interaction landscape.

Results: Here, we develop a novel statistical framework that inte-

grates different sources of experimental information within a thermo-

dynamic model of competitive binding to jointly learn a holistic view of

the in vivo protein–DNA interaction landscape. We show that our

framework learns an interaction landscape with increased accuracy,

explaining multiple sets of data in accordance with thermodynamic

principles of competitive DNA binding. The resulting model of genomic

occupancy provides a precise mechanistic vantage point from which

to explore the role of protein–DNA interactions in transcriptional

regulation.

Availability and implementation: The C source code for COMPETE

and Python source code for MCMC-based inference are available at

http://www.cs.duke.edu/�amink.

Contact: amink@cs.duke.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

As an essential component of transcriptional regulation, the
interaction between DNA-binding factors (DBFs) and DNA

has been studied extensively. To map genome-wide protein–
DNA interactions experimentally, two basic categories of tech-

niques have been developed: ChIP-based methods (numerous

studies in many organisms, but a few examples for yeast are

Harbison et al., 2004; Ren et al., 2000; Rhee and Pugh, 2011);

and nuclease digestion-based methods that profile chromatin

with either DNase (Hesselberth et al., 2009) or MNase

(Henikoff et al., 2011). ChIP methods can be used to reveal

high-resolution DNA interaction sites for a single antibody-tar-

geted factor, especially the recently developed ChIP-exo methods

(Rhee and Pugh, 2011) that use lambda exonuclease to obtain

precise positions of protein binding. Nuclease digestion methods

can be used to efficiently assay genome-wide DNA occupancy of

all proteins at once, but without explicit information about pro-

tein identities. These and other experimental efforts over the past

decade have generated a large amount of data regarding the

chromatin landscape and its role in transcriptional regulation.

We now need computational models that can effectively integrate

these data to generate deeper insights into transcriptional

regulation.
A popular set of computational models use these data to

search for overrepresented DNA sequences bound by certain

DBFs; these are often applied in the setting of motif discovery

(Foat et al., 2006; Harbison et al., 2004; MacIsaac et al., 2006;

Tanay, 2006). More recently, models have been applied to

DNase-seq data to identify ‘digital footprints’ of DBFs (Chen

et al., 2010; Hesselberth et al., 2009; Luo and Hartemink, 2012;

Pique-Regi et al., 2011). However, many of these approaches

share certain drawbacks. First, protein binding is typically trea-

ted as a binary event amenable to classification: either a protein

binds at a particular site on the DNA sequence or it does not.

However, both empirical and theoretical work has demonstrated

that proteins bind DNA with continuous occupancy levels [as

reviewed by Biggin (2011)]. Second, most computational meth-

ods model the binding events for one kind of protein at a time

instead of taking into consideration the interactions among dif-

ferent kinds of DBFs, especially nucleosomes. Although the

work of Kaplan et al. (2011), Segal et al. (2008) and Teif and

Rippe (2012) are notable exceptions, these all consider small gen-

omic regions and include only a few TFs; Segal et al. (2008) did

not consider the role of nucleosomes. Third, and most import-

antly, almost all current methods fail to integrate different kinds

of datasets. This is suboptimal because data from one kind of

experiment only reveal partial information about the in vivo pro-

tein–DNA interaction landscape. For example, ChIP datasets

only contain binding information for one specific protein

under one specific condition; nuclease digestion datasets provide

binding information for all proteins, but do not reveal the*To whom correspondence should be addressed.
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identities of the proteins; and protein binding microarray (PBM)

experiments only look at sequence specificity of one isolated pro-

tein in an in vitro environment.

We previously developed a computational model of protein–

DNA interactions, termed COMPETE (Wasson and Hartemink,

2009), that overcomes the first two drawbacks above by repre-

senting the competitive binding of proteins to DNA within a

thermodynamic ensemble. Interactions between proteins and

DNA are treated as probabilistic events, whose (continuous)

probabilities are calculated from a Boltzmann distribution.

COMPETE can easily include a large number of DBFs, including

nucleosomes, and can efficiently profile entire genomes with

single base-pair resolution. However, a limitation of COMPETE is

that it is a purely theoretical model of binding, based on thermo-

dynamic first principles but not guided by data regarding in vivo

binding events. Indeed, it is possible for COMPETE to predict

superfluous binding events that are inconsistent with observed

data (Supplementary Fig. S1). It is therefore necessary to develop

a new computational framework for jointly interpreting experi-

mentally derived data regarding genomic occupancy within a

model built on the thermodynamic foundation of COMPETE.
Here, we develop just such a method: a general framework

that combines a thermodynamic model for protein–DNA inter-

actions and a new statistical model for learning from experimen-

tal observations regarding those interactions. Information from

different experimental observations can be integrated to infer the

thermodynamic interactions between DBFs and a genome. In

this particular study, we demonstrate the use of this framework

by integrating paired-end MNase-seq data, which reveal infor-

mation about the binding occupancy of both nucleosomes and

smaller (subnucleosomal) factors. Our framework also integrates

protein binding specificity information from PBM data and

produces a more accurate and realistic protein–DNA interaction

landscape than COMPETE alone, along with a mechanistic explan-

ation of MNase-digested fragments of different sizes. The cross-

validated performance of our framework is significantly higher

than several baselines with which we compared it. Our frame-

work is flexible and can easily incorporate other data sources as

well, and thus represents a general modeling framework for

integrating multiple sources of information to produce a more

precise view of the interaction landscape undergirding transcrip-

tional regulation.

2 METHODS

2.1 Modeling protein–DNA interaction

We model the binding of DBFs (e.g. TFs and nucleosomes) to DNA

along a probabilistic continuum, and we incorporate explicit competition

between different DBFs. The ensemble average of the probability with

which a particular DBF binds to a specific position of the sequence can be

derived from thermodynamic principles. To calculate this average prob-

ability, consider a specific binding configuration i from the ensemble,

where i can be viewed as an instantaneous snapshot of the dynamic

competition between DBFs for binding sites along the genome.

Following the Boltzmann distribution, the unnormalized probability wi

of configuration i can be shown to be

wi=
YNi

t=1

Xt � PðSt;EtjDBFtÞ

where t is an index over the Ni DBF binding sites in configuration i, Xt

denotes a weight associated with DBF t, while St and Et denote the start

and end position of the DBF binding site, respectively. PðSt;EtjDBFtÞ is

the probability of observing the DNA sequence between St and Et, given

that DBF t is bound there. To simplify notation, we have treated each

unbound nucleotide as being bound by a special kind of ‘empty’ DBF. If

we use pi to denote the probability of configuration i after normalization

by the partition function, we can write the probability that DBF t binds

at a specific position j as
X

i2Iðt;jÞ
pi, where I(t, j) is the subset of binding

configurations in the ensemble that have DBF t bound at sequence pos-

ition j.

This model can be formulated analogously to a hidden Markov model

(HMM) (Rabiner, 1989), in which the states correspond to the binding of

different DBFs and the observations are the DNA sequence. The various

probabilities, along with the partition function, can then be calculated

efficiently using the forward–backward algorithm. For TFs, we have

chosen to represent PðSt;EtjDBFtÞ, using a position weight matrix

(PWM), but more sophisticated models can also be used [e.g. relaxing

positional independence, or based on energies rather than probabilities

(Weirauch et al., 2013)]. Regardless, bindingmodels fromdifferent sources

and of different forms can be easily incorporated into our model, generat-

ing the appropriate states and sequence emission probabilities. We use the

curated PWMs from Gordân et al. (2011), derived from in vitro PBM

experiments, as the input protein binding specificities and consider them

fixed (though our framework also could allow them to be updated).

The analogues of HMM transition probabilities in our model are the

DBF weights, but these are not constrained to be probabilities. To allow

this flexibility, we adopt a more general statistical framework called a

Boltzmann chain (Saul and Jordan, 1995), which can be understood as an

HMM that allows the use of any positive real numbers for these weights.

Because of the analogy with an HMM, we henceforth refer to these DBF

weights as ‘transition weights’ and denote them collectively as a vector

X=ðX1;X2; . . . ;XDÞ, where D is the number of different kinds of DBFs.

We treat the D elements of X as free parameters, and we will fit them

using experimentally derived genomic data.

We should note that the DBF transition weights in a Boltzmann chain

are sometimes called ‘concentrations’. However, it is important to point

out that these transition weights are not the same as bulk cellular protein

concentrations, of the kind that can sometimes be measured experimen-

tally (Ghaemmaghami et al., 2003). Bulk cellular protein concentrations

are not necessarily indicative of the availability of a DBF to bind DNA

because they do not account for phenomena like subcellular localization

or extranuclear sequestration, protein activation through post-transla-

tional modification or ligand or co-factor binding, or the number of

DBFs already bound to DNA. In contrast, our transition weights cor-

respond to nuclear concentrations of active proteins that are free and

available to bind DNA. In this sense, our weight parameters are more

reasonably interpreted not as cellular concentrations but rather as the

chemical potentials of the DBFs for interacting with the genome.

2.2 Using paired-end MNase-seq data as a measure of

genomic occupancy level of DNA-binding proteins

We used paired-end MNase-seq data from Henikoff et al. (2011). Based

on their protocol, the length of the sequencing fragments correspond

roughly to the size of the protein protecting that part of the DNA; the

number of fragments mapping to the location correlates with the binding

strength or occupancy. Therefore, to measure the level of occupancy of

different DNA binding proteins, we separate the fragments into long

(140–200bp) and short (0–100bp) fragment groups, and count the

number of fragments in each group that cover a specific genomic location

(called long and short fragment coverage, respectively). The long frag-

ment coverage is used as a measure of the occupancy of large protein

complexes, which are mainly nucleosomes, while the short fragment
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coverage is used as a measure of the occupancy of smaller proteins, which

are mainly TFs.

To reduce noise in the MNase-seq data, we process the noisy fragment

data into binding profiles through thresholding and smoothing. We

define two thresholds: a bottom threshold Tb and a top threshold Tt.

Coverage values that are below Tb are converted to 0, while those

above Tt are converted to 1; coverage values between the two thresholds

are normalized linearly to [0,1]. We then smooth the track using a

Gaussian kernel of bandwidth Bm. We process long and short fragment

coverage data separately to get the large and small protein binding pro-

files, respectively (Fig. 1D and E). We choose Tb=200 and Tt=500,

with Bm=10 for short fragment coverage and Bm=30 for long fragment

coverage. These values give satisfying results in terms of reducing noise

while retaining clear peaks. We performed a sensitivity analysis and

observed that our results are largely unaffected across a broad range of

these parameters (Supplementary Fig. S2). We also note that MNase is

known to prefer to cut A/T compared with G/C. We assessed the severity

of this well-known bias (Supplementary Figs. S3 and S4) and observed

that it does not affect our final results, primarily because we are not using

profiles of the total number of cuts at each genomic position, but rather

using the full fragments to generate profiles of fragment coverage; while

the former might be sensitive to MNase bias, the latter is relatively in-

sensitive to the small fluctuations in fragment end locations introduced by

MNase bias.

2.3 Selecting a subset of TFs and promoter regions

Our framework has the capability to include all Saccharomyces cerevisiae

TFs. However, our choice of TFs is limited by available high-quality

binding preference data. In addition, adding more TFs increases the

dimensionality of the parameter space and therefore the computation

time required to explore the space. In this study, we chose a set of 42

TFs with available high-quality binding preference data. These TFs cover

a wide range of cellular functions including the widely studied transcrip-

tional regulators Reb1, Rap1, and Abf1 (possessing chromatin

remodeling activity), TFs involved in pheromone response (Ste12 and

Tec1), TFs involved in stress response (like Msn4), and TFs involved in

cell cycle regulation (Fkh1, Mbp1, and so forth). We also included some

TFs, like Pho2 and Phd1, that regulate a large number of genes according

to MacIsaac et al. (2006). While these 42 do not represent all yeast TFs,

they are collectively responsible for 66% of the genome-wide protein–

DNA interactions reported by MacIsaac et al. (2006) (at P50.005 and

conservation level 3).

Having selected our 42 TFs, we next chose a set of promoter regions

that, according to MacIsaac et al. (2006) (at P50.005 and conservation

level 3), are bound exclusively by those TFs. For this study, we focus on

81 such promoter regions. We extracted MNase-seq data for these loci as

follows. If the promoter is divergently transcribed, we extracted the

MNase-seq data between the two TATA elements, plus 200bp down-

stream of each TATA element. For the other (non-divergent) promoters,

we extracted MNase-seq data 500bp upstream of the TATA element (or

100bp upstream of the end of the upstream gene, whichever is smaller),

and 200bp downstream of the TATA element. Locations of TATA elem-

ents were taken from Rhee and Pugh (2012).

2.4 Incorporating MNase-seq data through an objective

function

We model MNase-seq data through a pseudo-likelihood function. To

calculate the function, we process the COMPETE output TF binding prob-

abilities as follows: the binding probability of each TF binding event is

expanded to a flanking region of Ce bp and is then dropped linearly to 0

for another Cr bp; we then sum the probabilities of all TFs (truncating

values41) and smooth the track using a Gaussian kernel of bandwidth Bc

to get a composite TF binding profile (Fig. 1C). We process the occu-

pancy profile in such a way for two reasons: (i) the resolution of the short

fragment coverage does not distinguish protection from adjacent pro-

teins, and (ii) MNase does not completely digest all unprotected DNA,

leaving some additional nucleotides flanking any TF’s actual binding site.

We choose Ce=Cr=Bc=10, though, as with the threshold and

A

B D

F

C E

Fig. 1. Overview of how the objective function is evaluated and iteratively optimized. (A) Predicted probability that each particular DBF binds at a given

genome position, as calculated by COMPETE, given current DBF weights. We then separate these probabilities into two profiles: (B) predicted nucleosome

binding profile and (C) predicted composite TF binding profile in which protein identities have been removed; the latter is smoothed to make it

comparable with a short fragment coverage profile. Similarly, we separate the observed MNase-seq fragments (F) into long (140–200bp) and short (0–

100bp) fragments, which are summed to produce measures of coverage. (D) Total long fragment coverage is processed into a large protein binding

profile, which is compared with predicted nucleosomal binding, arriving at Pearson correlation r1. (E) Total short fragment coverage is processed into a

small protein binding profile, which is compared with predicted composite TF binding, arriving at Pearson correlation r2. For this promoter, the quantity

h that appears in our objective function (the pseudo-likelihood) is simply the geometric mean of the two correlations, after they are rescaled to lie in the

interval [0,1]: h=1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1+r1Þ � ð1+r2Þ

p
. The complete pseudo-likelihood over all promoters is then optimized with respect to the DBF weights using the

inference method described below
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bandwidth parameters discussed above, varying the specific values tends

to have only small effects on the model predictions. We do not process

the nucleosome profile predicted by COMPETE, as the model already takes

nucleosome padding into consideration. We also capture the effect of the

pre-initiation complex (PIC) on the MNase-seq profile by adding an

empirical PIC protection shape to the predicted binding profile

(Supplementary Text and Supplementary Fig. S5).

For promoter region m, we calculate two correlations: the Pearson

correlation r1;m between the nucleosome binding profile and the

MNase-seq large protein coverage profile, and the Pearson correlation

r2;m between the composite TF binding profile and the MNase-seq small

protein coverage profile. The complete pseudo-likelihood function we

seek to maximize is defined as

LðXÞ=
YM

m=1

hmðXÞ

where hmðXÞ=
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1+r1;mÞ � ð1+r2;mÞ

p
, the geometric mean of the

two rescaled correlations for promoter region m (an example is shown

in Fig. 1). Note that hmðXÞ depends on the vector of DBF weights X. In

this study, M=81.

2.5 Inference method

We use Markov chain Monte Carlo (MCMC) to explore a posterior

distribution based on the pseudo-likelihood function. However, as cor-

relation measures the overall goodness of fit for many genomic locations

at once, our pseudo-likelihood function is much flatter than typical like-

lihood functions. This property can be useful in preventing overfitting,

but it also imposes some difficulty for parameter inference. To alleviate

this concern and allow for more efficient MCMC exploration, we apply a

temperature parameter � to each dimension of the search space to con-

centrate the mass of LðXÞ around its modes. We apply a possibly different

temperature to each dimension (i.e. each element of the vector X) because

the pseudo-likelihood in one dimension may be more or less flat than in

others. We base our choice of temperature parameter on the MCMC

acceptance rate, and empirically set � for each dimension to be one of

f0:1; 0:05; 0:01; 0:002g. Note that none of these choices change the local

maxima of our objective function in any way; they simply may make

convergence more efficient.

As for the prior over X, a nice feature of our framework is that we can

use non-uniform priors if there is reason to do so; later, we explore the

possibility of including mildly informative priors for certain TFs where

measurements of cellular concentrations in S.cerevisiae are available

(Ghaemmaghami et al., 2003). However, when no relevant information

is available, a uniform prior distribution is a natural choice. In what

follows, we use a uniform prior over ½�10; 2� for log transition weights

of TFs and a uniform prior over [0, 3] for the log transition weight of

nucleosomes. Such values are chosen based on the range of TF dissoci-

ation constants at their respective optimal binding sites [Kd, as defined

and computed by Granek and Clarke (2005)]: TF Sig1 has the highest log

Kd value of –2.5 and TF Asg1 has the lowest log Kd value of –7.6.

In our Gibbs-style MCMC, each iteration consists of an update for

each of the transition weight parameters in the model. On a commodity

computer cluster, we could compute roughly 25 such iterations per hour.

3 RESULTS

3.1 Overall inference performance evaluated by

cross-validation

We randomly split our 81 promoter regions into nine equal sets

and performed a standard 9-fold cross-validation: parameters
were trained on 72 promoter regions using MCMC and we

used the mean of the MCMC samples as trained DBF

weights X̂; we then calculated hðX̂Þ values for the nine held out

promoter regions. Figure 2 shows boxplots of hðX̂Þ values of all

the training and testing promoter regions from all the folds of

cross-validation. We compare the performance to five baselines:

average performance when log transition weights are drawn 1000

times uniformly under the prior; or setting the nucleosome tran-

sition weight to 35 and TF transition weights to 8 Kd, 16 Kd,

32 Kd or 64 Kd.
As Figure 2 shows, our learned model outperforms all five

baselines significantly. Note that hðXÞ=0:5 indicates no correl-

ation on average between the model predictions and observed

data. Median performance for the random baseline is still40.5

even with uninformed TF transition weights; this is because the

model’s emission parameters (derived from in vitro experimental

data regarding TF and nucleosome binding specificity) are highly

informed.

3.2 A mechanistic explanation for paired-end MNase-seq

data

Owing to in vitro experiments, our model has knowledge about

inherent DBF sequence specificities. The thermodynamic inter-

action and competition between these DBFs are accounted for

by COMPETE. By adding information about in vivo DBF binding

occupancy levels present in MNase-seq data, our framework can

now infer a DBF binding landscape that provides a mechanistic

explanation for the observed data.
Figure 3 illustrates examples of predicted binding profiles for

each DBF in six promoter regions in the test sets of the 9-fold

cross-validation, in comparison with the corresponding MNase-

seq binding profile tracks (see Supplementary Fig. S4 for raw

coverage and Supplementary Fig. S6 for additional comparisons

between composite predicted profiles and processed MNase-seq

fragment coverages). These examples span the full spectrum of

Fig. 2. Comparison of cross-validated inference performance with vari-

ous baselines. Data from the 81 promoter regions were split into nine

equal parts. A standard 9-fold cross-validation procedure was applied: 72

promoter regions were used as training data to obtain trained DBF

weights X̂; we then calculated hðX̂Þ values of the nine held out promoter

regions (testing results). ‘Cross validation training’ considers the hðX̂Þ

values for each promoter when used as training data. ‘Cross validation

testing’ shows the hðX̂Þ values for each promoter when used as testing

data. Uniformly randomly drawn TF transition weights and different

multiples of Kd are used as baseline comparisons. Variance is reduced

in the random baseline case because each result is the average of 1000

random samples
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our framework performance, from strong performance to weak

performance. In all cases, our predictions for the TF binding

profiles provide a good or fair explanation for the MNase-seq

data and are much more consistent with the data compared with

random baseline predictions (Supplementary Fig. S1).

One difficulty in interpreting high-throughput nuclease diges-

tion data is identifying DBFs at read-enriched regions.

Traditional motif matching is not satisfactory when there are

multiple potentially overlapping motifs, nor can it assess the

strength of protein binding. In contrast, our framework provides

a principled interpretation for the data in terms of distinct bind-

ing events, each with its own probability of occurrence based on

evaluating the probability of every possible binding configur-

ation in the ensemble. This is demonstrated, for example, in

the YDL012C and YPR016C promoter regions. Our approach

can also capture weak binding events, such as the Reb1 binding

events in the YPR016C and YNL157W promoter regions, which

are missed in ChIP-chip experiments (MacIsaac et al., 2006) but

are captured in ChIP-exo experiments (Rhee and Pugh, 2011;

Fig. 3).

Our predictions of nucleosome binding profiles match the

data well in spite of the fact that nucleosome positioning is

less precise than TF positioning. The predictions reflect the in-

trinsic uncertainty about nucleosome positioning related to their

mobility and only mild sequence preferences, especially when the

MNase-seq large protein binding profile is more noisy, as in the

promoter regions of YBL014C and YNL157W (Figure 3; see

Supplementary Fig. S4 for raw coverage).

3.3 Incorporating measurements of protein concentration

through prior distributions

We have demonstrated that our framework can achieve good

performance using non-informative priors. However, the frame-

work could potentially perform better by incorporating prior

information when it is available. For instance, Ghaemmaghami

et al. (2003) measured cellular protein concentrations using

western blots in S.cerevisiae during log phase growth. As dis-

cussed above, although cellular protein concentrations are not

precisely equivalent to the transition weights we are estimating,

the two still might be expected to loosely correlate with one an-

other. We can therefore use these measurements to construct

weak prior distributions for the corresponding DBF transition

weights. To account for the loose correlation between the two, as

Fig. 3. Predicted binding profiles versus MNase-seq binding profiles. For six promoter regions in our 81 promoter set, we plot the predicted binding

profiles when they were evaluated as testing data. We also indicate reported binding sites from ChIP-exo (Rhee and Pugh, 2011) underneath the predicted

binding profiles; these have the same color as the corresponding TF’s binding probability. No binding event is reported by MacIsaac et al., 2006,

(P50.001 and conservation level 3) for these promoter regions
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well as experimental measurement error, we use a truncated

normal prior for log transition weights with a large standard

deviation (SD) of 2 (so 1 SD in each direction corresponds to

multiplying the weight by 1/100 or 100, respectively). We calcu-

late the mean for this normal prior by converting measurements

from Ghaemmaghami et al. (2003) to molar concentration using

a yeast cell volume of 5 � 10�14 L (Bryan et al., 2010). The

resulting prior means are in the range of –8 to –6 in log scale.

Note that nine of the 42 TFs in our model do not have meas-

urements available, and thus their priors remain uniform, as

described above.
When we use this prior information, we observe no change

in training performance and a marginal increase in testing

performance (median hðX̂Þ increases by 0.013; Fig. 4). Such an

insignificant result could arise for multiple reasons: (i) the afore-

mentioned difference between cellular concentration and the

model’s transition weights means that the information provided

by the measured concentrations might not even be relevant,

(ii) the noisy physiological measurements of both cellular con-

centration and cell volume means that the measurements we used

might not be accurate, or (iii) the weak prior that we used in the

model because the measured concentrations are not trusted to be

precise means that the objective function landscape might change

only slightly.

4 DISCUSSION

We show that integrating information from experimental data

within a general framework built on a thermodynamic ensemble

model of competitive factor binding can improve the accuracy of

inferred protein–DNA interactions, providing a more biologic-

ally plausible view of the protein–DNA interaction landscape.

Such a landscape gives a mechanistic explanation for observed

paired-end MNase-seq fragments through various protein-bind-

ing events, each with its own probability of occurrence. Many of

those binding events are weak binding events that are typically

missed in other modeling methods, but are captured in our

framework; these weaker binding events are also supported by

higher resolution experimental data where available (Rhee and

Pugh, 2012). These weak binding events are important: it has
been reported that low-affinity protein–DNA interactions may
be involved in fine-tuning transcriptional regulation and are

common along the genome (Biggin, 2011; Segal et al., 2008;
Tanay, 2006). Our framework’s predictions agree with this view-
point: 72% of the binding events in our predicted profiles have a

binding probability less than 0.5. Our framework could thus
form an important basis for future computational work that
connects transcriptional activity with the protein–DNA inter-

action landscape.
Our framework does not successfully predict a few TF binding

events reported by high-resolution ChIP-exo experiments (Rhee
and Pugh, 2011), most notably some of the binding sites for Phd1

and Reb1. We believe the primary reason is occasional mis-
matches between our input TF PWMs and these proteins’
actual in vivo DNA-binding specificities. For Phd1, Rhee and

Pugh (2012) reported several distinct in vivo motifs. However,
the Phd1 PWM we used in our framework comes from in vitro
data (Zhu et al., 2009) and does not match the in vivo DNA-

binding specificity of Phd1 reported by Rhee and Pugh (2012).
Similarly, for Reb1, Rhee and Pugh (2012) reported that 40% of
Reb1 binding sites are so-called ‘secondary binding sites’, with

motifs that deviate from the TTAGGC consensus of the in vitro
PWM we used. This mismatch in DNA-binding specificity may
account for much of the discrepancy between our predicted pro-

files and reported binding sites. However, some caution should
be taken when interpreting in vivo ChIP data, as the assay cannot
distinguish between direct protein–DNA interaction and indirect

interaction (Gordân et al., 2009). We also note that our current
framework only includes a subset of all yeast TFs. Some unex-
plained short fragment coverage peaks, such as those in the

YBL014C promoter region, could indicate the binding of
DBFs that are not in our set. These and other discrepancies
may have an impact on our overall inference, resulting in missing

binding events (or possibly even superfluous binding events, be-
cause of the competition that is inherent in our model).
In the promoters of YNL157W and YDL012C, our predic-

tions do not include Rap1 binding events even though they are
reported in ChIP-exo experiments. However, we believe this
results from the nature of Rap1 binding: Lickwar et al. (2012)

report that Rap1 binding on non-ribosomal protein promoters,
like the two mentioned above, is highly dynamic and involves
fast turnover. Such binding events are possibly captured in ChIP

experiments because of cross-linking, but may be difficult to ob-
serve in an MNase-based digestion experiment if the latter does
not involve a cross-linking step. Incidentally, the two ChIP-deter-

mined Rap1 binding events are not close to MNase-seq small
fragment coverage peaks. One possible use of our framework for
extending the results shown here would be to incorporate data

from ChIP-based experiments and use the framework to estimate
parameters that reflect information from both kinds of data.
We demonstrate the use of prior information in our frame-

work through incorporating measured bulk cellular protein con-
centration. The model performance improved marginally, which
can be interpreted two ways. On the one hand, it is reassuring

that one need not have measured cellular protein concentrations
to perform effective inference. The fact that our uniform priors
work as well as having priors informed by measured concentra-

tions means that the measured concentrations available currently

Fig. 4. Comparison of cross-validation performance with and without

prior information regarding measured cellular protein concentration.

Performance for each promoter is measured by the geometric mean

[hðX̂Þ] of the two Pearson correlations defined in Figure 1. Each boxplot

shows the performance summary of the 81 promoter regions across all the

cross-validation trials
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are not critical for good performance. However, that said, it is
also reassuring that our framework has the ability to incorporate
this sort of prior information when available because we antici-
pate such data will only improve. As measurement technologies

enable us to move from bulk cellular concentrations toward
nuclear concentrations of active TFs, we anticipate that the
ability to incorporate prior information will become more

useful, if not for achieving better results then perhaps at least
for more rapid convergence toward optima when we move to
higher-dimensional inference (e.g. more TFs).

With adequately fitted parameters, our framework has the
potential to perform in silico simulation for various environmen-
tal conditions by changing the protein concentrations. For

example, we could simulate in silico heat shock by increasing
the concentration of heat shock response factors in our model.
We could also investigate how certain single nucleotide poly-
morphisms (SNP) affect the overall protein–DNA interaction

landscape, not just at the site of the SNP but propagating to
the surrounding region because of altered competition.
This work represents a first step toward a more general frame-

work. By specifying probabilistic distributions appropriate for
other kinds of experiments—like ChIP-seq, FAIRE-seq or
DNase-seq—the framework can integrate other sources of data

through a joint likelihood. As more and larger-scale sequencing
projects are carried out, such a framework will prove valuable for
integrating different pieces of information to infer a more precise
view of the protein–DNA interactions that govern transcrip-

tional regulation.
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