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1 Abstract

Understanding the dynamic regulation of gene expression in cells requires the
study of important temporal processes, such as differentiation, the cell division
cycle, or tumorigenesis. However, in such cases, the precise sequence of changes
is generally not known, few if any marker genes are available, and individual
cells may proceed through the process at different rates. These factors make it
very difficult to judge a given cell’s position within the process. Additionally,
bulk RNA-seq data may blur aspects of the process because cells at sampled at
a given wallclock time may be at differing points along the process. The advent
of single cell RNA-seq enables study of sequential gene expression changes by
providing a set of time slices or “snapshots” from individual moments in the
process. To combine these snapshots into a coherent picture, we need to infer an
“internal clock” that tells, for each cell, where it is in the process.

Several techniques, most notably Monocle and Wanderlust, have recently
been developed to address this problem. Monocle and Wanderlust have both
been successfully applied to reveal biological insights about cells moving through
a biological process. However, a number of aspects of the trajectory construc-
tion problem remain unexplored. For example, both Monocle and Wanderlust
assume that the set of expression values they receive as input have been curated
in some way using biological prior knowledge. Wanderlust was designed to work
on data from protein marker expression, a situation in which the number of
markers is relatively small (dozens, not hundreds of markers) and the markers
are hand-picked based on prior knowledge of their involvement in the process.
In the initial application of Monocle, genes were selected based on differential
expression analysis of bulk RNA-seq data collected at initial and final time-
points. In addition, Monocle uses ICA, which assumes that the trajectory lies
along a linear projection of the data. In general, this linearity assumption may
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not hold in biological systems. In contrast, Wanderlust can capture nonlinear
trajectories, but works in the original high-dimensional space, which may make
it more susceptible to noise, particularly when given thousands of genes, many
of which are unrelated to the process being studied. Another challenging aspect
of trajectory construction is the detection of branches. For example, a devel-
opmental process may give rise to multiple cell fates, leading to a bifurcation
in the manifold describing the process. Wanderlust assumes that the process is
non-branching when constructing a trajectory. Monocle provides the capability
of dividing a trajectory into a branches, but requires the user to specify the
number of branches.

In this paper, we present SLICER (Selective Locally linear Inference of
Cellular Expression Relationships), a new approach that uses locally linear
embedding (LLE) to reconstruct cellular trajectories. SLICER provides four
significant advantages over existing methods for inferring cellular trajectories:
(1) the ability to automatically select genes to use in building a cellular trajectory
with no need for biological prior knowledge; (2) use of locally linear embedding,
a nonlinear dimensionality reduction algorithm, for capturing highly nonlinear
relationships between gene expression levels and progression through a process;
(3) automatic detection of the number and location of branches in a cellular
trajectory using a novel metric called geodesic entropy; and (4) the capability to
detect types of features in a trajectory such as “bubbles” that no existing method
can detect. Comparisons using synthetic data show that SLICER outperforms
existing methods, particularly when given input that includes genes unrelated to
the trajectory. We demonstrate the effectiveness of SLICER on newly generated
single cell RNA-seq data from human embryonic stem cells and murine induced
cardiomyocytes.
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