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Glucocorticoids are potent steroid hormones that regulate immunity and metabolism by activating the transcription factor

(TF) activity of glucocorticoid receptor (GR). Previous models have proposed that DNA binding motifs and sites of chro-

matin accessibility predetermine GR binding and activity. However, there are vast excesses of both features relative to the

number of GR binding sites. Thus, these features alone are unlikely to account for the specificity of GR binding and activity.

To identify genomic and epigenetic contributions to GR binding specificity and the downstream changes resultant fromGR

binding, we performed hundreds of genome-wide measurements of TF binding, epigenetic state, and gene expression across

a 12-h time course of glucocorticoid exposure. We found that glucocorticoid treatment induces GR to bind to nearly all pre-

established enhancers within minutes. However, GR binds to only a small fraction of the set of accessible sites that lack en-

hancer marks. Once GR is bound to enhancers, a combination of enhancer motif composition and interactions between

enhancers then determines the strength and persistence of GR binding, which consequently correlates with dramatic shifts

in enhancer activation. Over the course of several hours, highly coordinated changes in TF binding and histone modifica-

tion occupancy occur specifically within enhancers, and these changes correlate with changes in the expression of nearby

genes. FollowingGR binding, changes in the binding of other TFs precede changes in chromatin accessibility, suggesting that

other TFs are also sensitive to genomic features beyond that of accessibility.

[Supplemental material is available for this article.]

The human glucocorticoid (GC) hormone cortisol, once released
from the adrenal glands, pervades every organ system in the body
(Chrousos and Kino 2009). At the cellular level, cortisol permeates
cell membranes and binds to GC receptor (GR). GR subsequently
translocates into the nucleus, where it acts as a transcription factor
(TF). GR binds to tens of thousands of locations across the human
genome and regulates the expression of hundreds to thousands of

target genes (Wang et al. 2004; Chen et al. 2008; Reddy et al. 2009;
Biddie et al. 2011; John et al. 2011; Sacta et al. 2016). GC exposure
leads to transcriptional activation and repression in roughly equiv-
alent proportions (e.g., Reddy et al. 2009). While target genes are
often involved in metabolism and immunity (Yamamoto 1985),
the specific genomic binding sites and effects of GR vary greatly
across cellular contexts (Chrousos and Kino 2009; John et al.
2011; Gertz et al. 2013).

Genomic responses to external stimuli like GCs are believed
to vary across cell types largely due to preprogrammed differences
in the chromatin landscape (Heinz et al. 2010, 2015; Zhang and
Glass 2013). GR has been shown to bind predominantly to sites
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with high DNase accessibility (John et al. 2008, 2011). At these
sites, GR also commonly cobinds with certain pioneer factors,
such as AP-1 TFs (Biddie et al. 2011) and CEBPB (Grøntved et al.
2013), which are so designated for their ability to bind sequence
motifs in condensed chromatin and to remodel chromatin to in-
crease accessibility (Zaret and Carroll 2011). The model that has
emerged from these findings posits that cell-specific pioneer factor
binding creates a chromatin landscape that predetermines GR
binding (John et al. 2011; Biddie and John 2014). It has also
been reported that GR can act as a pioneer factor at a minority of
binding sites, which have stronger GR motifs (John et al. 2008).

The prevailingmodel ofGR binding—inwhich accessibility is
the preeminent determinant—partially explains differences in GR
binding across cell lines (John et al. 2011). However, there are typ-
ically more than 100,000 accessible chromatin sites in a cell type
(Thurman et al. 2012) but only thousands to tens of thousands
of GR binding sites. We hypothesized that accessibility is one of
many genomic and epigenomic features—including TF binding,
histone modifications, and 3D conformation—that influence GR
binding. The relative influence of those features on GR binding
has not been systematically investigated.

Because GR predominantly binds distal enhancers, we fo-
cused on investigating how the state of those enhancers prior to
GC treatment directs GR binding and activity after GC treatment.
Enhancers are regions of the genome where TFs bind and regulate
expression of distal target genes (Kleinjan and van Heyningen
2005). During differentiation, combinations of pioneer factors
bind and prime the chromatin landscape for enhancer formation
and, ultimately, cellular identity (Heinz et al. 2010; Heinz and
Glass 2011). In addition to opening chromatin, certain pioneer
factors can increase methylation of the histone H3 lysine 4
(H3K4; SPI1 [Ghisletti et al. 2010; Heinz et al. 2010]; FOXA1
[Sérandour et al. 2011; Jozwik et al. 2016]). Once established, mul-
tiple genomic and epigenetic features mark the state of an active
enhancer, including enhanced chromatin accessibility (Gross
and Garrard 1988; Thurman et al. 2012), binding of the histone
acetyltransferase EP300 (Heintzman et al. 2009; Visel et al.
2009), acetylation of H3 lysine 27 (H3K27ac) (Creyghton et al.
2010), and monomethylation of H3K4 (H3K4me1) (Heintzman
et al. 2007; Koch et al. 2007). At steady state, TFs bind in dense clus-
ters at enhancers (Moorman et al. 2006; Garber et al. 2012;
Gerstein et al. 2012; Yan et al. 2013; Siersbæk et al. 2014) to a de-
gree that cannot be explained by accessibility or motif strength
alone (Morgunova and Taipale 2017).

To characterize the relationship between the enhancer land-
scape and GR binding, we tracked the dynamics of (1) TF and his-
tone modification occupancy by ChIP-seq, (2) chromatin
accessibility by DNase-seq, and (3) gene expression by RNA-seq
across a 12-h time course of GC exposure in a well-studied human
epithelial lung cell line, A549.

Results

To investigate the dynamics of the GC response in human cells,
we measured changes in genomic and epigenomic state across a
time course of GC exposure. To do so, we treated human A549
cells, a type II lung carcinoma cell line commonly used to study
the GC response, with the synthetic GC dexamethasone (dex)
for between 30 min and 12 h. Then, at 12 points along that time
course, we measured chromatin accessibility with DNase-seq
(Song and Crawford 2010), covalent histone modification occu-
pancy with ChIP-seq (Johnson et al. 2007), and gene expression

with RNA-seq (Mortazavi et al. 2008). We also measured the occu-
pancy of several TFs with ChIP-seq. Those TFs include CEBPB,
which colocalizes with GR (Grøntved et al. 2013) and is strongly
dex-induced in A549 cells (false-discovery rate [FDR] < 0.01)
(Supplemental Fig. S1A); the AP-1 subcomponents FOSL2, JUN,
and JUNB, which also commonly colocalize with GR (Biddie
et al. 2011); and additional TFs induced by dex in A549 cells,
namely, BCL3 andHES2 (Reddy et al. 2009). In total, we completed
more than 700 genome-wide assays and generated more than 21×
109 sequencing reads (Fig. 1A; Supplemental Tables S1–S4). To
limit potential artifacts due to differences in cell density, all cell
cultures were grown to confluence before initiating treatments
(Supplemental Fig. S1B).

We identified 2184 differentially expressed protein-coding
genes at a FDR <0.01. Approximately equivalent numbers of genes
were up-regulated and down-regulated (Fig. 1B). Up-regulated
genes were enriched for lipid metabolic process gene ontology
terms, including TFCP2L1 and ACSL1. Down-regulated genes
were enriched for cell division–related terms and response to stress
terms, including the genes PLK2, JUN, and IER5 (Supplemental Fig.
S1C). These results are consistentwith the known effects ofGCs on
lipidmetabolism and stress response (Sapolsky et al. 2000; Macfar-
lane et al. 2008).

We also tested for changes in TF binding and chromatin ac-
cessibility in comparison to the pre-dex time point and found
widely varying proportions and numbers of differential sites de-
pending on the factor assayed (FDR<0.1) (Fig. 1C). Dex stimulated
a universal increase in GR occupancy over the time course, as an-
ticipated. For nearly all other TFs assayed, dex both increased
and decreased occupancy at a substantial fraction of binding sites
(Fig. 1C). Three quarters of the approximately 20,000 binding sites
for the transcriptional coactivator EP300 showeddynamic binding
over the time course, and similar numbers of sites had increased
EP300 occupancy as had decreased EP300 occupancy (differential
and dynamic here and throughout refer to a significant change
from the pre-dex time point). In sharp contrast, binding of the in-
sulator protein CTCF remained largely unchanged throughout the
time course (Fig. 1C).

TF binding dynamics are coordinated specifically

within enhancers

To characterize the relationship between changes in TF binding
and changes in gene expression, we first annotated TF binding
sites by genomic location with respect to protein-coding gene fea-
tures. GR is known to bind distal to promoters (Reddy et al. 2009),
and here, 86% of GR binding sites occurred >3 kb from the nearest
protein-coding gene transcription start site (TSS) (Fig. 1D). For
comparison, in the same cell line, 26%of POLR2Abinding sites oc-
curred in such distal regions (The ENCODE Project Consortium
2012). While the relative ratio of promoter-distal to promoter-
proximal sites varied widely across TFs (Fig. 1D), for all TFs differ-
ential binding were enriched in promoter-distal (except for GR
and CTCF, which had too few nondynamic or dynamic sites, re-
spectively, to perform a comparison; Fisher’s exact test, P<1.5 ×
10−5) (Fig. 1E). Thus, GC-responsive TF binding sites were prefer-
entially located in nonpromoter regions.

Because TF binding sites cluster in the genome (MacArthur
et al. 2009; Yip et al. 2012), we hypothesized that differential TF
binding sites should preferentially colocate. In all pairwise com-
parisons across all TFs and the set of DNase I hypersensitive
sites (DHSs; again, with the exception of GR and CTCF for the
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same reasons as above), we found that sets of dynamic sites co-oc-
curredmore often than did sets of nondynamic sites (Fisher’s exact
test, P<10−100) (Fig. 1F).

Given that dynamic TF binding sites were enriched for co-
occurrence and were enriched in promoter-distal regions, we hy-
pothesized that the coordinated changes in TF binding that we
observed were concentrated specifically within enhancers. To
test this, we first defined active enhancers as sites distal to pro-
tein-coding gene TSSs and with EP300 binding, open chromatin,
and flanking enrichment of H3K4me1 and H3K27ac (Supplemen-
tal Fig. S1D). By these criteria, we identified approximately 16,000
enhancers active in at least one time point during the 12-h time
course. Prior to dex exposure, the vast majority of enhancers
were preprogrammed (H3K27ac+, 91%) and only a small minority
of enhancers were poised (H3K27ac-, H3K4me1+, 3%) or latent

(H3K27ac-, H3K4me1-, 5%), consistent with previous studies (Sup-
plemental Fig. S1E,F; Biddie et al. 2011; John et al. 2011). However,
we did not observe discrete clusters of enhancers based on initial
premarking but instead observed a spectrum of initial activation
in terms of flanking H3K4me1 and H3K27ac occupancy (Supple-
mental Fig. S1G).

To test whether TF binding sites were enriched in enhancers,
we compared the numbers of overlapping TF binding sites in
enhancers and in non-EP300-bound distal DHSs. To reduce con-
founding, we selected subsets of enhancers and non-EP300-bound
distal DHSs that matched in chromatin accessibility (Supplemen-
tal Fig. S1H). A plurality of these enhancers bound seven of the
eight TFs tested, with CTCFmost commonly absent (95% of seven
factor-bound sites), while a plurality of non-EP300-bound distal
DHSs showed binding of a single factor, most commonly CTCF

BA C

D E F G

H I J K L M

Figure 1. Dynamics of the genomic GC response are highly coordinated in enhancers and correlate with changes in gene expression. (A) Schematic
shows experimental design for dex exposure time course and summary of sequencing effort. (B) Heatmap shows log2 fold change in gene expression
for all dex-responsive genes over the time course as assayed by RNA-seq, quantified at the gene-level, and hierarchically clustered by complete linkage.
(C ) Bar plots show the proportion (above) and the total number (below) of differential sites across all ChIP-seq peak sets and DHSs, split into sets with in-
creased and decreased signal with respect to the pre-dex time point. (D) Bar plot shows the proportion of ChIP-seq peaks and DHSs by genomic annotation
with respect to protein-coding genes. (E) Heatmap shows the enrichment of differentially bound (or accessible) peaks in distal regions (distal intergenic or
intron from D) versus nondynamic peaks. (N/A means not applicable.) (F ) Heatmaps show Jaccard index of overlap for sets of nondynamic peaks (left) and
for dynamic peaks (right). (G) Heatmap represents mean Pearson correlation coefficients in log2 fold change in binding of TFs within distal non-EP300-
bound DHSs (left) and enhancers (right) as measured by ChIP-seq. (H) Cumulative distribution of distance of protein-coding genes by dynamics class
to nearest neighboring enhancer with increased EP300 upon dex exposure. (I) Same as H, except distances are to enhancers with decreased EP300.
(J) Plot shows mean log2 fold change of all differentially expressed genes and 1000 randomly selected nondifferentially expressed genes, all sorted in de-
scending order (left). Data points for selected genes discussed in text are annotated and colored. Bar plot shows number of enhancers within increased
EP300 and decreased EP300 within 20 kb (right) of the genes ranked at left. (K) Proportion of variance explained in mean log2 fold change in expression
(R2; y), and standard error of R2, as a function of size of thewindow (x) withinwhich the ChIP-seq andDNase-seq datawere summed. Epigenomic datawere
summed either in the full flank or in subsets of the full flank as indicated.Mappings in the 3-kb TSS-proximal region were ignored in order to focus solely on
distal regions. (L) Standardized estimated coefficients shown for the elastic net model in which change in expression was regressed on change in control-
subtracted ChIP-seq andDNase-seq signal in enhancers within 60 kb of genes (see K ). Standard deviations of coefficients are shown,whichwere computed
by estimating coefficients from1000 bootstrap replicates. (M ) Bar plot shows relative size of the genomic region covered by the enhancer set within 100 kb
of all tested gene TSSs compared with the full 100-kb windows.
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(81% of single factor-bound sites and 27% of distal DHSs in total)
(Supplemental Fig. S1I). We hypothesized that the underlying
characteristics that promote shared TF binding in enhancers
would also promote similar TF binding dynamics across factors
and within enhancers. We found that TFs had highly correlated
binding dynamics specifically within enhancers (Fig. 1G; Supple-
mental Fig. S1J). Although change in GR binding poorly corre-
lated with change in binding of other TFs, we later show that
GR had an idiosyncratic binding profile poorly captured by linear
associations and that its binding associated most strongly with
a particular subclass of enhancer by activation dynamics. To
ensure that our results of increased binding correlation in enhanc-
ers were not skewed by the presence of CTCF in distal DHSs,
we repeated our analysis after excluding CTCF sites from the
set of distal DHSs and rematching for accessibility obtained nearly
identical results (Supplemental Fig. S1K). Our results suggest
that the genomic GC response is largely promoter-distal, coordi-
nated across a variety of TFs, and coordinated specifically within
enhancers.

Changes in enhancer activity associate with changes

in gene expression

Given that enhancers, by definition, increase the expression of tar-
get genes (Kleinjan and van Heyningen 2005), we hypothesized
that changes in TF binding and histone modifications within en-
hancerswould correlatewith changes in gene expression of nearby
genes. Up-regulated geneswere nearer to enhancers with increased
EP300 than were nondynamic and down-regulated genes (Mann-
Whitney U test, P< 10−100, P=2.2 ×10−55, respectively) (Fig. 1H),
and down-regulated genes were nearer to enhancers with de-
creased EP300 than were nondynamic and up-regulated genes
(Mann-Whitney U test, P=1.2 × 10−7, P=1.73×10−11, respective-
ly) (Fig. 1I). Furthermore, the mean log2 fold change in expression
associated with the number of enhancers with increasing and de-
creasing EP300 within 20 kb (t-test, P<2.7 ×10−15), and this asso-
ciationwas weaker when only considering the binary presence of a
dynamic enhancer (χ2 test, P=2×10−26) (Fig. 1J). Our results sug-
gest that changes in enhancer activity associate with changes in
gene expression and that multiple enhancers may contribute to
dex-responsive expression dynamics of a target gene.

We next investigated the relationship, more generally, be-
tween promoter-distal (>3 kb) changes in TFs and histone modifi-
cation occupancy and changes in gene expression. We modeled
the log2 fold change in expression as a linear function of the
log2 fold change of TF and histone modification occupancy
summed in regions around the TSS. We shrunk coefficient esti-
mates using elastic net (Zou and Hastie 2005). We found that the
proportion of variance explained generally increased as wider
TSS-flanking regions were considered yet plateaued after around
20–30 kb of flank was considered (Fig. 1K). After limiting the scope
of TF and histone modification occupancy to enhancers, which
comprised 1.6% of gene flank regions (Fig. 1M), the proportion
of variance explained decreased by only 30% (Fig. 1K). Further-
more, the variance explained by enhancers was much greater
than that explained by other size-matched sets of distal sites
(e.g., at 60 kb, t-test, P<10−100). These results suggest that the
changes in TF and histone modification occupancy in promoter-
distal regions most germane to changes in gene expression are
largely concentratedwithin enhancers. The featuresmost positive-
ly associated with gene expression within those enhancers were
EP300, JUN, H3K27ac, and GR (Fig. 1L).

GR binds pervasively to enhancers

The increased coordination in GC-responsive TF binding dynam-
ics in enhancers compared with non-EP300-bound distal DHSs
led us to question the difference between the two sets in terms
of GR binding. We first examined patterns in GR binding agnostic
to other site-specific features. GR binding waned over the 12-h
time course (Fig. 2A; Supplemental Fig. S2A), coincident with de-
creasing GR expression (FDR<0.1) (Fig. 2A). GR binding was max-
imal at the earliest assayed time point (0.5 h of dex exposure)
(Fig. 2A), suggesting that considerable binding dynamics occurred
earlier than 30min.We therefore assayed GR binding by ChIP-seq
every 5 min for the first 25 min of dex exposure. That revealed
approximately 44,000 additional GR binding sites and maximal
GR binding at 15–20 min of dex exposure (Fig. 2B; Supplemental
Fig. S2B). Nearly all of the GR binding sites present at later time
points (0.5–12 h dex; 99.3%) were also present before 0.5 h of
dex exposure (Fig. 2B).

We next compared distal DHSs and enhancers in GR binding.
GRbound to nearly all enhancerswith initial EP300 binding (98%)
within 5 min of dex exposure, while at the same time point GR
bound only 31% of distal non-EP300/non-CTCF DHSs with initial
accessibility (Fisher’s exact test, P<10−100) (Fig. 2C). The observed
difference in overlap with GR binding sites could not be attributed
to the larger size of the distal DHS set (Supplemental Fig. S2C). Our
results demonstrate that GR binds rapidly and pervasively to near-
ly all enhancers.

Based on prevailing models of GR binding site selection, we
hypothesized that the preferential binding of GR to enhancers
could be explained by differences in accessibility ormotif strength.
Enhancers were enriched for accessibility compared with non-
EP300DHSs (Supplemental Fig. S1H), yet aftermatchingenhancers
and distal DHSs in accessibility, GR binding remained overwhelm-
ing greater in enhancers (Fig. 2D, 1 h dex), suggesting that accessi-
bility alone weakly explains GR binding preferences to enhancers.
Furthermore, across the matched sets, enhancers did not have
highermeanGRmotif strength, demonstrating that the difference
in GR binding could not be attributed to differences in motif
strength (one-sided t-test, P>0.05). To more directly test whether
differences in GR binding could be attributed to differences in GR
motif content, we searched for the GRmotif in enhancers, in distal
non-EP300DHSs, and in random intergenic sequences. Nearly 800
sequences in the three sets had identical GRmotifs (Supplemental
Fig. S2D). Across these matched sets, GR binding was over-
whelmingly greater in enhancers than in the other two sets at 1 h
of dex exposure (paired t-test, P<10−100) (Supplemental Fig. S2E).
Together, our results demonstrate that factors beyond accessibility
and motif content determine GR binding site preferences.

To identify those factors and to quantify their relative contri-
butions to GR binding, we modeled GR binding to enhancers, to
randomly chosen distal non-EP300-boundDHSs, and to randomly
chosen size-matched intergenic intervals. We modeled GR bind-
ing per assayed time point as a binary response (peak or no peak)
dependent on continuous measures of pre-dex TF occupancy,
histone modification occupancy, accessibility, and GR motif
strength. We used elastic net with cross-validation to limit the
number of nonzero predictors and shrink coefficient estimates
(for more details, see Methods; Zou and Hastie 2005). Elastic net
is known to performwell in regression tasks with highly correlated
predictors and tends to include or exclude groups of correlated
predictors into the final fitted model (Friedman et al. 2010). The
model predicted binary GR binding with high sensitivity and
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specificity (area under the receiver operating characteristic curve
[AUC] across the time course >0.93) (Supplemental Fig. S2F).
Early GR binding was predicted with greater accuracy than later
GR binding (Supplemental Fig. S2F, inset), which may be ex-
plained by the fact that all predictors except GR motif strength
were snapshots of pre-dex genomic features (Fig. 1C). However,
early (<30min) and late (≥30min) GR binding was assayed in sep-
arate experimental batches, which may also explain the slight
change in model performance between early and late time points.
Initial EP300, JUNB, and CEBPB binding were most strongly posi-
tively associated with early GR binding (Fig. 2E). After 30 min of
dex exposure and through the remainder of the 12-h time course,
GR motif strength was most strongly positively associated with
GR binding (Fig. 2E). It should be noted, however, that correlated
features such as TF and histone occupancy share coefficient
strength (jointly penalized) as a result of the penalization scheme
(Friedman et al. 2010). H3K27acwas consistently positively associ-
ated with GR binding throughout the time course. When all sites
that overlapped CTCF sites were excluded from the analysis, the
trends held (Supplemental Fig. S2G). Although chromatin accessi-
bility was greater in sequences bound by GR (Mann-Whitney
U test, P<10−100) (Supplemental Fig. S2H), after controlling for dif-
ferences in other variables, accessibility remarkably did not associ-
ate with GR binding at most time points (Fig. 2E; Supplemental
Fig. S2G).WhenTFoccupancy datawere excluded from the predic-
tive model, initial DNase-seq signal was positively predictive of
subsequent GR binding but was less predictive than enhancer fea-
tures like H3K27ac (Supplemental Fig. S2I). Together, these results
suggest that accessibility may serve as a proxy for TF binding but
that accessibility is unlikely to be the primary means by which

TF binding encourages GR binding. Although our correlative re-
sults cannot inform on whether chromatin accessibility is neces-
sary for GR binding, they do suggest that chromatin accessibility
is not sufficient for GR binding. More important determinants of
GR binding may include EP300 binding, motif strength, pioneer
factor binding, and histone modifications.

We observed two distinct modes of GR genomic recruitment
in terms of the underlying determinants. These two modes of GR
binding can be unified by amodel in which initial enhancermarks
strongly determine GR binding in the immediate term following
dex exposure. GR increases activation at sites that also have strong
motifs by, for example, recruiting EP300 (Kamei et al. 1996; Yao
et al. 1996), which shifts the balance of GR recruitment toward
those motif-driven sites. We assessed this model using ChIP-seq
data. We first estimated initial activation for each enhancer. To
do so robustly, we performed principal component analysis
(PCA) on initial occupancy of EP300 and flankingH3K27ac and in-
terpreted PC1-transformedoccupancy data as representative of ini-
tial enhancer activation (Supplemental Fig. S2J,K). We found that
GR initially bound most strongly to enhancers with the highest
initial activation. However, the influence of initial activation grad-
ually waned over the first half hour (Fig. 2F). Simultaneously, GR
recruitment steadily increased in enhancers with stronger GR mo-
tifs (Fig. 2F), and these enhancers also gained EP300 binding
(Supplemental Fig. S2L).We estimated the relative influence of ini-
tial enhancer activation and GR motif content by fitting a multi-
variate linear regression model to each time point and observed
opposing dynamic trends in the influence of the two variables
(Supplemental Fig. S2M). Our results suggest that enhancer activa-
tion andGR binding function together in a positive feedback loop,

E F

B

A

C

D

Figure 2. Chromatin accessibility does not predetermine GR binding. (A) Line plot shows mean log2 fold change in GR binding in enhancers over time
course (orange) as well as the expression ofGR over the time course (black) as assayed by RNA-seq, quantified at the gene-level, andmeasured in transcripts
permillion (TPM). Error bars, SD across replicates. (B) Venn diagram shows overlap of GRChIP-seq peaks called at early dex exposure time points (5–25min)
and at late time points (0.5–12 h). (C) Venn diagram shows the number of distal non-EP300-/non-CTCF-bound preaccessible DHSs and enhancers with
initial EP300 binding within 500 bp of GR binding sites at 5 min of dex exposure. (D) Heatmaps show DNase-seq and input-subtracted ChIP-seq signal in
reads per million (RPM) in chromatin accessibility-matched distal non-EP300-/non-CTCF-bound preprogrammed DHSs (left) and preprogrammed EP300
sites (right). Above, aggregate profile plots showmean RPM per base pair across sites in heatmaps. Regions shown range from −1 to +1 kb from site center.
(E) Schematic of elastic net regression model (top) is shown along with estimated nonzero coefficients (below) across the time course. Error bars, SD of
coefficient estimates across 1000 bootstrap samples. (F) Box-and-whisker plots show log2 fold change in standardized GR binding every 5 min for the first
25 min across the set of all enhancers split into quintiles either by initial enhancer activation (left) or by GRmotif strength (right). Observations greater than
1.5× interquartile range beyond the first or third quartiles are shown as outliers. Ordinary least squares regression lines are shown in green and red.
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yet the initial enhancer landscapenevertheless has a substantial ef-
fect on the ultimate GR binding distribution.

Across cellular contexts, GR binds preferentially to enhancers

Ourmodel of GR recruitment extends the receivedmodel inwhich
chromatin accessibility is preeminent to include other important
factors, including marks and factors associated with enhancers.
We reanalyzed published data sets (Supplemental Table S5) to
test the updated model, including GR binding data under varied
dex concentrations and in different cellular contexts. We recapitu-
lated the finding of Reddy et al. (2012) that enhancers with
GR binding at low dex concentration had increased initial accessi-
bility (dex hypersensitive vs. low-sensitive; Mann-Whitney U test,
P=1.1 ×10−14); however, the difference was starker in terms of ini-
tial EP300 (dex hypersensitive vs. low-sensitive; Mann-Whitney
U test, P<10−100) (Fig. 3B,C). In fact, after controlling for differenc-
es in initial EP300 occupancy in a multivariate linear regression,
initial chromatin accessibility only marginally associated with
dex dosage sensitivity of enhancers (Fig. 3D).

A corollary of the updatedmodel of GR recruitment is that GR
binding sites that do not overlap preprogrammed enhancers will
have stronger GR motif scores than binding sites that do overlap
preprogrammed enhancers. We tested this hypothesis across
diverse cellular contexts for which GR and EP300 binding data
were available in stimulated and unstimulated treatments, respec-

tively, and included pioneer factor (AP-1 factor, CEBPB) binding
site intersections where available. As expected and across all cellu-
lar contexts, GR binding sites with initial EP300 binding had
weaker median GR motif strength than did GR binding sites with-
out initial EP300 binding (Mann-Whitney U test, P<1.77×10−49)
(Fig. 3E). While the proportion of EP300 binding sites to which
GR recruited varied across cell line (Fig. 3F), our model of enhanc-
er-driven GR recruitment applies across cellular contexts. For the
one examined cell model in which GR binding was assayed at
more than one time point, the Mus musculus 3134 mammary cell
line, the proportion of GR binding sites that overlapped EP300
binding sites decreased significantly (74.5% to 67%) between
20 and 60 min of corticosterone exposure (Fisher’s exact test, P=
1.88×10−66) (Fig. 3F), consistent with our model in which the in-
fluenceof initial enhancer features onGRbindingwanesover time.

GCs initiate a cascade of genomic events

Following GR recruitment, enhancers should undergo changes in
TF binding and histone modifications reflective of differential ac-
tivation. To study these changes, we tested for differential TF occu-
pancy and accessibility within enhancers and differential histone
occupancy in 1-kb enhancer flanks at each post-dex time point
(compared with pre-dex and using negative binomial regression)
(Heintzman et al. 2007; Nie et al. 2013). GCs caused differential oc-
cupancy of EP300 andH3K27ac in 73.4% and 72.8% of enhancers,

respectively, across the time course (at
0.5–12 h dex) (Fig. 4A; Supplemental
Fig. S3A,B). The majority of enhancers
also had changes in AP-1 complex bind-
ing (JUN, 66.1%; JUNB, 65.3%; FOSL2,
40.3%) and 41.5% of enhancers had
changes in CEBPB binding (Fig. 4A; Sup-
plemental Fig. S3A,B). Our results dem-
onstrate that saturating concentrations
of dex can lead to global shifts in enhanc-
er activation.

To determine the order of changes
within enhancers, we computed the
proportion of enhancers that had differ-
ential signal prior to or at each dex expo-
sure time point. We observed a temporal
cascade of genomic events following GC
stimulation in which rapid changes in
GR binding was followed immediately
by the redistribution of EP300, nearly
simultaneous changes in pioneer factor
binding and H3K27ac, gradual changes
in chromatin accessibility, and, lastly,
changes in H3K4 methylation (Fig. 4B,
C; Supplemental Fig. S3A–E; Supplemen-
tal Table S6). Changes in TF binding gen-
erally preceded changes in accessibility
(Supplemental Fig. S3F,G). These results
imply that GR binding may enable re-
cruitment of other TFs by modifying en-
hancer attributes, like EP300 binding and
H3K27ac occupancy, prior to changes in
accessibility, and again call into question
the absolute preeminence of chromatin
accessibility in the determination of TF
binding.

E

F

BA C D

Figure 3. GR binds to enhancers across cellular contexts. (A) Change in GR binding shown for three
classes of enhancers defined by GR binding responsiveness to varying dex concentrations. (B) Initial
abundance of EP300 ChIP-seq (left) and DNase-seq (right) in enhancers by classes in A. Abundance in
log2 counts per million (log2 CPM). (∗∗∗) P<0.001. (C ) Ratio of log2 CPM EP300 ChIP-seq and DNase-
seq in dex hypersensitive versus low-sensitive sites. (∗∗∗) P<0.001. (D) Estimated coefficients of a series
of linear models regressing change in GR binding by dex concentration on initial EP300 ChIP-seq abun-
dance and initial DNase-seq abundance after standardizing all variables (equation shown above). (E) Sets
of GR binding sites across a variety of cellular contexts were split into quintiles by GR motif strength. Bar
plots show the proportions of GR sites by intersectionwith EP300 sites and selected TF sites that fall within
each quintile. (∗∗∗) P<0.001. (F ) Venn diagrams show overlap of GR binding sites with EP300 sites and
selected TF sites across a variety of cellular contexts corresponding to E.
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Based on our observation that GC responses were highly
coordinated across features, we reasoned that an integrated en-
hancer model that includes evidence from multiple assays and
time points should enable the identification of dex-responsive en-
hancers. We trained a multivariate hidden Markov model (HMM)
to classify dex-responsive enhancers as verified by a genome-scale
high-throughput reporter assay (Arnold et al. 2013; Vockley et al.
2016). The trained model, which achieved high cross-validation
accuracy (AUC=0.80), benefitted from the integration of multiple
epigenomic signals in a temporally and spatially aware manner
(Supplemental Fig. S3H,I; Vockley et al. 2016).

Motif-directed binding drives changes in EP300 occupancy

at enhancers

The observation that GR binding was common to nearly all en-
hancers, including those with divergent EP300 dynamics, led us
to search for features that differentiate dynamic outcomes.We first
tested whether the degree of change inGR binding associated with

thedegreeof change inEP300bindingus-
ing simple linear regression. Change in
GR signal in enhancers was strongly pos-
itively associated with change in EP300
signal across the entire time course
(t-test, P<10−100). This association gener-
ally increased over the time course. After
adding an interaction term to regres-
sion model to allow for enhancers with
different EP300 dynamics to vary in
association with the change in GR bind-
ing, we found that the positive associa-
tion was largely driven by changes in
activated rather than deactivated en-
hancers (analysis of variance F-test, P<
10−100) (Fig. 5A,B). We further found
that GR binding waned more rapidly in

enhancers with decreased EP300 binding than in enhancers
with increased EP300 (Mann-Whitney U test, ≥15 min dex expo-
sure, P<10−100) (Fig. 5B). Enhancers with increased EP300were de-
pleted for overlap with transient GR binding sites (<2 h, except
5 min; Fisher’s exact test, P<7.7 ×10−10) and were enriched for
overlap with persistent GR binding sites (>2 h; Fisher’s exact test,
P<1.2 ×10−6) in comparison to enhancers with unchanging
EP300 (Fig. 5D,E). Differences in overlap with GR binding sites by
duration were subtle between enhancers with decreased compared
with unchanging EP300 (Fig. 5D,E). Together, our findings suggest
that strong increases inGRbinding lead to increases in EP300bind-
ing. In ourmodel of GR binding elaborated above,GR and enhanc-
er marks such as EP300 are mutually reinforcing in the sense that
increased GR binding leads to enhancer activation, which in turn
leads to increased GR binding. At activated sites, this positive feed-
back should manifest as persistent GR binding, as observed here
(Fig. 5C). Also consistent with this model is the observation that
GR binding wanes at deactivated enhancers (Fig. 5C), which our
model suggests may be due to the loss of enhancer marks.

BA C

Figure 4. The extent and timing of GC-responsive changes in TF binding, histone modifications, and
accessibility in enhancers. (A) Bar plot shows the proportion of enhancers with differential ChIP-seq or
DNase-seq signal at some dex exposure time point compared with pre-dex levels. To be called differen-
tial, an enhancer also had to have enriched signal above background, i.e., a peak, at some point in the
time course. (B) Line plot represents cumulative proportion of enhancers with increasing signal at or prior
to each time point, scaled to unity, and smoothed by piecewise cubic Hermite interpolating polynomial
splines. (C ) Same as B, except for enhancers with decreasing signal.

E F

B

A C D

Figure 5. Direct GR binding drives changes in EP300 binding in enhancers. (A) Lineplot displays estimated coefficients in regression of change in EP300
binding on change in GR binding in enhancers. Either all enhancers were used to fit model (black) or subsets of enhancers based on EP300 dynamics, which
are displayed as indicated. Standard errors of coefficients shown as semitransparent ribbon. (B) Scatter plots compare log2 fold change in GR binding and in
EP300 binding in enhancers at 0.5 and 12 h of dex exposure. Separate regression lines are shown with 95% confidence bands for each enhancer class
indicated in A. (C) Heatmap shows the log2 fold change in GR binding in enhancers with increased, nondynamic, and decreased EP300 hierarchically clus-
tered by complete linkage and sorted in descending order by change in binding (below). Discontinuity in x-axis label indicates where sampling frequency
shifts from every 5 min to approximately every hour. Line plot shows mean across all enhancers by dynamics class (above). (D) Bar plot displays the pro-
portion of enhancers, by EP300 dynamics class, that overlaps GR binding sites by the last time point at which GR was observed to bind above background.
(E) Heatmap shows the log2 odds ratio of enrichment of overlap to the GR binding site sets in D for enhancers with dynamic EP300 versus enhancers with
nondynamic EP300. (F ) Heatmap shows elastic net logistic regression coefficients for RSAT-clustered JASPAR TF motifs with nonzero coefficients in the pre-
diction of gains in EP300 by dynamic class. Each column represents results from an independent model where enhancer sets were split by time of increased
EP300 binding as in Supplemental Figure S4B and the background set was all enhancers with decreased or nondynamic EP300.
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Based on a recent finding that GR binding sites with GC-
induced enhancer activity in a massively parallel reporter assay
are strongly enriched for GR motifs (Vockley et al. 2016), we hy-
pothesized that the direct binding of GR, and also of other TFs,
may explain the observed differences in changes in EP300 occu-
pancy across enhancers. We first wanted to establish whichmotifs
contributed to initial EP300 binding, prior to dex exposure. Motifs
for CEBP, forkhead box (FOX), hepatocyte nuclear factor/pou
domain (HNF/POU), andAP-1 factorswere the strongest predictors
of the strength of initial EP300 binding (Supplemental Fig. S4A).
TheGRmotif hadno associationwith initial EP300 binding. To ex-
plore the mechanisms underlying dex-responsive EP300 binding
dynamics, we first classified enhancers according to whether
they were differentially bound by EP300 at early (E, 0.5–2 h), mid-
dle (M, 3–6 h), or late (L, 7–12 h) time periods or in combinations
of these time periods (e.g., early, early-mid., mid.-late) (Sup-
plemental Fig. S4B). Over half of EP300-dynamic enhancers had
persistently increased or decreased EP300 binding (EML) (Supple-
mental Fig. S4C), and this class had much stronger changes in
EP300 binding than transiently dynamic enhancers (EML vs.
rest, Mann-Whitney U test, P<10−100) (Supplemental Fig. S4D,
E).Wenext used binary RSAT-clustered JASPARmotif calls (formo-
tif naming scheme, see Supplemental Table S7; Sandelin et al.
2004; Castro-Mondragon et al. 2017) to predict membership in
the EP300-dynamic classes. We used elastic net logistic regression
with fivefold cross-validation (Zou and Hastie 2005) and con-
trolled for initial EP300 binding by including it as a covariate in
the model. Overwhelmingly, the most predictive DNA binding
motif for changes in enhancer activation across the time course
was the GR binding motif (Fig. 5F). Most of the other motifs posi-
tively predictive for enhancer activation were for factors that have
been shown to participate with GR in genomic binding and/or
transcriptional activation (e.g., HSF [Jones et al. 2004]; CEBP
[Steger et al. 2010]; RAR/RXR [Tóth et al. 2011]; VDR [Zhang
et al. 2013]; TEAD and FOX [Starick et al. 2015]). Thus, these fac-
tors may act in concert with GR, given the widespread direct bind-
ing of GR in activated enhancers. CEBP motif was positively
predictive for enhancers with delayed activation (>2 h) and nega-
tively predictive for enhancers transiently activated early in
the time course (ML and L vs. E and EM in Fig. 5F). We confirmed
these results with additional analyses (see Supplemental Results;
Supplemental Fig. S4F). The AP-1 factor motif was most depleted
in activated enhancers. We also analyzed combinations of motifs.
Enhancer activation favored a combination of strong GR and
CEBPB motifs as well as strong GR and weak AP-1 factor motifs
(see Supplemental Results; Supplemental Fig. S4G,H).

As illustration of the effects of motif-directed binding on en-
hancer activation, several enhancers in the vicinity of the TSS of
hippocalcin-like protein 1 (HPCAL1) with strong GR motifs had
rapid and sustained increases in TF binding, chromatin accessibil-
ity, and activation-associated histone modifications following dex
exposure (enhancers 1, 4, 6, 8, and 9 in Supplemental Fig. S5A).
HPCAL1, accordingly, had sustained increases in expression
(Supplemental Fig. S5D). Meanwhile, an enhancer 5 kb upstream
of nuclear factor, interleukin 3 regulated (NFIL3) with strong
CEBPB andGRmotifs had delayed increases in activation-associat-
ed features following dex exposure (enhancer 2 in Supplemental
Fig. S5B), while an intronic enhancer with a strong CEBPB motif
but no GR motif instead had decreases in the same features (en-
hancer 1 in Supplemental Fig. S5B). NFIL3 had delayed increases
in expression (Supplemental Fig. S5E). Two enhancers ∼20 kb up-
stream of the tissue factor pathway inhibitor 2 (TFPI2) gene with

strong AP-1 factor and/or CEBPB motifs and no GR motifs had
rapid decreases in JUN, CEBPB, and EP300 binding (Supplemental
Fig. S5C), while TFPI2 concordantly decreased in expression (Sup-
plemental Fig. S5F).

Enhancer dynamics are dependent across neighboring

enhancers

Previous studies have shown that GR binding sites form local clus-
ters in the genome, potentially via chromatin interactions between
nearby enhancers (Kuznetsova et al. 2015; Vockley et al. 2016). GR
binds to both pre-established chromatin loop anchors and induces
novel chromatin interactions at sites with strong GR motifs
(Kuznetsova et al. 2015). Based on these findings, we hypothesized
that local interactions between enhancers should form clusters of
nearby enhancers with similar activity dynamics. Enhancers with
increased EP300 were nearest to other enhancers with increased
EP300 (vs. nondynamic, Mann-Whitney U test, P=9.7 ×10−13)
(Supplemental Fig. S6A), and enhancers with decreased EP300
were nearest to other enhancers with decreased EP300 (vs. nondy-
namic, Mann-Whitney U test, P=9.7 ×10−79) (Supplemental Fig.
S6B).Change inEP300bindingbetweennearbyenhancerswas cor-
related more than would be expected by chance at distances of up
to 50–100 kb (t-test, increasedEP300,P=8× 10−4; decreased EP300,
P=2× 10−3) (Supplemental Fig. S6C). Our results support the
hypothesis that the GC-triggered dynamic activity of enhancers
depends on the activity of nearby enhancers, which likely interact
over tens of kilobases in genomic sequence space. We also found
that persistent GR binding sites were significantly closer to (non-
overlapping) enhancers than were transient GR binding sites
(Mann-Whitney U test, 12 h vs all other sets, P<5.41×10−4)
(Supplemental Fig. S6D), suggesting that enhancer interactions
contribute to the stabilization of binding sites. We reasoned that
GR binding sites present at low dex dosages may similarly depend
on enhancer interactions, and we confirmed this with a compara-
ble analysis (50 nM and 100 nM, 1 h dex; Mann-Whitney U test,
P<4.07×10–21) (Supplemental Fig. S6E; Reddy et al. 2012).

We hypothesized that spatial dependence of enhancer dy-
namics may explain, in part, why some enhancers bucked the ge-
neral trends described above and, for example, had increased
EP300 yet lacked a strong GR motif. We found that activated en-
hancers with the weakest GRmotifs were closest to other activated
enhancers (vs. thosewith the strongest GRmotifs, Mann-Whitney
U test, P=8×10−9) (Fig. 6A), while deactivated enhancers with the
strongest GR motifs were closest to other deactivated enhancers
(vs. those with the weakest GR motifs, Mann-Whitney U test, P=
2.35×10−5) (Fig. 6B). Our results suggest that the dex-responsive
activity dynamics of a given enhancer is jointly dependent onmo-
tif content and on the dynamics of neighboring enhancers. In par-
ticular, an enhancer lacking a strong GR motif, which will
generally lose EP300 in saturating dex conditions, may instead
gain EP300 in an activating local genomic environment. For exam-
ple, two enhancers in the vicinity ofHPCAL1 and in the vicinity of
multiple enhancers with strong GR motifs gained EP300 despite
the fact that they lacked strong GR motifs (enhancers 5 and 7 in
Supplemental Fig. S5A).

Enhancer dynamics are coordinated by chromatin loops

If physical interactions explain the concordant activity of neigh-
boring enhancers, we should expect clusters of enhancers to be de-
marcated by CTCF, which is known to anchor chromatin loops
(Splinter et al. 2006; Rao et al. 2014). We found that the direction
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of EP300 occupancy changeswere enriched for concordance across
enhancers within domains demarcated by CTCF (Z-test, shuffled
enhancers, P<10−100; shuffled CTCF, P= 2.3 ×10−9) (Supplemen-
tal Fig. S6F,G). We found similar concordance in differential
gene expression within such domains (80.2%; Z-test, shuffled
genes, P=9.3 ×10−11; shuffled CTCF, P=1.1 ×10−10) (Supplemen-
tal Fig. S6H). These results demonstrate that enhancers or genes
within regions demarcated by CTCF experience similar dynamics
upon dex exposure.

To directly test for chromatin interactions between enhancers
with coordinated dynamics, we mapped enhancers to chromatin
loop anchors as identified in another study by in situ Hi-C per-
formed in the same cells in pre-dex conditions and after 1, 4, 8,
and 12 h of dex exposure conditions identical to this study
(D’Ippolito et al. 2018). We found that enhancers were enriched
in chromatin loops (see Supplemental Results; Fig. 6C,D).
Furthermore, we found that enhancers with increased or decreased
EP300 were enriched in loops with dex-responsive increases or de-
creases in interaction frequency, respectively, compared with non-
dynamic enhancers (Fisher’s exact test, P= 5.8 ×10−11, P< 2.8 ×
10−4) (Fig. 6E,F). For example, five enhancers with increased

EP300 in the vicinity of the TSS of
HPCAL1 overlapped three chromatin
loop anchors that formed a clique of
three loops—all of which had increased
interaction frequency over the dex ex-
posure time course (enhancers 1, 4, 7, 8,
and 9 in Supplemental Fig. S6I).

Altogether, our results suggest that
GR influences both the activity of
enhancers at direct binding sites and
the activity of neighboring enhancers
connected through chromatin architec-
ture. However, the direction and extent
of the causal relationship between chro-
matin interactions, GR binding, and en-
hancer state remain unclear. Assaying
chromatin interaction dynamics with in-
creased spatial and temporal resolution
may help to resolve this question.

Data visualization

Genome browsers present data statically,
making it challenging to assess differ-
ences across time and data sets. For that
reason, we developed a gene-centric web-
site, GGR Visual, to animate the changes
inmultiple features of gene regulatory ac-
tivity simultaneously (Supplemental Fig.
S7; http://ggr.reddylab.org).

Discussion

We find that at saturating concentra-
tions of GCs, GR binds pervasively to a
largely preprogrammed landscape of en-
hancers and to a relatively small number
of latent enhancers. In contrast to previ-
ous models of GR binding, we find that
chromatin accessibility is not the most
important factor influencing initial GR

binding. Instead, a diversity of factors associated with active en-
hancers, such as EP300, H3K27ac, and pioneer factor binding—
which exist in a spectrum of preprogramming—positively associ-
ate with GR binding. Motif-driven GR binding then activates en-
hancers, shifting the enhancer landscape to favor those sites
with strong GR motifs.

The positive feedback loop between enhancer state and GR
binding leads to long-lasting GR binding at sites with strong GR
motifs and transient GR binding in the absence of strong GR mo-
tifs. This model has direct implications on experimental design
and interpretations of past studies. Until a particular cell line and
stimulus concentration is relatively densely sampled across time,
it will be difficult to gauge a priori which regime of GR binding
is being sampled at a particular time point. That is, an “early”
time point—in terms of the GR-driven shift in enhancer landscape
activation—may lead to the conclusion that GR passively binds to
pre-established enhancers (or to accessible sites, if accessibility is
the only auxiliary data available), while a “late” time point may
lead to the conclusion that GR binding is largely motif-driven
and leads to broad changes in enhancer state. Here, with dense
sampling of GR binding and diverse genomic data sets, we resolve

E F

BA

C D

Figure 6. Enhancer dynamics are dependent across neighboring enhancers and coordinated by chro-
matin looping. (A) Cumulative distribution of distance to nearest neighboring enhancer with increased
EP300 by EP300 dynamics class, where enhancers with increased EP300 were additionally split into quin-
tiles by GRmotif strength. (∗∗∗) P<0.001; N.S.= P>0.01. (B) Cumulative distribution of distance to near-
est neighboring enhancer with decreased EP300 by EP300 dynamics class, where enhancers with
decreased EP300 were additionally split into quintiles by GR motif strength. (∗∗∗) P<0.001.
(C ) Barplot shows the percentage of sets of sites that overlap with chromatin loop anchors. Error bars,
SE of percentage computed from the normal approximation of a binomial proportion. (∗∗∗) P<0.001.
(D) Same as C, except with a specific focus on enhancers, which were split by initial enhancer activation
as estimated by the principal component decomposition of flanking H3K4me1 andH3K27ac occupancy.
(E) Same as C, except only anchors of induced loops considered. (F) Same as C, except only anchors of
repressed loops considered.
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this apparent paradox and show that the data cohere with amodel
that unifies both enhancer-driven GR binding and GR-driven en-
hancer activation.

We observed that changes in GR binding and enhancer state
are most strongly correlated at activated enhancers with a strong
GR motif. It has been known that GR binding sites with effects
on expression are largely activating and highly enriched for the
GR binding motif (Vockley et al. 2016). Repressed enhancers, on
the other hand, here had only subtle differences in GR binding
from nondynamic enhancers. We also observed nearly equivalent
numbers of activated and repressed enhancers. Together, these re-
sults are consistent with a model of cofactor squelching in which
cofactors in limiting quantities are diverted from repressed to acti-
vated enhancers (Gill and Ptashne 1988; Kamei et al. 1996; De
Bosscher et al. 2000). Our results suggest that transient GR binding
sites lacking strongGRmotifsmaynot be functional in themselves
in terms of enhancer activation and repression but may instead
be epiphenomenal to the nuclear search process or genomic
recruitment process of GR. GR may follow a nuclear search mode
described for other TFs in which the TF locally oversamples a nu-
clear space of reduced dimensionality, which may, for example,
be defined by histone tails (Izeddin et al. 2014; Liu et al. 2014;
Woringer et al. 2014). Such a search process would also help to
explain the spatially correlated enhancer dynamics we observed
here. More studies will be needed, however, to determine whether
transient GR binding sites serve an independent function
or whether they are simply a by-product of the nuclear search pro-
cess of GR.

We show here that GC-responsive enhancer dynamics are re-
fined by additional motif-directed binding, the effects of which
differ in a TF-specific manner. In this way, the GR binding land-
scape specific to a particular cellular context—and the enhancer
dynamics thereon—depend not only on steady-state preprogram-
ming of the enhancer landscape but also on the specific relation-
ships between GR and the cell-specific complement of expressed
TFs. Based on our observations, these TFs likely vary in the degree
and direction (antagonistic/facilitative) of collaborative interac-
tion with GR, which further tunes the cell specificity of GR bind-
ing and activity.

We extend themodel of GR-driven enhancer activation to in-
clude the effect of chromatin interactions, which encourage
shared dynamics across interacting enhancers (D’Ippolito et al.
2018). As a consequence of shared dynamics, an enhancer with a
weak GR motif may become activated in an activating context,
such as several enhancers intronic to HPCAL1 (enhancers 5 and
7 in Supplemental Fig. S5A), and repressed in the absence of that
context, such as upstream of TFPI2 (Supplemental Fig. S5C). This
suggests that the flexible billboard model of enhancers (Arnosti
and Kulkarni 2005) should be broadened to include the influence
of TFs binding at linearly distant loci and brought into proximity
through long-range interactions (Vockley et al. 2017). Targeted ge-
nome engineering could be used to directly test such dependencies
between enhancers.

The pervasive binding ofGR to themajority of enhancers rais-
es the possibility of collaborative interactions between GR and its
downstream TFs. Such interactions enable feed-forward loops
(FFLs) in which GR and its downstream TFs physically interact at
the same genomic loci to synergistically or antagonistically alter
target gene expression. This model is in line with recent results
on GR and multiple KLFs (Chen et al. 2013; Sasse et al. 2013;
Chinenov et al. 2014) and has been proposed as a more general
property of transcriptional regulation by nuclear receptors (Sasse

and Gerber 2015). FFL architectures that require both GR and a
downstream TF to be present for transcriptional regulation would
reserve overarching regulatory control for GR, which is well at-
tuned to ligand availability (Munck and Foley 1976). In this man-
ner, transcriptional regulation by collaborative interactions with
GR could be rapidly throttled as GC levels attenuate.

Methods

Cell culture, dex treatment, and sequencing

Our cell culture protocol was designed so that all cells were grown
and passaged in the same manner up to the point of cell harvest
(Fig. 1A). For more details on cell culture protocol, dex treatment,
sequencing, and processing of sequencing data, see Supplemental
Methods and Supplemental Figure S8.

Modeling change in gene expression data as a function of change

in genomic occupancy

ChIP-seq and DNase-seq reads were quantified in flanks around
the TSS of all GENCODE (v.22) (Harrow et al. 2012) protein-coding
genes with mean TPM>1 across the time course, after extending
reads by half the median fragment length estimated by SPP
(v.2.0) (Kharchenko et al. 2008) across all samples and within fac-
tor (e.g., GR). Flanks consisted in 1-kb bins from −100 to +100 kb
from each TSS. For ChIP-seq, input control libraries were also
mapped with fragment extension equivalent to the matched anti-
body condition. Read counts were converted to CPM. For ChIP-
seq, input CPM was subtracted from antibody CPM, truncating
bins with negative CPM at zero.

For each gene, normalized counts were then summed across
flanks at varyingwidths around the TSS and log2-transformed after
adding a small pseudocount of 0.01. We modeled standardized
mean log2 fold change in gene expression as a linear function of
the standardized mean log2 fold change in summed TSS-flanking
occupancy. Elastic net regression (Zou and Hastie 2005) was per-
formed using the Python package scikit-learn (Pedregosa et al.
2011). The alpha and l1_ratio parameters were determined by fit-
ting the model across a grid of possible values (alpha= {10−8,
10−7,…, 100}, l1_ratio= {0.5, 0.75, 0.9, 0.95, 0.99, 1}) with stratified
fivefold cross-validation to select the most sparse model with
mean R2 within one standard error of the best-performing model
(Breiman et al. 1984). Given these parameters, a model was fit to
1000 bootstrap replicates of the data to estimate standard errors
on the model coefficients.

Elastic net is a regularized regression technique that combines
L1 (least absolute shrinkage and selection operator or LASSO) and
L2 (ridge) penalties to enablemodel selection and stable coefficient
estimates in the case of highly correlated predictors (Zou and
Hastie 2005). In such a case, LASSO regression will tend to include
one of a set of highly correlated predictors and shrink all other pre-
dictors to zero. The resultant coefficient estimates may be unstable
with small changes in the input data set. In ridge regression, on the
other hand, all predictors—though shrunk—will likely be includ-
ed in the final fitted model, precluding the possibility of model se-
lection. In the case of highly correlated groups of predictors, elastic
net will tend to include or exclude groups of correlated predictors.
It should be noted, however, that correlated predictors tend to
share coefficient strength. In the extreme case of p perfectly collin-
ear predictors, for example, each predictor will have a coefficient
estimate of 1/p if one is the coefficient strength in a model with
only one of the p predictors (Friedman et al. 2010).
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Genome Research 1281
www.genome.org

 Cold Spring Harbor Laboratory Press on May 28, 2019 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


GR binding analysis

We modeled the binary binding of GR to all enhancers, 30,000
randomly selected distal non-EP300 bound DHSs, and 30,000 ran-
domly selected non-EP300, non-DHS intergenic regions across the
time course. We modeled binding as the output of a logistic func-
tion of standardized log2 CPM of all pre-dex DNase-seq and input-
subtracted ChIP-seq data, as well as GR motif strength. Binary
binding was defined as an overlap of at least 1 bp or book-ended
with a GR peak in the union across the time course (0.5- to 12-h
dex exposure). Sites were scored by GRmotif strength by scanning
for the GR motif (de novo motif discovered in the GR ChIP-seq
peaks; see Supplemental Methods) using FIMO and a second-order
Markov background model (see Supplemental Methods; Grant
et al. 2011). FIMO P-values were negative log10 transformed and
standardized. TF occupancy and accessibility data were quantified
within site boundaries, while histone modification occupancy
data were quantified in 1-kb upstream and downstream site flanks.
Logistic elastic net regression (Zou andHastie 2005)was performed
using the Python package scikit-learn (Pedregosa et al. 2011). The
alpha and l1_ratio parameters were determined as in “Modeling
change in gene expression data as a function of change in genomic
occupancy” above, except scoring function was log-loss instead of
R2. Themodel was fit to 1000 bootstrap replicates of the data to es-
timate standard errors on the coefficients. The same series of mod-
els was run after either excluding all sites that overlapped with
CTCF sites from the design matrix or excluding all TF ChIP-seq
predictors.

GR binding and EP300 binding across cellular contexts

We downloaded a variety of GR, pioneer factor (CEBPB and JUN),
and EP300 binding data from external studies (GEO acces-
sions: GSE24518, GSE32465, GSE37235, GSE61911, GSE61236,
GSE64516; SRA accessions: SRP007111) (see Supplemental Table
S5). All GR sites were extended or trimmed to 1000 bp in width.
We compared GR motif strength in GR binding sites by intersec-
tion (+/−) with EP300 binding sites and across cellular contexts.
An extended GR site was considered overlapping an EP300 site if
at least 1 bp overlapped between sites or sites were book-ended.
Extended GR sites were scored by GR motif strength using FIMO
and JASPAR motif MA0113.3 (Sandelin et al. 2004; Grant et al.
2011). FIMO motif P-values were then discretized into quintiles
for display.

GR ChIP-seq data collected across varied dex dosages were
downloaded from GSE92793 (Reddy et al. 2012; The ENCODE
Project Consortium 2012). ChIP-seq reads were quantified in en-
hancers using featureCounts (v.1.4.6-p4) (Liao et al. 2014) as de-
scribed in the Supplemental Methods (see “Sequencing data
processing pipelines” section).

Hi-C data

Chromatin loop locations were taken directly from GSE92793.
Differential loops were called using amethod described previously
(FDR<0.05) (D’Ippolito et al. 2018).

Data access

All raw and processed sequencing data from this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) (Barrett et al. 2013) under
accession numbers listed in Supplemental Table S3. These data
are also available from the ENCODE DCC portal (http://www.
encodeproject.org), which provides detailed summaries, quality
metrics, and analysis pipeline schematics (Supplemental Table

S3). Sequencing data processing pipelines are freely available in
the Supplemental Material and at GitHub (https://github.com/
Duke-GCB/GGR-cwl).

Acknowledgments

We thank the ENCODEDCC staff, especially I. Gabdank, C. Sloan,
and A. Narayanan, for help in facilitating pipeline documentation
and data release through the ENCODE project portal. We thank
T. Konneker (NCSU), D.L. Aylor (NCSU), and C. Frank (formerly
Duke) for contributing a custom script used to remove DNase-
seq PCR artifacts. This work was mainly carried out at the Duke
Center for Genomic and Computational Biology. This work was
funded by the following grants: National Institutes of Health
(NIH) U01 HG007900 (all authors), NIH F31 AI124563 (A.M.D.),
NIH F31 HL129743 (C.M.V.), NIH R01 GM118551 (A.J.H.), NIH
R01 DA036865 (D.D.K. and C.A.G.), NIH R00 HG006265 (B.E.E.),
NIH R01 MH101822 (B.E.E.), and a Sloan Faculty Fellowship
(B.E.E.).

Author contributions: Conceptualization was by T.E.R., G.E.C.,
B.E.E., A.J.H., C.A.G., and C.M.V.; supervision was by T.E.R.,
G.E.C., B.E.E., A.J.H., and C.A.G.; funding acquisition was by
T.E.R., G.E.C., B.E.E., A.J.H., and C.A.G.; project administration
was by L.K.H., T.E.R., G.E.C., and I.C.M.; investigation was by
I.C.M. A.M.D., L.K.H., S.M.L., L.S., A.S., L.C.B., and C.M.V.; formal
analysis was by I.C.M., T.E.R.,W.H.M., A.B., and A.M.D.; data cura-
tion was by A.B. and I.C.M.; visualization was by I.C.M., A.B., and
W.H.M.; writing of the original draft was by I.C.M., T.E.R., A.B.,
and W.H.M.; and review and editing was by all of the authors.

References

Arnold CD,GerlachD, Stelzer C, Boryn LM, RathM, Stark A. 2013. Genome-
wide quantitative enhancer activity maps identified by STARR-seq.
Science 339: 1074–1077.

Arnosti DN, Kulkarni MM. 2005. Transcriptional enhancers: intelligent
enhanceosomes or flexible billboards? J Cell Biochem 94: 890–898.

Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M,
Marshall KA, Phillippy KH, Sherman PM, Holko M, et al. 2013. NCBI
GEO: archive for functional genomics data sets—update. Nucleic Acids
Res 41: D991–D995.

Biddie SC, John S. 2014. Minireview: conversing with chromatin: the lan-
guage of nuclear receptors. Mol Endocrinol 28: 3–15.

Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, Miranda
TB, Sung MH, Trump S, Lightman SL, et al. 2011. Transcription factor
AP1 potentiates chromatin accessibility and glucocorticoid receptor
binding. Mol Cell 43: 145–155.

Breiman L, Friedman J, Stone CJ, Olshen RA. 1984. Classification and regres-
sion trees. CRC Press, New York, NY.

Castro-Mondragon JA, Jaeger S, Thieffry D, Thomas-Chollier M, vanHelden
J. 2017. RSAT matrix-clustering: dynamic exploration and redundancy
reduction of transcription factor binding motif collections. Nucleic
Acids Res 45: e119.

ChenW, Dang T, Blind RD,Wang Z, Cavasotto CN, Hittelman AB, Rogatsky
I, Logan SK, Garabedian MJ. 2008. Glucocorticoid receptor phosphory-
lation differentially affects target gene expression. Mol Endocrinol 22:
1754–1766.

Chen SH, Masuno K, Cooper SB, Yamamoto KR. 2013. Incoherent feed-for-
ward regulatory logic underpinning glucocorticoid receptor action. Proc
Natl Acad Sci 110: 1964–1969.

Chinenov Y, CoppoM,Gupte R, SactaMA, Rogatsky I. 2014. Glucocorticoid
receptor coordinates transcription factor-dominated regulatory network
in macrophages. BMC Genomics 15: 656.

Chrousos GP, Kino T. 2009. Glucocorticoid signaling in the cell. Ann N Y
Acad Sci 1179: 153–166.

Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ,
Hanna J, Lodato MA, Frampton GM, Sharp PA, et al. 2010. Histone
H3K27ac separates active from poised enhancers and predicts develop-
mental state. Proc Natl Acad Sci 107: 21931–21936.

De Bosscher K, BergheWV,HaegemanG. 2000.Mechanisms of anti-inflam-
matory action and of immunosuppression by glucocorticoids: negative

McDowell et al.

1282 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on May 28, 2019 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://www.encodeproject.org
http://www.encodeproject.org
http://www.encodeproject.org
http://www.encodeproject.org
http://www.encodeproject.org
http://www.encodeproject.org
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.233346.117/-/DC1
https://github.com/Duke-GCB/GGR-cwl
https://github.com/Duke-GCB/GGR-cwl
https://github.com/Duke-GCB/GGR-cwl
https://github.com/Duke-GCB/GGR-cwl
https://github.com/Duke-GCB/GGR-cwl
http://genome.cshlp.org/
http://www.cshlpress.com


interference of activated glucocorticoid receptor with transcription fac-
tors. J Neuroimmunol 109: 16–22.

D’Ippolito AM, McDowell IC, Barrera A, Hong LK, Leichter SM, Bartelt LC,
Vockley CM, Majoros WH, Safi A, Song L, et al. 2018. Pre-established
chromatin interactions mediate the genomic response to glucocorti-
coids. Cell Systems doi: 10.1016/j.cels.2018.06.007.

The ENCODE Project Consortium. 2012. An integrated encyclopedia of
DNA elements in the human genome. Nature 489: 57–74.

Friedman J, Hastie T, Tibshirani R. 2010. Regularization paths for general-
ized linear models via coordinate descent. J Stat Softw 33: 1–22.

Garber M, Yosef N, Goren A, Raychowdhury R, Thielke A, Guttman M,
Robinson J, Minie B, Chevrier N, Itzhaki Z, et al. 2012. A high-through-
put chromatin immunoprecipitation approach reveals principles of dy-
namic gene regulation in mammals. Mol Cell 47: 810–822.

GersteinMB, Kundaje A, HariharanM, Landt SG, Yan K-K, Cheng C,Mu XJ,
Khurana E, Rozowsky J, Alexander R, et al. 2012. Architecture of the hu-
man regulatory network derived from ENCODE data. Nature 489:
91–100.

Gertz J, Savic D, Varley KE, Partridge EC, Safi A, Jain P, Cooper GM, Reddy
TE, Crawford GE, Myers RM. 2013. Distinct properties of cell-type-spe-
cific and shared transcription factor binding sites. Mol Cell 52: 25–36.

Ghisletti S, Barozzi I, Mietton F, Polletti S, De Santa F, Venturini E, Gregory
L, Lonie L, Chew A, Wei C-L, et al. 2010. Identification and characteri-
zation of enhancers controlling the inflammatory gene expression pro-
gram in macrophages. Immunity 32: 317–328.

Gill G, Ptashne M. 1988. Negative effect of the transcriptional activator
GAL4. Nature 334: 721–724.

Grant CE, Bailey TL, Noble WS. 2011. FIMO: scanning for occurrences of a
given motif. Bioinformatics 27: 1017–1018.

Grøntved L, John S, Baek S, Liu Y, Buckley JR, Vinson C, Aguilera G, Hager
GL. 2013. C/EBP maintains chromatin accessibility in liver and facili-
tates glucocorticoid receptor recruitment to steroid response elements.
EMBO J 32: 1568–1583.

Gross DS, Garrard WT. 1988. Nuclease hypersensitive sites in chromatin.
Annu Rev Biochem 57: 159–197.

Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F,
Aken BL, Barrell D, Zadissa A, Searle S, et al. 2012. GENCODE: the refer-
ence human genome annotation for The ENCODE Project. Genome Res
22: 1760–1774.

Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera
LO, Van Calcar S, Qu C, Ching KA, et al. 2007. Distinct and predictive
chromatin signatures of transcriptional promoters and enhancers in
the human genome. Nat Genet 39: 311–318.

HeintzmanND,HonGC,Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z,
Lee LK, Stuart RK, Ching CW, et al. 2009. Histone modifications at hu-
man enhancers reflect global cell-type-specific gene expression. Nature
459: 108–112.

Heinz S, Glass CK. 2011. Roles of lineage-determining transcription factors
in establishing open chromatin: lessons from high-throughput studies.
In Epigenetic regulation of lymphocyte development (ed. C.Murre), Vol. 356,
pp. 1–15. Springer, Berlin, Heidelberg.

Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre
C, Singh H, Glass CK. 2010. Simple combinations of lineage-determin-
ing transcription factors prime cis-regulatory elements required formac-
rophage and B cell identities. Mol Cell 38: 576–589.

Heinz S, Romanoski CE, Benner C, Glass CK. 2015. The selection and func-
tion of cell type-specific enhancers. Nat Rev Mol Cell Biol 16: 144–154.

Izeddin I, Récamier V, Bosanac L, Cissé II, Boudarene L, Dugast-Darzacq C,
Proux F, Bénichou O, Voituriez R, Bensaude O. 2014. Single-molecule
tracking in live cells reveals distinct target-search strategies of transcrip-
tion factors in the nucleus. eLife 3: e02230.

John S, Sabo PJ, Johnson TA, Sung M-H, Biddie SC, Lightman SL, Voss TC,
Davis SR, Meltzer PS, Stamatoyannopoulos JA, et al. 2008. Interaction of
the glucocorticoid receptor with the chromatin landscape. Mol Cell 29:
611–624.

John S, Sabo PJ, Thurman RE, Sung M-H, Biddie SC, Johnson TA, Hager GL,
Stamatoyannopoulos JA. 2011. Chromatin accessibility pre-determines
glucocorticoid receptor binding patterns. Nat Genet 43: 264–268.

JohnsonDS,Mortazavi A,Myers RM,Wold B. 2007. Genome-widemapping
of in vivo protein–DNA interactions. Science 316: 1497–1502.

Jones TJ, Li D, Wolf IM, Wadekar SA, Periyasamy S, Sánchez ER. 2004.
Enhancement of glucocorticoid receptor-mediated gene expression by
constitutively active heat shock factor 1. Mol Endocrinol 18: 509–520.

Jozwik KM, Chernukhin I, Serandour AA, Nagarajan S, Carroll JS. 2016.
FOXA1 directs H3K4 monomethylation at enhancers via recruitment
of the methyltransferase MLL3. Cell Rep 17: 2715–2723.

Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin S-C, Heyman
RA, Rose DW, Glass CK. 1996. A CBP integrator complex mediates tran-
scriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:
403–414.

Kharchenko PV, Tolstorukov MY, Park PJ. 2008. Design and analysis of
ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26:
1351–1359.

Kleinjan DA, van Heyningen V. 2005. Long-range control of gene expres-
sion: emerging mechanisms and disruption in disease. Am J Hum
Genet 76: 8–32.

Koch CM, Andrews RM, Flicek P, Dillon SC, Karaöz U, Clelland GK, Wilcox
S, Beare DM, Fowler JC, Couttet P. 2007. The landscape of histone mod-
ifications across 1% of the human genome in five human cell lines.
Genome Res 17: 691–707.

Kuznetsova T,Wang S-Y, Rao NA,Mandoli A,Martens JHA, Rother N, Aartse
A, Groh L, Janssen-Megens EM, Li G, et al. 2015.Glucocorticoid receptor
and nuclear factor κb affect three-dimensional chromatin organization.
Genome Biol 16: 264.

Liao Y, Smyth GK, ShiW. 2014. featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features.
Bioinformatics 30: 923–930.

Liu Z, Legant WR, Chen B-C, Li L, Grimm JB, Lavis LD, Betzig E, Tjian R.
2014. 3D imaging of Sox2 enhancer clusters in embryonic stem cells.
eLife 3: e04236.

MacArthur S, Li XY, Li J, Brown JB, ChuHC, Zeng L, Grondona BP,Hechmer
A, Simirenko L, Keranen SV, et al. 2009. Developmental roles of 21
Drosophila transcription factors are determined by quantitative differ-
ences in binding to an overlapping set of thousands of genomic regions.
Genome Biol 10: R80.

Macfarlane DP, Forbes S, Walker BR. 2008. Glucocorticoids and fatty acid
metabolism in humans: fuelling fat redistribution in the metabolic syn-
drome. J Endocrinol 197: 189–204.

Moorman C, Sun LV,Wang J, deWit E, TalhoutW,Ward LD, Greil F, Lu X-J,
White KP, Bussemaker HJ. 2006. Hotspots of transcription factor coloc-
alization in the genome of Drosophila melanogaster. Proc Natl Acad Sci
103: 12027–12032.

Morgunova E, Taipale J. 2017. Structural perspective of cooperative tran-
scription factor binding. Curr Opin Struct Biol 47: 1–8.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping
and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods
5: 621–628.

Munck A, Foley R. 1976. Kinetics of glucocorticoid-receptor complexes in
rat thymus cells. J Steroid Biochem 7: 1117–1122.

Nie Y, Liu H, Sun X. 2013. The patterns of histone modifications in the vi-
cinity of transcription factor binding sites in human lymphoblastoid
cell lines. PLoS One 8: e60002.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V. 2011. Scikit-learn: ma-
chine learning in Python. J Mach Learn Res 12: 2825–2830.

Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT,
Sanborn AL,Machol I, Omer AD, Lander ES, et al. 2014. A 3Dmap of the
human genome at kilobase resolution reveals principles of chromatin
looping. Cell 159: 1665–1680.

Reddy TE, Pauli F, Sprouse RO, Neff NF, Newberry KM, Garabedian MJ,
Myers RM. 2009. Genomic determination of the glucocorticoid re-
sponse reveals unexpected mechanisms of gene regulation. Genome
Res 19: 2163–2171.

Reddy TE, Gertz J, Crawford GE, Garabedian MJ, Myers RM. 2012. The hy-
persensitive glucocorticoid response specifically regulates Period 1 and
expression of circadian genes. Mol Cell Biol 32: 3756–3767.

Sacta MA, Chinenov Y, Rogatsky I. 2016. Glucocorticoid signaling: an up-
date from a genomic perspective. Annu Rev Physiol 78: 155–180.

Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B. 2004.
JASPAR: an open-access database for eukaryotic transcription factor
binding profiles. Nucleic Acids Res 32: D91–94.

Sapolsky RM, Romero LM, Munck AU. 2000. How do glucocorticoids influ-
ence stress responses? Integrating permissive, suppressive, stimulatory,
and preparative actions. Endocrine Rev 21: 55–89.

Sasse SK, Gerber AN. 2015. Feed-forward transcriptional programming by
nuclear receptors: regulatory principles and therapeutic implications.
Pharmacol Ther 145: 85–91.

Sasse SK, Mailloux CM, Barczak AJ, Wang Q, Altonsy MO, Jain MK, Haldar
SM, Gerber AN. 2013. The glucocorticoid receptor and KLF15 regulate
gene expression dynamics and integrate signals through feed-forward
circuitry. Mol Cell 33: 2104–2115.

Sérandour AA, Avner S, Percevault F, Demay F, Bizot M, Lucchetti-Miganeh
C, Barloy-Hubler F, Brown M, Lupien M, Métivier R. 2011. Epigenetic
switch involved in activation of pioneer factor FOXA1-dependent en-
hancers. Genome Res 21: 555–565.

Siersbæk R, Rabiee A, Nielsen R, Sidoli S, Traynor S, Loft A, Poulsen LLC,
Rogowska-Wrzesinska A, Jensen ON, Mandrup S. 2014. Transcription
factor cooperativity in early adipogenic hotspots and super-enhancers.
Cell Rep 7: 1443–1455.

Glucocorticoid receptor reprograms enhancers

Genome Research 1283
www.genome.org

 Cold Spring Harbor Laboratory Press on May 28, 2019 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


Song L, Crawford GE. 2010. DNase-seq: a high-resolution technique for
mapping active gene regulatory elements across the genome frommam-
malian cells. Cold Spring Harb Protoc 2010: pdb.prot5384.

Splinter E, Heath H, Kooren J, Palstra R-J, Klous P, Grosveld F, Galjart N,
de Laat W. 2006. CTCF mediates long-range chromatin looping and
local histone modification in the β-globin locus. Genes Dev 20:
2349–2354.

Starick SR, Ibn-Salem J, JurkM, Hernandez C, LoveMI, Chung H-R, Vingron
M, Thomas-Chollier M, Meijsing SH. 2015. ChIP-exo signal associated
with DNA-binding motifs provides insight into the genomic binding
of the glucocorticoid receptor and cooperating transcription factors.
Genome Res 25: 825–835.

Steger DJ, Grant GR, SchuppM, Tomaru T, LefterovaMI, Schug J, Manduchi
E, Stoeckert CJ, Lazar MA. 2010. Propagation of adipogenic signals
through an epigenomic transition state. Genes Dev 24: 1035–1044.

Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT, Haugen E,
Sheffield NC, Stergachis AB, Wang H, Vernot B, et al. 2012. The accessi-
ble chromatin landscape of the human genome. Nature 489: 75–82.

Tóth K, Sarang Z, Scholtz B, Brázda P, Ghyselinck N, Chambon P, Fésüs L,
Szondy Z. 2011. Retinoids enhance glucocorticoid-induced apoptosis
of T cells by facilitating glucocorticoid receptor-mediated transcription.
Cell Death Differ 18: 783–792.

Visel A, BlowMJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry
M, Wright C, Chen F, et al. 2009. ChIP-seq accurately predicts tissue-
specific activity of enhancers. Nature 457: 854–858.

Vockley CM, D’Ippolito AM, McDowell IC, Majoros WH, Safi A, Song L,
Crawford GE, Reddy TE. 2016. Direct GR binding sites potentiate clus-
ters of TF binding across the human genome. Cell 166: 1269–1281.

Vockley CM, McDowell IC, D’Ippolito AM, Reddy TE. 2017. A long-range
flexible billboard model of gene activation. Transcription 8: 261–267.

Wang JC, Derynck MK, Nonaka DF, Khodabakhsh DB, Haqq C, Yamamoto
KR. 2004. Chromatin immunoprecipitation (ChIP) scanning identifies

primary glucocorticoid receptor target genes. Proc Natl Acad Sci 101:
15603–15608.

Woringer M, Darzacq X, Izeddin I. 2014. Geometry of the nucleus: a per-
spective on gene expression regulation. Curr Opin Chem Biol 20:
112–119.

Yamamoto KR. 1985. Steroid receptor regulated transcription of specific
genes and gene networks. Annu Rev Genet 19: 209–252.

Yan J, Enge M, Whitington T, Dave K, Liu J, Sur I, Schmierer B, Jolma A,
Kivioja T, Taipale M, et al. 2013. Transcription factor binding in human
cells occurs in dense clusters formed around cohesin anchor sites. Cell
154: 801–813.

Yao T-P, Ku G, Zhou N, Scully R, LivIngston DM. 1996. The nuclear hor-
mone receptor coactivator SRC-1 is a specific target of p300. Proc Natl
Acad Sci 93: 10626–10631.

Yip KY, Cheng C, Bhardwaj N, Brown JB, Leng J, Kundaje A, Rozowsky J,
Birney E, Bickel P, Snyder M, et al. 2012. Classification of human geno-
mic regions based on experimentally determined binding sites of more
than 100 transcription-related factors. Genome Biol 13: R48.

Zaret KS, Carroll JS. 2011. Pioneer transcription factors: establishing compe-
tence for gene expression. Genes Dev 25: 2227–2241.

Zhang DX, Glass CK. 2013. Towards an understanding of cell-specific func-
tions of signal-dependent transcription factors. J Mol Endocrinol 51:
T37–T50.

Zhang Y, Leung DYM, Goleva E. 2013. Vitamin D enhances glucocorticoid
action in human monocytes involvement of granulocyte-macrophage
colony-stimulating factor and mediator complex subunit 14. J Biol
Chem 288: 14544–14553.

Zou H, Hastie T. 2005. Regularization and variable selection via the elastic
net. J R Stat Soc Series B Stat Methodol 67: 301–320.

Received December 4, 2017; accepted in revised form July 5, 2018.

McDowell et al.

1284 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on May 28, 2019 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


 10.1101/gr.233346.117Access the most recent version at doi:
2018 28: 1272-1284 originally published online August 10, 2018Genome Res. 

  
Ian C. McDowell, Alejandro Barrera, Anthony M. D'Ippolito, et al. 
  
by motif-directed binding
Glucocorticoid receptor recruits to enhancers and drives activation

  
Material

Supplemental
  

 http://genome.cshlp.org/content/suppl/2018/08/10/gr.233346.117.DC1

  
References

  
 http://genome.cshlp.org/content/28/9/1272.full.html#ref-list-1

This article cites 79 articles, 21 of which can be accessed free at:

  
Open Access

  
 Open Access option.Genome ResearchFreely available online through the 

  
License

Commons 
Creative

.http://creativecommons.org/licenses/by-nc/4.0/
Commons License (Attribution-NonCommercial 4.0 International), as described at 

, is available under a CreativeGenome ResearchThis article, published in 

Service
Email Alerting

  
 click here.top right corner of the article or 

Receive free email alerts when new articles cite this article - sign up in the box at the

 http://genome.cshlp.org/subscriptions
go to: Genome Research To subscribe to 

© 2018 McDowell et al.; Published by Cold Spring Harbor Laboratory Press

 Cold Spring Harbor Laboratory Press on May 28, 2019 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/doi/10.1101/gr.233346.117
http://genome.cshlp.org/content/suppl/2018/08/10/gr.233346.117.DC1
http://genome.cshlp.org/content/28/9/1272.full.html#ref-list-1
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=protocols;10.1101/gr.233346.117&return_type=article&return_url=http://genome.cshlp.org/content/10.1101/gr.233346.117.full.pdf
http://genome.cshlp.org/cgi/adclick/?ad=53866&adclick=true&url=https%3A%2F%2Farborbiosci.com%2Fproducts%2Fmyngs-guides-mitodeplete-kit%2F
http://genome.cshlp.org/subscriptions
http://genome.cshlp.org/
http://www.cshlpress.com

