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Abstract. Chromatin is the tightly packaged structure of DNA and
protein within the nucleus of a cell. The arrangement of different pro-
tein complexes along the DNA modulates and is modulated by gene
expression. Measuring the binding locations and level of occupancy of
different transcription factors (TFs) and nucleosomes is therefore crucial
to understanding gene regulation. Antibody-based methods for assay-
ing chromatin occupancy are capable of identifying the binding sites
of specific DNA binding factors, but only one factor at a time. On the
other hand, epigenomic accessibility data like ATAC-seq, DNase-seq, and
MNase-seq provide insight into the chromatin landscape of all factors
bound along the genome, but with minimal insight into the identities of
those factors. Here, we present RoboCOP, a multivariate state space model
that integrates chromatin information from epigenomic accessibility data
with nucleotide sequence to compute genome-wide probabilistic scores of
nucleosome and TF occupancy, for hundreds of different factors at once.
RoboCOP can be applied to any epigenomic dataset that provides quanti-
tative insight into chromatin accessibility in any organism, but here we
apply it to MNase-seq data to elucidate the protein-binding landscape
of nucleosomes and 150 TFs across the yeast genome. Using available
protein-binding datasets from the literature, we show that our model
more accurately predicts the binding of these factors genome-wide.
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1 Introduction

Chromatin is a tightly packaged structure of proteins and DNA in the nucleus of
a cell. The arrangement of different proteins along the DNA determines how gene
expression is regulated. Two important groups of DNA binding factors (DBFs)
are transcription factors (TFs) and nucleosomes. TFs are key gene regulatory
proteins that promote or suppress transcription by binding with specific sequence
preferences to sites along the DNA. Nucleosomes form when 147 base pairs
of DNA are wrapped around an octamer of histone proteins. They have lower
sequence specificity than TFs, but exhibit preferences for a periodic arrangement
of dinucleotides that facilitate DNA wrapping. Likened to beads on a string,
nucleosomes are positioned fairly regularly along the DNA, occupying about 81%
of the genome in the case of Saccharomyces cerevisiae (yeast) [14]. In taking up
their respective positions, nucleosomes allow or block TFs from occupying their
putative binding sites, thereby contributing to the regulation of gene expression.
Revealing the chromatin landscape—how all these DBFs are positioned along the
genome—is therefore crucial to developing a more mechanistic (and eventually
predictive) understanding of gene regulation.

Antibody-based methods have been used extensively to assay the binding
of particular DBFs at high resolution. However, such methods are limited to
assaying only one factor at a time. Chromatin accessibility datasets, on the
other hand, provide information about open regions of the chromatin, indirectly
telling us about the regions occupied by various proteins. Many protocols can
be used to generate chromatin accessibility data, including transposon insertion
(ATAC-seq), enzymatic cleavage (DNase-seq), or enzymatic digestion (MNase-
seq). In the latter, the endo-exonuclease MNase is used to digest unbound DNA,
leaving behind undigested fragments of bound DNA. Paired-end sequencing of
these fragments reveals not only their location but also their length, yielding
information about the sizes of the proteins bound in different genomic regions.
MNase-seq has been widely used to study nucleosome positions [3,4], but evi-
dence of TF binding sites has also been observed in the data [10].

Several chromatin segmentation methods use epigenomic data to infer the
locations of ‘states’ like promoters and enhancers, particularly in human and
mouse genomes [1,6,11,22], but identifying the precise binding locations of myr-
iad individual DBFs is more difficult. The high cost of repeated deep sequencing
of large genomes poses a major challenge. In comparison to the complex human
and mouse genomes, the problem is a bit simpler when working with the yeast
genome, because it is smaller and therefore more economical to sequence deeply.

In earlier work, we proposed COMPETE to compute a probabilistic occupancy
landscape of DBFs along the genome [23]. COMPETE considers DBFs binding to
the genome in the form of a thermodynamic ensemble, where the DBFs are in
continual competition to occupy locations along the genome and their chances of
binding are affected by their concentrations, akin to a repeated game of ‘musical
chairs’. COMPETE output depends only on genome sequence (static) and DBF
concentrations (dynamic); it is entirely theoretical, in that it makes no use of
experimental chromatin data to influence its predictions of the chromatin land-
scape. A modified version of COMPETE was later developed to estimate DBF
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concentrations by maximizing the correlation between COMPETE’s output and an
MNase-seq signal, improving the reported binding landscape [25]. However, it
still does not directly incorporate chromatin accessibility data into the model.

Here, we present RoboCOP, a new method that integrates epigenomic accessi-
bility data and genomic sequence to produce accurate chromatin occupancy pro-
files of the genome. With nucleotide sequence and chromatin accessibility data
as input, RoboCOP uses a multivariate hidden Markov model (HMM) to compute
a probabilistic occupancy landscape of hundreds of DBFs genome-wide at single-
nucleotide resolution. In this paper, we use paired-end MNase-seq data to predict
TF binding sites and nucleosome positions throughout the Saccharomyces cere-
visiae genome. We validate our TF binding site predictions using annotations
reported by ChIP [15], ChIP-exo [19], and ORGANIC [13] experiments, and our
nucleosome positioning predictions using high-precision annotations reported by
a chemical cleavage method [2]. We find that RoboCOP provides valuable insight
into the chromatin architecture of the genome, and can elucidate how it changes
in response to different environmental conditions.

2 Results

2.1 MNase-seq Fragments of Different Lengths Are Informative
About Different DNA Binding Factors

In Fig. 1a, we plot MNase-seq fragments around the transcription start sites
(TSSs) of all yeast genes [16]. Fragments of length 127–187 (which we call

Fig. 1. (a) Heatmap of MNase-seq fragments, centered on all TSSs. Each fragment is
plotted based on its length (y-axis) and the location of its midpoint (x-axis). Panels along
the side and bottom show marginal densities. Heatmap reveals strong enrichment (red)
of fragments corresponding to +1 nucleosomes (just downstream of TSS, lengths near
157). Upstream of TSS, in the promoter region, are many shortFrags (length ≤80). (b)
Heatmap of MNase-seq fragments, centered on dyads of top 2000 well-positioned nucleo-
somes [2]. Fragment midpoint counts are highest at the dyad and decrease symmetrically
in either direction. (c) Heatmap of MNase-seq fragments, centered on annotated Abf1
binding sites [15], showing an enrichment of shortFrags near Abf1 sites.
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nucleosomal fragments, or nucFrags for short) occur in tandem arrays within
gene bodies but are generally absent from promoters (Fig. 1a). Fragments are
particularly concentrated at the +1 nucleosome position, just downstream of
the TSS, because the +1 nucleosome is usually well-positioned. Furthermore, the
marginal density of the midpoints of these fragments around annotated nucle-
osome dyads [2] peaks precisely at the dyad, with counts dropping nearly sym-
metrically in either direction (Fig. 1b). This makes sense because MNase digests
linker regions, leaving behind undigested DNA fragments wrapped around his-
tone octamers. So the midpoint counts of these nucFrags would be highest at
the annotated dyads and decrease on moving away from the dyad.

In addition, it has been shown that shorter fragments in MNase-seq provide
information about TF binding sites [10]. To verify that we see this signal in our
data, Fig. 1a reveals that promoter regions are enriched with shorter fragments.
The promoter region is often bound by specific and general TFs that aid in the
transcription of genes. To ensure that the MNase-seq signal in these promoter
regions is not just noise, we plot the MNase-seq midpoints around annotated
TF binding sites. We choose the well-studied TF, Abf1, because it has multiple
annotated binding sites across the genome. On plotting the MNase-seq midpoint
counts around these annotated binding sites we notice a clear enrichment of short
fragments at the binding sites (Fig. 1c). We denote these short fragments of
length less than 80 as shortFrags. Unlike the midpoint counts of the nucFrags
which have a symmetrically decreasing shape around the nucleosome dyads,
the midpoint counts of shortFrags are more uniformly distributed within the
binding site (Fig. 1c). The shortFrags signal at the Abf1 binding sites is noisier
than the MNase signal associated with nucleosomes. One reason for this increased
noise is that fragments protected from digestion by bound TFs may be quite
small, and the smallest fragments (of length less than 27 in our case) are not
even present in the dataset due to sequencing and alignment limitations.

We ignore fragments of intermediate length (81–126) in our analysis, though
these could provide information about other kinds of complexes along the
genome, like hexasomes [18]. Such factors would also be important for a com-
plete understanding of the chromatin landscape, but we limit our analysis here to
studying the occupancy of nucleosomes and TFs. For the subsequent sections of
this paper, we only consider the midpoint counts of nucFrags and shortFrags.
A representative snapshot of MNase-seq fragments is shown in Fig. 2a. We further
simplify the two-dimensional plot in Fig. 2a to form two one-dimensional signals
by separately aggregating the midpoint counts of nucFrags and shortFrags, as
shown in Fig. 2b.

2.2 RoboCOP Computes Probabilistic Chromatin Occupancy Profiles

RoboCOP (robotic chromatin occupancy profiler) is a multivariate hidden
Markov model (HMM) that jointly models the nucleotide sequence and the mid-
point counts of nucFrags and shortFrags to learn the occupancy landscape
of nucleosomes and TFs across a genome at single-nucleotide resolution. We
apply RoboCOP on the Saccharomyces cerevisiae genome to predict nucleosome
positions and the binding sites of 150 TFs (listed in Table S1). The HMM is
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Fig. 2. (a) MNase-seq fragment midpoints in region chrI:61000–63500 of the yeast
genome. Each dot at position (x, y) (red for nucFrags; blue for shortFrags) represents
a fragment of length y centered on genomic coordinate x. (b) Aggregate numbers of
red and blue dots. (d) Nucleotide sequence for chrI:61000–63500. (f) Set of DBFs
(nucleosomes and TFs). (c) RoboCOP and (e) COMPETE outputs, with inputs depicted
using green and orange arrows respectively. The score on the y-axes of (c) and (e) is
the probability of that location being bound by each DBF.

structured such that each DBF corresponds to a collection of hidden states and
each hidden state corresponds to a single genome coordinate. The hidden states
of RoboCOP are inferred from a set of three observables at each coordinate: the
nucleotide and the midpoint counts of nucFrags and shortFrags (Fig. S1).
Based on these three observables, we estimate the posterior distribution over all
hidden states. The resulting posterior probability of each DBF at each position
in the genome provides a probabilistic profile of DBF occupancy at base-pair
resolution (Fig. 2c). The inputs to RoboCOP are a set of DBFs (Fig. 2f), MNase-
seq midpoint counts (Fig. 2b), and nucleotide sequence (Fig. 2d). From RoboCOP
output in Fig. 2c, we observe that the nucleosome predictions line up well with
the nucleosome signal in Figs. 2a,b.

RoboCOP’s emission probabilities are derived from published position weight
matrices [7] and MNase-seq signals around annotated DBF-occupied regions.
These emission probabilities are fixed, remaining unchanged during model opti-
mization. The transition probabilities among the DBFs, however, are unknown,
so we optimize these parameters using expectation maximization (EM).

Our model contains 150 TFs and nucleosomes, but that is not all possible
DBFs. Thus, factors not in the model could be responsible for the enrichment
in nucFrags and shortFrags at certain locations. We observe the midpoint
counts of shortFrags to be noisier, likely because of the binding of other small
complexes that are not a part of the model, including general TFs. We therefore
add an ‘unknown factor’ into the model to account for such DBFs. It is plotted
in light gray in Fig. 2c. Incorporating this unknown factor reduces false positives
among binding site predictions for the other TFs (Fig. S2).
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2.3 RoboCOP’s Use of Epigenomic Accessibility Data Improves the
Resulting Chromatin Occupancy Profiles

Our group’s previous work, COMPETE [23], is an HMM that computes a proba-
bilistic occupancy landscape of the DBFs in the genome using only nucleotide
sequence as input. The model output is theoretical in that it does not incorpo-
rate experimental data in learning the binding landscape of the genome. Perhaps
unsurprisingly, the nucleosome positions learned by COMPETE (Fig. 2e) do not line
up well with the nucleosomal signal apparent in MNase-seq data (Figs. 2a, b).
The nucleosome predictions of COMPETE (Fig. 2e) are more diffuse, which is under-
standable because it relies entirely on sequence information, and nucleosomes
have only weak and periodic sequence specificity. Because of a lack of chromatin
accessibility data, COMPETE fails to identify the clear nucleosome depleted regions
(all throughout the genome, as seen in Figs. 3a, b), as a result of which it fails to
recognize the two Abf1 binding sites known to exist in this locus (Fig. 2e) [15].
In contrast, RoboCOP utilizes the chromatin accessibility data to accurately learn
the nucleosome positions and the annotated Abf1 binding sites (Fig. 2c).

2.4 Predicted Nucleosome Positions

Nucleosomes have weak sequence specificity and can adopt alternative nearby
positions along the genome. It is therefore likely that the nucleosome positions
reported by one method do not exactly match those reported by another. How-
ever, since RoboCOP generates genome-wide probabilistic scores of nucleosome

Fig. 3. Probability that positions around NDRs correspond to a nucleosome dyad, as
computed by (a) COMPETE and (b) RoboCOP. Cyan lines depict experimentally deter-
mined NDR boundaries [5]. Note that Prob(dyad) computed by RoboCOP is appro-
priately almost always zero within NDRs, unlike COMPETE. Aggregate Prob(dyad), as
computed by (c) COMPETE and (d) RoboCOP across all annotated nucleosome dyads [2].
Note that Prob(dyad) computed by RoboCOP appropriately peaks at annotated dyads.
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occupancy, we can plot the probability of a nucleosome dyad, Prob(dyad), around
annotated nucleosome locations [2]. We find that the RoboCOP dyad score peaks
precisely at the annotated dyads (Fig. 3d), and decreases almost symmetrically
in either direction. In contrast, COMPETE does not provide accurate location pre-
dictions (Fig. 3c); the oscillatory nature of the score reported by COMPETE reflects
the periodic dinucleotide sequence specificity model for nucleosomes, and does
not correspond well with actual nucleosome locations. When evaluated genome-
wide using an F1-score (Fig. 4), the nucleosome positions called by RoboCOP are
far more similar to the nucleosome annotations in [2] than are the ones called
by COMPETE, which turn out to be not much better than random.

2.5 Predicted TF Binding Sites

MNase-seq is primarily used to study nucleosome positions; at present, no meth-
ods exist to predict TF binding sites from MNase-seq. It is challenging to extract
TF binding sites from the noisy signal of the shortFrags generated by MNase
digestion. TFs can sometimes be bound for an extremely short span of time [21]
in which case the entire region could be digested by MNase, leaving behind no
shortFrags signal. Nevertheless, MNase-seq data has been reported to provide
evidence of TF binding [10], so we explore how well RoboCOP is able to identify TF
binding sites. When we compare TF binding site predictions made by RoboCOP
to predictions made by COMPETE, we see consistent but slight improvement in
F1-score with RoboCOP (Fig. 4a). As a baseline, we compare these results to an
approach we call FIMO-MNase, in which we simply run FIMO [8] around the
peaks of midpoint counts of shortFrags. We find both RoboCOP and COMPETE
are better than FIMO-MNase (Figs. 4b, c). Abf1, Reb1, and Rap1 have the most
precise annotation datasets, and for these TFs in particular, both COMPETE and
RoboCOP make better predictions. Overall, the highest F1-score is for Rap1 bind-
ing site predictions made by RoboCOP.

Although RoboCOP predicts the binding of a set of 150 TFs, we can only
validate the binding sites of 81 of them, given available X-ChIP-chip [15], ChIP-

Fig. 4. Comparisons of F1-scores of TF binding site predictions by (a) RoboCOP and
COMPETE, (b) RoboCOP and FIMO-MNase, and (c) COMPETE and FIMO-MNase. TFs with
F1-score less than 0.1 in both methods of any given scatter plot are colored gray.
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exo [19], and ORGANIC [13] datasets (Table S1). We have more precise binding
sites from ChIP-exo and ORGANIC experiments for Abf1, Rap1, and Reb1. In
addition, the binding sites in X-ChIP-chip data for many TFs were generated
under multiple conditions [9] (Table S1) and the conditions are not specified for
the reported annotations. This makes the X-ChIP-chip dataset fairly unreliable
for validation purposes. In Fig. S3, we plot Venn diagrams showing the number
of overlaps in the computed binding sites with the annotated binding sites for all
three methods (RoboCOP, COMPETE, FIMO-MNase) and find that both COMPETE
and RoboCOP have high false positives for certain motifs that are AT-rich such as
Azf1 and Sfp1. Since the yeast genome is AT-rich and the shortFrags signal is
noisy, any enrichment of the midpoint counts could be identified as a potential
binding site. We believe prior knowledge about the occupancy of the TFs could
yield higher accuracy.

2.6 RoboCOP Reveals Chromatin Dynamics Under Cadmium Stress

One of the most powerful uses of RoboCOP is that it can elucidate the dynam-
ics of chromatin occupancy, generating profiles under changing environmental
conditions. As an example, we explore the occupancy profiles of yeast cells sub-
jected to cadmium stress for 60 minutes. We run RoboCOP separately on two
MNase-seq datasets: one for a cell population before it was treated with cad-
mium and another 60 minutes after treatment. Cadmium is toxic to the cells
and activates stress response pathways. Stress response related genes are heav-
ily transcribed under cadmium treatment, while ribosomal genes are repressed
[12]. We use RNA-seq to identify the 100 genes most up-regulated (top 100) and
the 100 most down-regulated (bottom 100). As a control, we choose 100 genes
with no change in transcription under cadmium treatment (mid 100) (see Table

Fig. 5. Aggregate of Prob(dyad) computed by RoboCOP around the TSSs of genes
most up-regulated (blue), most down-regulated (green), and unchanged in transcrip-
tion (red), (a) before and (b) 60min after treating cells with cadmium. After treatment,
we see the +1 nucleosome closing in on the promoters of repressed genes (green) but
opening up the promoters of highly transcribed genes (blue). MNase-seq fragment plot
and RoboCOP-predicted occupancy profile of HSP26 promoter at chrII:380700–382350,
(c, d) before and (e, f) after treatment with cadmium. HSP26 is highly expressed
under cadmium stress, and its promoter exhibits much TF binding after treatment,
most prominently by Rap1, known to bind the HSP26 promoter under stress response.
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S2 for the three gene lists). Plotting the RoboCOP-predicted Prob(dyad) around
the TSSs of the three gene groups, we notice that the nucleosomes in the top
100 genes are generally less well-positioned in comparison to the other groups of
genes (Fig. 5a, b). Because of the uncertainty in the nucleosome positions of the
top 100 genes, Prob(dyad) does not have any sharp peaks (blue curve in Fig. 5a,
b). On the other hand, Prob(dyad) has sharp peaks indicating well-positioned
nucleosomes for bottom 100 and mid 100 genes (green and red curves in Fig. 5a,
b). This suggests RoboCOP-predicted Prob(dyad) can be used to classify ‘fuzzy’
or less well-positioned nucleosomes in the genome. Additionally, we see that the
+1 nucleosomes of the top 100 genes move downstream after treatment with
cadmium, thereby opening up the promoter region. In contrast, the +1 nucle-
osomes of the bottom 100 genes move upstream and close in on the promoter
region to repress transcription.

HSP26, a key stress response gene, is among the top 100 most up-regulated
genes. We can use RoboCOP to study how the chromatin landscape changes in
the HSP26 promoter under cadmium stress. In Figs. 5c–f, we notice the HSP26
promoter opening up under stress, with shifts in nucleosomes leading to more
TF binding in the promoter. From the shortFrags midpoint counts, RoboCOP
identifies multiple potential TF binding sites, most prominently for Rap1. Rap1
is known to relocalize to the promoter region of HSP26 during general stress
response [17]; antibody-based methods could be used to validate whether Rap1
binds in the HSP26 promoter under cadmium treatment in particular.

In comparison, COMPETE fails to capture the dynamics of chromatin occu-
pancy because it does not incorporate chromatin accessibility information into
its model. We ran COMPETE with the RoboCOP-trained DBF weights for the two
time points of cadmium treatment and found that COMPETE generates binding
landscapes for the two time points that are nearly identical (Fig. S4). This is a
key difference between RoboCOP and COMPETE: being able to incorporate experi-
mental chromatin accessibility data allows RoboCOP to provide a more accurate
binding profile for cell populations undergoing dramatic chromatin changes.

The above analysis highlights the utility of RoboCOP. Because RoboCOP mod-
els DBFs competing to bind the genome, it produces a probabilistic prediction
of the occupancy level of each DBF at single-nucleotide resolution. As the chro-
matin architecture changes under different environmental conditions, RoboCOP
is able to elucidate the dynamics of chromatin occupancy. The cadmium treat-
ment experiment shows that the predictions made by RoboCOP can be used both
to study overall changes for groups of genes (Fig. 5a), and to focus on specific
genomic loci to understand their chromatin dynamics (Fig. 5b).

3 Methods

3.1 RoboCOP Model Structure and Transition Probabilities

RoboCOP is a multivariate hidden Markov model (HMM) for computing a
genome-wide chromatin occupancy profile using nucleotide sequence and epige-
nomic accessibility data (here MNase-seq) as observables. The HMM structure
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has been adapted from [23]. Let the number of TFs be K. Let π1, . . . ,πK denote
the models for the TFs, and let πK+1 denote the model for nucleosomes. To
simplify notation, we consider an unbound DNA nucleotide to be occupied by a
special ‘empty’ DBF [25]; suggestively, let π0 denote this model. In summary, we
have a total of K+2 DBFs in the model. We use a central non-emitting (‘silent’)
state to simplify state transitions among the DBFs in the model. The HMM may
transition from this central non-emitting state to any one of the DBF models
(including for unbound DNA); at the end of each DBF, the HMM always tran-
sitions back to the central silent state (Fig. S5). This approach assumes DBFs
bind independently of their neighbors, and each DBF therefore has just a single
transition probability associated with it. The transition probabilities from the
central state to the various DBFs are denoted {α0, . . . ,αK+1} .

Each hidden state represents a single genome coordinate. An unbound DNA
nucleotide is length one, so its model π0 has just a single hidden state. The
other DBFs (nucleosomes and TFs) have binding sites of greater length and
are thus modeled using collections of multiple hidden states. For TF k with a
binding site of length Lk, the HMM either transitions through Lk hidden states
of its binding motif or Lk hidden states of the reverse complement of its binding
motif. An additional non-emitting state is added as the first hidden state of the
TF model πk, allowing the HMM to transition through the forward or reverse
complement of the motif with equal probability (Fig. S6a). The complete TF
model πk therefore has a total of 2Lk + 1 hidden states. Once the HMM enters
the hidden states for either the forward or reverse motif, it transitions through
the sequence of hidden states with probability 1 between consecutive hidden
states. On reaching the final hidden state of either motif, the HMM transitions
back to the central silent state with probability 1. Likewise, once the HMM enters
the nucleosome model πK+1, it transitions through a sequence of hidden states
corresponding to 147 nucleotides, after which it transitions back to the central
silent state (Fig. S6b). The nucleosome model differs from the TF models in that
the latter are modeled with simple PWMmotifs, while the former is implemented
using a dinucleotide sequence specificity model.

Suppose the sequence of hidden states for the entire genome of length G is
denoted as z1, . . . , zG. Then the transition probabilities satisfy the following:

• P (zg+1 = πk,l+1|zg = πk,l) = 1 whenever l < Lk. Within a DBF, the HMM
only transitions to that DBF’s next state and not any other state, until it
reaches the end of the DBF.

• P (zg+1 = πk1,1|zg = πk2,Lk2
) = P (zg+1 = πk1,1) = αk1 . The transition

probability to the first state of a DBF is a constant, independent of which
DBF the HMM visited previously.

• P (zg+1|zg) = 0 for all other cases.

The HMM always starts in the central non-emitting state with probability 1;
this guarantees that it cannot start in the middle of a DBF.
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3.2 RoboCOP Emission Probabilities

The HMM employed by RoboCOP is multivariate, meaning that each hidden
state is responsible for emitting multiple observables per position in the genome.
In our case, these observables are modeled as independent, conditioned on the
hidden state, but adding dependence would be straightforward. For a genome
of length G, the sequences of observables being explained by the model are: (i)
nucleotide sequence {s1, . . . , sG} , (ii) midpoint counts of MNase-seq nucFrags
{l1, . . . , lG} , and (iii) midpoint counts of MNase-seq shortFrags {m1, . . . ,mG} .
For any position g in the genome, the hidden state zg is thus responsible for
emitting a nucleotide sg, a number lg of midpoints of nucFrags, and a number
mg of midpoints of shortFrags (Fig. S1). Since these three observations are
independent of one another given the hidden state zg, the hidden states have
an emission model for each of the three observables, and the joint probability
of the multivariate emission is the product of the emission probabilities of the
three observables.

For the TF models π1, . . . ,πK , emission probabilities for nucleotide
sequences are represented using PWMs. For each of our 150 TFs, we use the
PWM of its primary motif reported in [7] (except for Rap1, where we use the
more detailed motifs in [19]). For the nucleosome model πK+1, the emission
probability for a nucleotide sequence of length 147 can be represented using a
position-specific dinucleotide model [20]. To represent this dinucleotide model,
the number of hidden states in πK+1 is roughly 4× 147. We use the same dinu-
cleotide model that was used earlier in COMPETE [23].

As described earlier, the two-dimensional MNase-seq data is used to compute
two one-dimensional signals. The midpoint counts of nucFrags are primarily
used for learning nucleosome positions and the midpoint counts of shortFrags
are used for learning the TF binding sites. In both cases, a negative binomial
(NB) distribution is used to model the emission probabilities. We use two sets of
NB distributions to model the midpoint counts of nucFrags. One distribution,
NB(µnuc,φnuc), explains the counts of nucFrags at the nucleosome positions
and another distribution, NB(µlb,φlb), explains the counts of nucFrags else-
where in the genome. Since the midpoint counts of nucFrags within a nucleo-
some are not uniform (Fig. 1b), we model each of the 147 positions separately. To
obtain µnuc and φnuc, we collect the midpoint counts of nucFrags in a window
of size 147 centered on the annotated nucleosome dyads of the top 2000 well-
positioned nucleosomes [2] and estimate 147 NB distributions using maximum
likelihood estimate (MLE). The 147 estimated values of µ are denoted as µnuc.
The mean of the 147 estimated values of φ is denoted as φnuc (shared across all
147 positions). Quantile-quantile plots show the resulting NB distributions to be
a good fit (Fig. S7). To compute NB(µlb,φlb), we estimate an NB distribution
for the midpoint counts of nucFrags at the linker regions of the same set of
2000 nucleosomes using MLE. The linker length is chosen to be 15 bases long on
either side of the nucleosome [5].

Similarly, we model the midpoint counts of shortFrags using two distribu-
tions where one of them, NB(µTF ,φTF ), explains the counts of shortFrags at
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the TF binding sites, while the other, NB(µmb,φmb), explains the counts else-
where. To estimate the parameters of NB(µTF ,φTF ), we collect the midpoint
counts of shortFrags at the annotated Abf1 and Reb1 binding sites from [15]
and fit an NB distribution using MLE. A quantile-quantile plot shows the NB
distribution to be a good fit (Fig. S8). We chose Abf1 and Reb1 for fitting the
distribution because these TFs have many binding sites in the genome and the
binding sites are often less noisy. For parameterizing NB(µmb,φmb), we compute
the midpoint counts of shortFrags at the same linker regions used earlier and
estimate the NB distribution using MLE.

3.3 RoboCOP Parameter Updates

The transition probabilities between hidden states within a DBF can only be 0
or 1 (except for the two transition probabilities from each TF model’s first, non-
emitting state to either its forward or reverse motif, which are 0.5). Consequently,
only the transition probabilities {α0, . . . ,αK+1} from the central silent state
to the first state of each DBF are unknown. We initialize these probabilities
as described below, and then iteratively update them using Baum-Welch until
convergence to a local optimum of the likelihood.

To initialize the probabilities, we assign weight 1 to the ‘empty’ DBF (repre-
senting an unbound DNA nucleotide) and 35 to the nucleosome. To each TF, we
assign a weight which is that TF’s dissociation constant KD (or alternatively,
a multiple thereof: 8KD, 16KD, 32KD, or 64KD). Finally, we transform these
weights into a proper probability distribution to yield the initial probabilities.

To update αk, the transition probability from the central silent state to the
first hidden state πk,1 of DBF k, we compute:

αk =
∑G

g=1 P (πk,1|θ∗, s, l,m)
∑K+1

k′=0

∑G
g=1 P (πk′,1|θ∗, s, l,m)

Here, θ∗ represents all the model parameters. We find the likelihood converges
within 10 iterations (Fig. S9) and the optimized transition probabilities for each
DBF almost always converge to the same final values regardless of how we ini-
tialize the weights (Fig. S10). We find convergence is faster for most DBFs when
we initialize TF weights to KD rather than multiples thereof (Fig. S10).

We do not use any prior information about the transition probabilities of the
DBFs. We find that a few TFs such as Azf1 and Smp1 can have a large number
of binding sites in the genome that are potential false positives. To curb the
number of binding site predictions for such TFs, we apply a threshold on the TF
transition probabilities. The threshold δ is chosen to be two standard deviations
more than the mean of the initial transition probabilities of the TFs (Fig. S11).
Therefore, after the Baum-Welch step in every iteration, an additional modified
Baum-Welch step is computed as follows:
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αk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1 − nδ)

G∑
g=1

P (πk,1|θ∗,s,l,m )

∑K+1
k′=0,αk′<δ

G∑
g=1

P (πk′,1|θ∗,s,l,m )
, if αk < δ

δ , otherwise

Here n is the number of TFs that have transition probability more than
δ. So, all the TFs whose transition probability would be more than δ are set
instead to δ, and the remaining TFs have a regular Baum-Welch update of their
transition probabilities. We find that this approach reduces the number of false
positives (Fig. S12). Using an informed prior might be an alternative mechanism
for yielding a more accurate binding profile for such TFs.

To ensure fair comparisons between RoboCOP and COMPETE, we ran COMPETE
using the same parameters estimated by RoboCOP. Therefore, the output profiles
of the two methods highlight the differences in the results that occur because of
the inclusion of chromatin accessibility data.

3.4 Implementation Details for Posterior Decoding

RoboCOP employs posterior decoding to infer probabilistic occupancy profiles
of protein-DNA binding. The motivation behind posterior decoding is that it
represents the thermodynamic ensemble of potential binding configurations; the
resulting probability distribution sheds light on the many different ways proteins
may be bound to the genome across a cell population (applying Viterbi decod-
ing would not provide a probabilistic landscape, but only a single, most likely
chromatin configuration).

As a multivariate HMM, RoboCOP has a time complexity of O(GN2) and a
space complexity of O(GN) (for a genome of length G and where N denotes the
total number of hidden states). The high complexity makes it difficult to decode
the entire genome at once. To reduce the computational complexity of RoboCOP,
we perform posterior decoding separately on blocks of the genome of length 5000,
with an overlap of 1000 bases, and stitch results together. This ensures that the
model has a sufficiently long sequence to learn an accurate chromatin landscape,
but not so long that we run out of space. In addition, we use only the longest
chromosome (chrIV) to train DBF transition probabilities with Baum-Welch,
and then undertake posterior decoding genome-wide.

3.5 TF and Nucleosome Predictions and Validation

We use posterior probabilities of TF occupancy from RoboCOP and COMPETE out-
put to identify binding sites, calling all sites whose probability is at least 0.1. In
the case of Rap1 which has multiple PWMs, the maximum probability among
the PWMs is chosen at every position. The same comparison is applied when
choosing between the forward and reverse complement of the motif. For valida-
tion, a site is considered a true positive (TP) if it overlaps with an annotated
binding site for that TF, and a false positive (FP) otherwise. If an annotated TF
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binding site does not overlap any of our predictions, it is a false negative (FN).
We use the sacCer2 (June 2008) genome version in our analyses.

We called nucleosomes from RoboCOP and COMPETE output using a greedy
algorithm, as described previously [24]. Briefly, nucleosome dyads with decreas-
ing probability were iteratively selected. A window of size 101 around the selected
dyad was removed from future rounds of dyad selection (this window size was
chosen to allow mild overlap between adjacent nucleosome locations). The nucle-
osome annotations in [2] contain 67548 nucleosomes. We selected the same num-
ber of top scoring nucleosomes from the output of RoboCOP and COMPETE. A
nucleosome position was considered to be a true positive (TP) if the distance
between the predicted and annotated dyad was less than 50 bases.

3.6 FIMO-MNase

MNase-seq midpoint counts of shortFrags (length less than 80) are smoothed
using a window of size 21. Peaks are detected if they have a value greater than 2
with consecutive peaks being at least 25 bases apart. Peaks for midpoint counts
of nucFrags are detected if they have a value greater than 1 and are at least 100
bases apart. To prevent nucleosomal peaks occluding peaks of shortFrags, peaks
of midpoint counts of shortFrags within 60 bases of peaks of midpoint counts of
nucFrags are removed. After these steps, we detect 4137 peaks of shortFrags
genome-wide. FIMO [8] is run using PWMs from [7] on 50-bp windows centered
on the peak sites with a p-value cutoff of 10−4.

3.7 Data Access

MNase-seq and RNA-seq of yeast cells before and after cadmium treatment is
available at https://doi.org/10.7924/r4hx1b43s. Code and supplementary mate-
rial may be downloaded from https://github.com/HarteminkLab/RoboCOP.

4 Discussion

RoboCOP is a novel method that utilizes a multivariate HMM to generate a
probabilistic occupancy profile of the genome by integrating chromatin acces-
sibility data with nucleotide sequence. We choose to apply the model to the
yeast genome because of the availability of high quality MNase-seq data and the
small size of the genome, which simplifies computation. Chromatin accessibility
data from MNase-seq, DNase-seq, and ATAC-seq are generally noisy, so it is a
challenging task to infer precise genome-wide DBF occupancy from the data,
particularly for TFs. While alternative approaches using peak identification or
footprint identification followed by TF-labeling with FIMO [8] can offer some
insight into protein-DNA binding, we observe that RoboCOP performs notably
better, presumably because it considers all DBFs together in a joint model
that incorporates the thermodynamic competition among DBFs (including
nucleosomes).

https://doi.org/10.7924/r4hx1b43s
https://github.com/HarteminkLab/RoboCOP
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RoboCOP improves upon COMPETE in a number of ways: it slightly improves
TF binding site predictions, it markedly improves nucleosome positioning pre-
dictions, and it uses experimental data to learn DBF transition probabilities
in a principled way. When these same transition probabilities are provided to
COMPETE, its TF binding site predictions are similar to RoboCOP’s because of the
generally high sequence specificity of TFs, but its nucleosome position predic-
tions are much worse because of the weak sequence specificity of nucleosomes. In
future work, it might be possible to improve the learned transition probabilities
further through the use of prior information.

Finally, we note that RoboCOP can be used to study the chromatin archi-
tecture of the genome under varying conditions, an important task to which
COMPETE is unsuited. Because RoboCOP uses data to model a collection of DBFs
competing to bind to the genome, we can observe dynamic levels of occupancy
for different DBFs under different environmental conditions. Since gene expres-
sion also varies in response to changing environmental conditions, we believe
RoboCOP will help elucidate how the dynamics of chromatin occupancy and the
dynamics of gene expression interrelate.
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